搜档网
当前位置:搜档网 › 生物农药的发展与苏云金杆菌杀虫剂研究现状_刘保民

生物农药的发展与苏云金杆菌杀虫剂研究现状_刘保民

生物农药的发展与苏云金杆菌杀虫剂研究现状_刘保民
生物农药的发展与苏云金杆菌杀虫剂研究现状_刘保民

2011.01B

总第206期生物农药的发展

在全球范围内,由于农业病虫害所造成的农产品损失每年达到15%~25%.大规模地使用化学农药是当前控制害虫的主要策略。这一措施虽然对于稳定农业产量具有一定的积极作用,但是,由于化学农药的杀虫谱广,田间残效期较长,容易诱发害虫对其产生抗药性,特别是化学农药对农产品和环境的污染,导致妇女流产、婴儿畸变以及诱发人类癌症等各种疾病。因此,使用生物农药防治害虫越来越受到人们的重视。

1.生物农药发展概况

随着人类环境保护意识的增强,高效低毒的生物农药已成为当今农药的发展方向。生物农药是指非人工合成,具有杀虫、杀菌或抗病、除草能力的,并可以制成具有农药功效和商品价值的生物制剂,包括微生物源农药(细菌、病毒、真菌及其次生代谢产物)、植物源农药、动物源农药和抗病虫草害的转基因植物等。相对于常规的化学农药而言,生物农药具有作用方式独特,防治对象专一,对天敌等有益生物安全,用量小,降解快,对人、畜、环境风险性低,适用于病、虫、草害综合防治等特点。1992年,世界环境与发展大会曾明确指出,到2000年要在全球范围内控制化学农药的销售和使用,生物农药的用量达到60%,然而,目前生物农药在全球农药销售总量中仅占2%的市场份额,与预期目标相差甚远。因此,大力发展生物农药已经成为世界各国共同面临的重大任务。我国有关部门提出到2015年,要求生物农药的使用占农药总量的30%~50%,按此比例计算,当前我国农药耗用量每年达120万t,年需生物农药量至少在60万t以上。至2002年底,包括转基因棉花,我国生物农药年产量仅占到农药总产量的10%左右,推广应用面积占到农药总应用面积的12%左右。可见发展生物农药已经成为我国急待解决的重大问题之一。目前,我国正式注册的农药生产企业近2000家,品种约250种,年产量近40万t,总产量仅次于美国。其中,化学农药占农药总量的90%以上,生物农药所占比例不足10%,我国农药品种结构老化,高毒品种仍在继续使用,集中表现为“3个70%”,即杀虫剂约占农药总产量的70%,有机磷农药约占杀虫剂的70%,几个高毒老品种,如,甲胺磷、甲基对硫磷、敌敌畏等约占有机磷农药的70%,这种现状已不能适应现代农业生产发展和环境保护的要求。

生物农药在我国发展有两个高潮,即20世纪60年代-70年代和20世纪90年代以后。在前一个高潮阶段由于当时生物技术水平相对较低,满足不了生物农药对工艺、贮藏和运输要求的条件,除井冈霉素外,未形成有影响的产品。进入20世纪90年代以后,由于生物技术尤其是微生物技术的进步,为生物农药的开发提供了便利,形成了第二个高潮。据《农药登记公告》统计,我国已商品化的生物农药产品主要有以下几类:苏云金杆菌、核型多角体病毒、阿维菌素和农用抗生素等。

不同种类的生物农药各有特点,病毒类生物农药由于病毒无法离体培养,生产中需要大量养殖昆虫,从而使大规模生产受到限制;真菌类生物农药,由于大量培养抗逆孢子技术没有突破,致使产品的保存期和稳定性达不到农药登记的要求,造成规模化生产存在一定的难度;植物源农药由于需要种植大量植物,工业规模化生产受到土地、植被和生态保护等限制;动物源农药主要是被开发成仿生合成农药,直接开发成生物农药难度很大;转基因植物,由于安全性评价问题也影响其推广应用。以苏云金杆菌为代表的细菌类杀虫剂,由于

山西省芮城县生物农药厂刘保民

苏云金杆菌杀虫剂研究现状

27

AGRICULTURAL TECHNOLOGY&EQUIPMENT

ATE

容易通过现代化发酵技术实现规模化生产,产品便于运输、贮存和应用,因而受到国内外研究者的关注和企业家的广泛重视。

2.苏云金杆菌杀虫剂的研究现状

国际上已商品化的生物农药约30种,以苏云金杆菌(Bacillus thuringiensis,简称Bt)居主要地位,已有产品为数百种,约占整个生物农药市场的70%以上。1997年销售额达到9.84亿美元,其中半数在美国。苏云金杆菌是一种革兰氏阳性细菌,它在形成芽孢的同时能够产生一种或几种杀虫晶体蛋白组成的伴孢晶体,晶体蛋白为其主要的杀虫活性成分。目前,人们对Bt杀虫晶体蛋白的空间结构与功能、作用机理以及毒素与受体的结合模型进行了深入的研究,在此基础上利用蛋白质工程和基因工程技术构建Bt工程菌,增强Bt杀虫剂的毒力,拓宽其杀虫谱,进一步利用Bt基因及其他抗虫基因来转化植物,以获得害虫难以产生抗性的转基因植物。

由于苏云金杆菌具有高特异性的杀虫活性和对人畜及非目标昆虫的安全性,同时对环境没有不利影响,因而得到了广泛的应用。然而由于Bt杀虫剂的杀虫谱较窄,杀虫活性稳定性差以及残效期短,从而限制了Bt 杀虫剂更广泛的应用。近年来,利用遗传工程技术构建Bt工程菌,扩大杀虫谱,提高杀虫效率,以及将杀虫晶体蛋白基因转入农作物中以获得抗虫植物等方面,都取得了很大的进展。

为了扩大Bt制剂的杀虫范围,人们从自然界分离筛选新的Bt菌株,通过分子生物学技术鉴定克隆出新的杀虫晶体蛋白基因。利用蛋白质工程技术对野生Bt 菌株产生的晶体蛋白进行定点突变,从而扩大Bt制剂的杀虫范围。

由于Bt菌株中表达单一来源的杀虫晶体蛋白基因容易诱发害虫对Bt制剂产生抗性,因此,国内外研究人员在寻找新的抗虫基因的同时,开始尝试在Bt菌株中表达不同来源的抗虫基因,如将Bt基因与蛋白酶抑制剂基因、凝集素基因等其他抗虫基因在同一工程菌中表达。在Bt工程菌中同时表达不同来源的抗虫基因,能够有效增强工程菌的杀虫毒力,拓宽其杀虫谱,通过表达不同来源的抗虫基因还能有效地延缓害虫对Bt杀虫剂产生抗性的速度。此外,人们为了延长Bt杀虫剂的田间残效期,采用微囊化技术包裹苏云金杆菌产生的晶体毒蛋白和芽孢,降低阳光中的紫外线对其造成的损伤,以维持其杀虫毒力。同时,人们还利用基因工程技术敲除Bt染色体上与芽孢形成相关的基因,然后将杀虫晶体蛋白基因转化到该突变株中,由于该突变株不能形成芽孢,因此产生晶体的母细胞不会裂解,晶体毒蛋白由于母细胞囊膜的保护而能够免受紫外线的损害,从而能够大大延长该杀虫剂的田间残效期。

(下接第26页)

面积达1600万hm2,成为仅次于粮食的第二大农作物。2001年中国蔬菜总产量2.4亿t,出口额21亿美元,成为出口增长最快的农产品之一。我国是一个蔬菜生产和消费大国,同时也是病虫害发生比较严重的国家,如何有效地防治病虫害一直是广大农民和植物保护工作者面临的主要难题。蔬菜害虫是农业害虫中重要一类,为了有效地控制该类害虫,同时又不破坏生态环境和危害人类健康,其防治应着重利用天敌昆虫或昆虫病原微生物。其中,利用昆虫信息素防控虫情的发展是一项环保、绿色、无公害、无污染的手段,对于出口创汇的蔬菜虫害防治,起到了不可缺少的作用。

我国是农业大国,除粮食作物、蔬菜外,经济作物的种植面积也相当可观。2006年全国棉花种植面积达到533.3万hm2,新疆及其他棉花产区的棉花害虫发生严重,为保证棉桃产量和质量,使用昆虫信息素的防治方法有效抑制了害虫的发生。2007年,仅棉铃虫的信息素诱芯使用量达到几十万粒。近两年,农业上各类害虫的信息素诱芯的使用数量呈快速增长趋势,作为一种害虫防控的生物控制手段已经被广大农民们认可和接受,具有广阔的发展空间。

2.生态效益及发展前景

由于昆虫信息素具有专一性强,对人畜低毒,不污染环境、不伤害天敌的优点,且可广泛应用于农林业生产,海关检疫,仓储害虫的防治,有效地检测和控制害虫的发生,可以作为害虫综合治理的有效手段。同时,随着昆虫信息素的深入研究,还可应用于卫生害虫、文档害虫的防治。对于不便使用农药的公园、露天运动场、宾馆、餐厅等,昆虫信息素都可发挥它的优势,带给人们以真正绿色健康的生活环境。昆虫信息素的合理利用必将为我国生产高质量的农林产品,防止有害生物入侵和人们的绿色健康生活做出积极的贡献。

可以看出,昆虫信息素不仅绿色环保无公害,而且还是高效的生物杀虫剂,防治效果不输于化学农药,使用信息素防治可有效降低农药使用量及防治成本,因其不伤害天敌,不对目标昆虫产生抗药性,故在IPM防治对策中可以使用昆虫信息素作为绿色防治害虫的重要手段。从生产和应用上看,该项技术在我国有着巨大的发展空间和前景。

绿色植保28

微生物农药的应用现状和发展前景

微生物农药的应用现状和发展前景 摘要化学农药的使用能够控制病虫害,增加作物的产量,但在土壤、空气和粮食中的残留也带来了环境污染、生态平衡破坏和食品安全等一系列问题。微生物农药是指微生物及其代谢产物,和由它加工而成的、具有杀虫、杀菌、除草、杀鼠或调节植物生长等活性的物质,包括活体微生物农药和农用抗生素两大类。前者主要包括Bt制剂、病毒杀虫剂、真菌杀虫剂和真菌除草剂;后者主要指微生物所产生的一些有活性的次级代谢产物及其化学修饰物。微生物农药由于其广谱、高效、安全、环境相容性好等特点,日益受到重视。本文介绍了微生物农药的种类、特点、应用现状,并在此基础上对其发展前景进行了展望。 关键词微生物农药;应用现状;发展前景 1.传统化学农药和微生物农药的比较 1.1传统化学农药产生的危害 1.1.1对土壤的影响 传统化学农药施用以后,一部分残留在农作物表面,一部分直接进入土壤,被土壤颗粒吸附。大气中的残留农药和农作物上的农药经雨水淋洗进入土壤,直接或间接与土壤接触,杀灭土壤中的微生物,影响土壤的腐熟和透气性,破坏土壤结构和土壤肥力,影响作物生长发育。 1.1.2破坏生态平衡 在杀灭害虫的同时,也杀灭了害虫的天敌,破坏了生态平衡,导致害虫种群急剧上升。有些次要的害虫,由于天敌数量急剧减少,很快发展为主要害虫。 1.1.3产生抗药性 针对一种害虫长期使用同种农药,往往会使其产生抗药性,从而导致农药浓度及用药频率增加,使农药残留更高。 1.1.4威胁食品安全和人体健康 化学农药在蔬菜水果上的残留会对食品安全造成巨大的威胁。农药通过饮食或食物链间接进入人体造成急性或慢性中毒,甚至致癌,危害人体健康。 1.2微生物农药的优点 与传统化学农药相比,微生物农药具有以下优点:(1)对病虫害的防治效果良好。病原

生物农药的发展与苏云金杆菌杀虫剂研究现状_刘保民

2011.01B 总第206期生物农药的发展 在全球范围内,由于农业病虫害所造成的农产品损失每年达到15%~25%.大规模地使用化学农药是当前控制害虫的主要策略。这一措施虽然对于稳定农业产量具有一定的积极作用,但是,由于化学农药的杀虫谱广,田间残效期较长,容易诱发害虫对其产生抗药性,特别是化学农药对农产品和环境的污染,导致妇女流产、婴儿畸变以及诱发人类癌症等各种疾病。因此,使用生物农药防治害虫越来越受到人们的重视。 1.生物农药发展概况 随着人类环境保护意识的增强,高效低毒的生物农药已成为当今农药的发展方向。生物农药是指非人工合成,具有杀虫、杀菌或抗病、除草能力的,并可以制成具有农药功效和商品价值的生物制剂,包括微生物源农药(细菌、病毒、真菌及其次生代谢产物)、植物源农药、动物源农药和抗病虫草害的转基因植物等。相对于常规的化学农药而言,生物农药具有作用方式独特,防治对象专一,对天敌等有益生物安全,用量小,降解快,对人、畜、环境风险性低,适用于病、虫、草害综合防治等特点。1992年,世界环境与发展大会曾明确指出,到2000年要在全球范围内控制化学农药的销售和使用,生物农药的用量达到60%,然而,目前生物农药在全球农药销售总量中仅占2%的市场份额,与预期目标相差甚远。因此,大力发展生物农药已经成为世界各国共同面临的重大任务。我国有关部门提出到2015年,要求生物农药的使用占农药总量的30%~50%,按此比例计算,当前我国农药耗用量每年达120万t,年需生物农药量至少在60万t以上。至2002年底,包括转基因棉花,我国生物农药年产量仅占到农药总产量的10%左右,推广应用面积占到农药总应用面积的12%左右。可见发展生物农药已经成为我国急待解决的重大问题之一。目前,我国正式注册的农药生产企业近2000家,品种约250种,年产量近40万t,总产量仅次于美国。其中,化学农药占农药总量的90%以上,生物农药所占比例不足10%,我国农药品种结构老化,高毒品种仍在继续使用,集中表现为“3个70%”,即杀虫剂约占农药总产量的70%,有机磷农药约占杀虫剂的70%,几个高毒老品种,如,甲胺磷、甲基对硫磷、敌敌畏等约占有机磷农药的70%,这种现状已不能适应现代农业生产发展和环境保护的要求。 生物农药在我国发展有两个高潮,即20世纪60年代-70年代和20世纪90年代以后。在前一个高潮阶段由于当时生物技术水平相对较低,满足不了生物农药对工艺、贮藏和运输要求的条件,除井冈霉素外,未形成有影响的产品。进入20世纪90年代以后,由于生物技术尤其是微生物技术的进步,为生物农药的开发提供了便利,形成了第二个高潮。据《农药登记公告》统计,我国已商品化的生物农药产品主要有以下几类:苏云金杆菌、核型多角体病毒、阿维菌素和农用抗生素等。 不同种类的生物农药各有特点,病毒类生物农药由于病毒无法离体培养,生产中需要大量养殖昆虫,从而使大规模生产受到限制;真菌类生物农药,由于大量培养抗逆孢子技术没有突破,致使产品的保存期和稳定性达不到农药登记的要求,造成规模化生产存在一定的难度;植物源农药由于需要种植大量植物,工业规模化生产受到土地、植被和生态保护等限制;动物源农药主要是被开发成仿生合成农药,直接开发成生物农药难度很大;转基因植物,由于安全性评价问题也影响其推广应用。以苏云金杆菌为代表的细菌类杀虫剂,由于 山西省芮城县生物农药厂刘保民 与 苏云金杆菌杀虫剂研究现状 27 AGRICULTURAL TECHNOLOGY&EQUIPMENT

Bt(苏云金杆菌)乳剂生产工艺规程

Bt(苏云金杆菌)乳剂生产工艺规程 衡阳市微生物厂 一九九二年三月

Bt 乳剂工业生产技术 一、概述 Bt 即苏云金杆菌(Bacillus thuringiensis )的简称,是一种寄生于昆虫体内引起昆虫发病死亡的能产生伴孢晶体的芽孢杆菌,其制剂广泛应用于农、要、果、蔬、城市园林方面的害虫防治。 二、生产工艺流程 砂土管菌种 斜面菌种 扁瓶 菌种扩大培养 发酵罐 过滤 浓缩 加助剂 检验 包装 三、生产工艺操作规程 (一)砂土管菌种的制备 1、砂的处理: 取建筑用砂或河砂经60-80目过筛后用工业Hc 浸泡48h 后用清水洗净,再用0.2NNao 中和,烘干后用磁铁除去其中带磁性之金属微粒,装入洁净容器内备用。 2、砂土管制备: 将以上已处理好之砂土分装于1.2×12公分之小试管中,每管约装2克,塞上棉塞,先用2.0kg/cm 2高压灭菌1.5小时,间歇灭菌三次,再以160℃干热灭菌2小时,经无菌试验,即抽取一点砂土置于斜面试管中 36℃培养24小时才检查无杂菌后备用。 27-29℃ 48-72h 27-29℃ 18-24h 27-29℃ 36-48h

3、砂土孢子的制作: 选择生长良好,经过生产能力考查合格的优良试管斜菌种一支加入无菌水5ml,用接种针刮下孢子制成高浓度的孢子悬液用无菌吸管吸取0.2-0.3ml接入砂土管中,而后置入真空干燥器内,用真空泵间歇抽干,用石蜡封口,以后置于0-5℃冰箱中,在干燥情况下保存。 (二)斜面菌种的制备 1、培养基:牛肉膏0.3%、蛋白胨1%、琼脂2%,调节7.5-8.0溶化后分装试管,加塞放入试管篓内包好灭菌。 2、灭菌:在消毒锅内 1.1kg/cm2下蒸气灭菌30分钟,等冷却到60-70℃时取出摆成斜面,空白培养2天观察无杂菌方可使用。 3、接种培养:将菌种试管斜面放在接种室内或无菌操作箱中,打开紫外线灯灭菌30分钟后关闭。用接种环按操作规程刮取种子菌苔少许,转至新鲜斜面培养基上划线接种,然后放入30℃培养箱内3-4天,经检查正常,放入冰箱内备用。 (三)扁瓶扩大种子制备 1、培养基:同斜面培养组成,另加葡萄糖1%,溶化后装入扁瓶。 2、灭菌、接种、培养均与斜面菌种同。 (四)发酵 1、培养基棉籽饼粉 3.5% 玉米粉 2.0% 鱼粉 1.0% 酵母粉0.2%

微生物发展历程及前景展望

微生物学发展历程及前景展望 微生物学(microbiology)生物学的分支学科之一。它是在分子、细胞或群体水平上研究各类微小生物的形态结构、生长繁殖、生理代谢、遗传变异、生态分布和分类进化等生命活动的基本规律,并将其应用于工业发酵、医学卫生和生物工程等领域的科学。 微生物学是高等院校生物类专业必开的一门重要基础课或专业基础课,也是现代高新生物技术的理论与技术基础。基因工程、细胞工程、酶工程及发酵工程就是在微生物学原理与技术基础上形成和发展起来的;《微生物学》也是高等农林院校生物类专业发展及农林业现代化的重要基石之一。随着生物技术广泛应用,微生物学对现代与未来人类的生产活动及生活必将产生巨大影响。 一、发展历程 (一)微生物学的经验时期 公元二千多年的夏禹时代,就有仪狄作酒的记载。北魏(386~534)贾思勰《齐民要术》一书中,详细地记载了制醋方法。我国古代人民也发现豆类的发酵过程,从而制成了酱。 十一世纪时。北宋未年刘真人就有肺痨由虫引起之说。意大利学者Fracastoro 认为传染病的传播有直接、间接和通过空气等几种途径。 在预防医学方面,我国自古以来就有将水煮沸后饮用的习惯。明李时珍的《本草纲目》中,亦有对病人穿过的衣服应该进行消毒的记载。 我国古代人民,创用了预防天花的人痘接种法。大量古书证明,我国在明代隆庆年间,人痘已经广泛使用,并先后传至俄国、日本、朝鲜、土耳其、英国等国家,人痘接种是我国对预防医学的一大贡献。 (二)实验微生物学时期 1.微生物的发现 首先看到微生物的是荷兰人列文虎克。他于1676年创制了一架原始显微镜,正确地描述了微生物的形态有球形、杆状、螺旋样等,为微生物的存在提供了有力证据。 法国科学家巴斯德首先实验证明有机物质的发酵与腐败是由微生物引起。巴斯德的研究开始了微生物的生理学时期。自此,微生物学开始成为一门独立的学科。 巴斯德创造了巴氏消毒法。随后,英国外科医师李斯德创用石碳酸喷洒手术室和煮沸手术用具,以防止外科手术的继发感染,为防腐、消毒以及无菌操作打下基础。 微生物学的另一奠基人是德国学者郭霍。他创用固体培养基,使有可能将细菌从环境或病人排泄物等标本中分出成为纯培养,便于对各种细菌分别具体研究。后又创用了染色方法和实验性动物感染,为发现各种传染病的病原体提供有利条件。 2.免疫学的兴起 十八世纪末,英国医师Jenner创制牛痘苗来预防天花,为预防医学开辟了广

苏云金杆菌的使用方法

苏云金杆菌的使用方法 尽管苏云金杆菌是杀虫剂中使用比较广泛的杀虫剂之一。但还是有不少农民用户对苏云金杆菌的使用方法不是很了解的。今天小编详细给大家介绍苏云金杆菌的使用方法。 苏云金杆菌的使用方法: 十字花科蔬菜菜青虫、小菜蛾 幼虫3龄前,每667平方米使用8000IU/毫克可湿性粉剂100~300克,或16000IU/毫克可湿性粉剂100~150克,或32000IU/毫克可湿性粉剂50-80克,或2000IU/微升悬浮剂200~300毫升,或4000IU/微升悬浮剂100~150毫升,或8000IU/微升悬浮剂50~75毫升,或100亿活芽孢/克可湿性粉剂ioo~iso克,兑水30~45丁-克均匀喷雾。 水稻稻纵卷叶螟、稻苞虫 幼虫孵化高峰至3龄前,每667平方米使用8000IU/毫克可湿性粉剂300~400克,或16000IU/毫克可湿性粉剂150r-_J200克,或32000iu/毫克可湿性粉剂80~100克,或2000IU/微升悬浮剂400~500毫升,或4000IU/微升悬浮剂200~250毫升,或8000IU/微升悬浮剂100-120毫升,兑水30~45千克均匀喷雾。 棉花棉铃虫、造桥虫 幼虫孵化高峰至钻铃前,每667平方米使用8000IU/毫克可湿性粉剂400~500克,或16000克可湿性粉剂200~250克,或32000IU/毫克可湿性粉剂120克,或2000IU/微升悬浮剂400---500毫升,或4000升悬浮剂200~250毫升,或8000IU/微升悬浮剂100-120毫升,

或100亿活芽孢/克可湿性粉剂250~400克,兑水45-75千克均匀喷雾。 玉米、高梁玉米螟 每667平方米使用8000IU/毫克可湿性粉剂250-300克,或4000IU/微升悬浮剂150-200毫升,在玉米或高粱大喇叭口时期喷雾或混细沙制成毒土灌心叶。 大豆天蛾、甘薯天蛾 幼虫孵化盛期,每667平方米使用8000IU/毫克可湿性粉剂200~300克,或16000iu/毫克可湿性粉剂100~150克,或32000iu/毫克可湿性粉剂50~80克,或2000iu/微升悬浮剂200-300毫升,或4000IU/微升悬浮剂100~150毫升,或8000IU/微升悬浮剂50-75毫升,兑水30~45千克均匀喷雾。 烟草烟青虫 幼虫3龄前喷药,每667平方米使用8000IU/毫克可湿性粉剂400-500克,或16000IU/毫克可湿性粉剂200~250克,或32000IU/毫克可湿性粉剂100~120克,或2000IU/微升悬浮剂400~500毫升,或4000IU/微升悬浮剂200--250毫升,或8000IU/微升悬浮剂100~120毫升,兑水30~45千克均匀喷雾。 茶树茶毛虫 幼虫孵化高峰至3龄前喷药,使用8000IU/毫克可湿性粉剂100~150倍液,或16000iu/毫克可湿性粉剂200~300倍液,或32000iu/毫克可湿性粉剂400-500倍液,或2000IU/微升悬浮剂80~100倍液

农药微生物降解研究进展32237

农药的微生物降解研究进展.txt25爱是一盏灯,黑暗中照亮前行的远方;爱是一首诗,冰冷中温暖渴求的心房;爱是夏日的风,是冬日的阳,是春日的雨,是秋日的果。摘要:综述了在环境中降解农药的微生物种类、微生物降解农药的机理、在自然条件下影响微生物降解农药的因素及农药微生物降解研究方面的新技术和新方法。文章认为,在农药的微生物降解研究中,应重视自然状态下微生物对农药的降解过程,分离构建应由天然的微生物构成的复合系,利用微生物复合系进行堆肥或把堆肥应用于被污染的环境是消除农药污染的一个有效方法。 关键词:微生物生物降解农药降解农药 20世纪60年代出现的第一次“绿色革命”为人类的粮食安全做出了重大贡献,其中作为主要技术之一的农药为粮食的增产起到了重要的保障作用。因为农药具有成本低、见效快、省时省力等优点,因而在世界各国的农业生产中被广泛使用,但农药的过分使用产生了严重的负面影响。仅1985年,世界的农药产量为200多万t[1];在我国,仅1990年的农药产量就为22.66万t[2],其中甲胺磷一种农药的用量就达6万t[3]。化学农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加[3~6]。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。 这些农药残留广泛分布于土壤、水体、大气及农产品中,难以利用大规模的项目措施消除污染。实际上,在自然界主要依靠微生物缓慢地进行降解,这是依靠自然力量、不产生二次污染的理想途径。但自然环境复杂多变,影响着农药生物降解的可否和效率。近年随着对农药残留污染问题的重视,科学家们对农药生物降解进行了大量的研究,但许多问题需要进一步探明。本文整理出了近年来对农药生物降解的研究进展,提出存在的问题,建议有效的研究途径,旨在为加强农药的生物降解研究、解决农药对环境及食物的污染问题提供依据。 1 农药的微生物降解研究进展 1.1 农业生产上主要使用的农药类型 当前农业上使用的主要有机化合物农药如表1所示。其中,有些已经禁止使用,如六六六、滴滴涕等有机氯农药,还有一些正在逐步停止使用,如有机磷类中的甲胺磷等。 表1 农业生产中常用农药种类简表[7] 类型农药品种 有机磷:敌百虫、甲胺磷、敌敌畏、乙酰甲胺磷、对硫磷、双硫磷、乐果等 杀虫剂有机氮:西维因、速灭威、巴沙、杀虫脒等 有机氯:六六六、滴滴涕、毒杀芬等 杀螨剂螨净、杀螨特、三氯杀螨砜、螨卵酯、氯杀、敌螨丹等 除草剂 2,4-D、敌稗、灭草灵、阿特拉津、草甘膦、毒草胺等 杀菌剂甲基硫化砷、福美双、灭菌丹、敌克松、克瘟散、稻瘟净、多菌灵、叶枯净等 生长调节剂矮壮素、健壮素、增产灵、赤霉素、缩节胺等 人们发现,在自然生态系统中存在着大量的、代谢类型各异的、具有很强适应能力的和能利用各种人工合成有机农药为碳源、氮源和能源生长的微生物,它们可以通过各种谢途径把有机农药完全矿化或降解成无毒的其他成分,为人类去除农药污染和净化生态环境提供必要的条件。

苏云金杆菌使用注意事项及作用机理

苏云金杆菌 苏云金杆菌(简称Bt)是目前商业开发最为成功的微生物杀虫剂。当前全世界每年生 产的Bt制剂约有7000~10000吨,年销售额已达1.5亿美元,其中欧洲国家产量在2000 吨左右,占欧洲国家生物农药总量的90%。 Bt制剂的研究与利用始于20世纪30年代,因其生产设备较为简单,使用比较方便, 尤其是它可有效地防治150多种鳞翅目幼虫(其中有些是重要的经济害虫),因此,70年代以后,Bt制剂便成为防治农田和仓库害虫的重要生物杀虫剂之一。美国环保局已将其指定 为用于大田作物、果树、蔬菜和观赏植物的主要生物农药,并将它用于仓库害虫的防治。 晶体或孢子的混合物进入敏感幼虫体内后,这种没有杀虫活性的原毒素被碱性肠液活化,并在中肠蛋白酶作用下进一步转化为有杀虫活性的δ-内毒素。δ-内毒素能破坏幼虫肠壁 的上皮细胞,使幼虫停止取食,从而中毒死亡。幼虫致死的时间取决于昆虫种类和剂量。 使用苏云金杆菌杀虫剂注意事项 温度:细菌生物农药杀虫剂的活性成分是蛋白质晶体和有生命的芽孢。在低温条件下(15℃以下),蛋白晶体不易发生作用。15℃以下或30℃以上使用Bt都基本无效,但在相对高温下更能发挥作用,一般在30℃左右时最好,害虫死亡速度较快。 湿度:细菌生物农药杀虫剂中细菌的芽孢喜欢潮湿环境,因此,在田间湿度越大药效越高。阳光:阳光中的紫外线对芽孢有杀伤作用。所以,喷施细菌生物农药最好再傍晚或阴天进行。雨水:喷施细菌生物农药后短期内,如遇大雨,会降低药效。 本品对蜜蜂有毒,对家蚕高毒;对鱼类等水生生物有毒。 不能与内吸性有机磷杀虫剂或杀菌剂混合使用。 对人、畜无毒,使用安全。选择性强,不伤害天敌。不污染环境,不影响土壤微生物的活动,连续使用,无残毒,不易产生抗性。

微生物农药及其发展概况

微生物农药及其发展概况 王建伟 上海师范大学 环境工程系 2003级 0313530 摘 要:在食品安全日益备受关注的新世纪, 绿色食品的发展已成为国际食品工业的发展趋 势。作为生产绿色食品的生态农业生产模式. 生物农药的研制和应用是其能否成功实施的关 键因素之一。从真菌杀虫剂、细菌杀虫剂、病毒杀虫剂、 物农药以及抗生素类杀虫剂、 基因工程杀虫剂等微生物源生物活性物质 农药对微生物农药的 研究与开发现状进行了综述,并指出我国与国外微生物农药的发展差距。 关键词 : 绿色食品, 农药, 微生物农药, 微生物源生物, 微生物源生物活性物质, 发展差距, 发展前景 目前食品安全是全球关注的焦点,追求安全、无污染食品已成为当今社会的消费潮流。 距,人世后已面临更大的压力和挑战,因此,加快绿色食品工业的发展已是当务之急 能否成功实施的关键因素之一,生物农药中应用最多、效果最好的是微生物农药。 微生物农药 [2] 微生物农药就是指由微生物及其微生物的代谢产物和由它加工而成的具有杀虫 除草 、杀鼠或调节植物生长等具有农药活性的物质 [3]。 1.活体微生物源生物农药 株,杀菌剂方面有以色列开发出的名为 Trichodex 哈次木霉制剂,可以防治灰霉病、菌核病、 霜霉病、 白粉病等叶部病害已在欧洲和北美 20多个国家注册, 具有良好的市场前景。 除草剂 方面有美国Ecogen 公司等开发的用于防除水稻、 麦类田间杂草的盘长孢状刺盘孢、 防除柑橘 杂草的棕榈疫霉菌,日本和加拿大也有—些品种。 我国早在 20世纪 50年代后期就开始应用白僵菌防治食心虫、松毛虫、玉米螟等的研究, 并得至U 了不断地发展。近年又分离出了绿僵菌菌株,现正利用其进行蝗虫、蛴螬的防治及 虫生线虫杀虫剂等活体微生物源生 绿色食品由于安全无公害而受到人们的普遍青睐, 但我国绿色食品的发展与国外有较大的差 [1] 。 绿色食品是基于生态农业的农业生产模式生产的。 而生物农药的研制和应用是生态农业 、杀菌、 真菌——真菌可以被用作为杀虫、 杀菌、 除草的生物农药。 杀虫真菌目前世界上已记载 的约有 100属, 800多种。半知菌亚门集中了大约 50%的杀虫真菌。其中白僵菌是发展历史较 早、普及面积大、 应用最广的—种真菌杀虫剂。 美国和以色列等国家已筛选出了大量生防菌

苏云金杆菌

苏云金杆菌杀虫剂 苏云金杆菌简称Bt,是包括许多变种的一类产晶体芽孢杆菌。可用于防治直翅目、鞘翅目、双翅目、膜翅目,特别是鳞翅目的多种害虫。目前世界上研究最深入, 应用最广泛的微生物杀虫剂, 对人畜安全, 不伤害控制害虫群体的天敌, 不污染环境, 是生物防治害虫的重要组成部分, 更适合农作物虫害的综合防治。 苏云金杆菌是一种微生物源低毒杀虫剂,以胃毒作用为主。该菌可产生两大类毒素,即内毒素(伴胞晶体)和外毒素,使害虫停止取食,最后害虫因饥饿和死亡而外毒素作用缓慢,在蜕皮和变态时作用明显,这两个时期是RNA合成的高峰期,外毒素能抑制依赖于DNA的RNA 聚合酶。该药作用缓慢,害虫取食后2天左右才能见效,持效期约1天,因此使用时应比常规化学药剂提前2~3天,且在害虫低龄期使用效果较好。由于苏云金杆菌制剂的杀虫活性物质是一种毒性晶体蛋白与活菌的混合物, 其防效易受强光、温度和雨水的影响。最适宜使用苏云金杆菌的温度是24~32℃, 不适宜温度为13~17℃, 雨水主要影响施药的残效期。使用苏云金杆菌杀虫剂一定要在阴天或晴天下午4点以后施药于害虫危害部位。对鱼类、蜜蜂安全,但对家蚕高毒。 苏云金杆菌一般对暴食叶片的鳞翅目害虫防效好, 对结苞、卷叶、钻蛀性害虫防治技术性强。如: 2 代棉铃虫发育世代较整齐, 前代成虫产卵主要在棉株嫩尖上, 且初孵幼虫有食卵壳的习性, 防治2代棉铃虫, 主要喷在棉株顶部嫩叶正反面, 即可达到防治效果。稻纵卷叶螟幼虫两龄前结苞较松, 傍晚转苞危害, 防治它应在其幼虫2 龄前, 傍晚施药。玉米螟幼虫在玉米心叶末期, 有群聚喇叭口内危害习性,只要用苏云金杆菌对着喇叭口喷雾或拌毒土撒施入喇叭口内即可。小菜蛾( 吊丝虫) 幼虫2 龄前, 喜在十字花科作物叶背群聚食叶肉, 这是防治的最适期。豆荚螟, 本着治花不治荚的原则, 在日出前重点喷在蕾、花、嫩荚和落地花上。第2 代茶毛虫的初孵幼虫,有群聚叶背取食叶肉习性, 用苏云金杆菌防治应掌握这一时机。苏云金杆菌杀虫剂混用性能好,苏云金杆菌杀虫剂与化学农药交替使用可克服害虫的抗化学农药性。Bt杀虫剂可与多种其它生物制剂、昆虫生长调节剂、菊酯类沙蚕毒素类、氨基甲酸酯类、有机磷类农药及部分杀菌剂和化学肥料现混现用。

生物农药的研究进展.

生物农药的研究进展 随着化学农药广泛的使用,靶标生物的抗药性逐渐增强,对其控制越来越难,使得近几年的化学农药毒性更强、浓度更高,导致整个农业生态系统已经日趋恶化,严重影响了自然生态平衡和生态系统的自我调节能力。而这些化学农药的开发难度和开发成本也很大, 同时化学农药毒性大、残留量高, 长期使用会对环境和人类健康造成严重威胁。因此,生物农药得以迅速发展,并获得独立的知识产权,成为创制新农药的重要途径。开发安全性高、残留量低、无公害、生物活性高、选择性强的生 物农药成为当今农药发展的趋势和迫切需要。在今后相当长一段时间内,生物农药将有较大发展,它将成为今后农药发展的一个重要方向,并逐渐成为研究和应用的热点。 生物农药指用来防治病、虫、草等有害生物的生物活体及其代谢产物和转基因产物, 并制成商品的生物源制剂。生物农药与传统化学农药的区别在于它们通常是控制而不是消灭病虫,具有延迟的作用,更具有选择性。生物农药具备以下优点: 第一,活性高, 选择性强,对非靶标生物相对安全;第二,不易产生抗药性;第三,高效,低 残留,无污染,常常能迅速分解,不破坏生态环境;第四,种类繁多,研发、利用途径多; 第五, 作为病虫综合防治项目 IPMP 的一个组成部分,作用机理不同于常规农药,不影响作物产量。因此,生物农药具有广阔的应用前景。 1. 生物农药的研究进展 据“发展中国家生物农药国际研讨会”上的专家们介绍,目前全世界投入化学农 药的总投资平均每年 280亿美元,但生物农药的投资只有 3.8亿美元,只占总额的 4%, 在中美洲生物农药只占地区农药市场的 2-3%,亚洲和拉美的生物农药的生产能力也很弱,但是鉴于世界各国消费者对于无害农产品的需求日益增长,生物农药的发展具有广阔的天地。在拉美,目前在使用生物农药方面领先的国家有古巴、哥伦比亚和巴西等。世界上生物农药使用量最多的国家有墨西哥、美国和加拿大,三国的生物农药使用量占世界总量的 44%。欧洲的生物农药使用量占全世界的 20%, 亚洲占13%, 大洋洲占 11%; 拉美和加勒比占 9%,非洲占 3%。

国内外生物技术发展现状

国内外生物技术发展概况 (2010-10-21 18:00:05) (一)国内外生物技术发展动态 1、国际生物技术发展现状生物技术是近 20 年来发展最为迅猛的高新技术,越来越广泛地应用于农业、医药、轻工食品、海洋开发、环境保护及可再生生物质能源等诸多领域,具有知识经济和循环经济特征,对提升传统产业技术水平和可持续发展能力具有重要影响。近 10 年来,生物技术获得突破性发展,生物技术产业产值以每 3 年增长 5 倍的速度递增,以生物技术为重点的第四次产业革命正在兴起,预计到 2020 年,全球生物技术市场将达到 30,000 亿美元。在发达国家,生物技术已成为新的经济增长点,其增长速度大致是 25%-30%,是整个经济增长平均数的 8-10 倍。在生物技术制药领域,包括基因工程药物、基因工程疫苗、医用诊断试剂、活性蛋白与多肽、微生物次生代谢产物、药用动植物细胞工程产品以及现代生物技术生产的生物保健品等研究成果迅速转化为生产力,其中与基因相关的产业发展最强劲。全球医药生物技术产品占生物技术产品市场的 70%以上,占药物市场的 9% 左右,以高于全球经济增长 5 个百分点的速度快速发展,仅单克隆抗体市场销售额就达 40 亿美元。农业生物技术产业已经成为各国政府未来农业发展的战略重点,应用基因工程、细胞工程等高新技术培育的农林牧渔新品种、兽用疫苗、新型作物生长调节剂及病虫害防治产品、高效生物饲料及添加剂等已推广运用,产生了巨大的经济效益。 1996 年,全球转基因作物才 170 万公顷,以后逐年直线上升,到 2004 年已经达到 8100 万公顷,8 年间全球转基因作物种植面积增加近 48 倍。照此增长速度预计 2010 年世界范围内 50%的耕地将种植转基因作物,2020 年将增至 80%。尤其是抗虫、抗除草剂转基因作物的推广,大幅度提高劳动生产率并减少化学农药施用量,经济效益极为显著。全球转基因作物市场价值 1995 年仅 7500 万美元, 1997 年达 6.7 亿美元,2002 年为 45.2 亿美元,预计到2010 年将达 200 亿美元。本文章来自生物科学博览网站,欢迎您的光临食品生物技术产业产值约占生物产业总产值的 15-20%,目前国际市场上以生物工程为基础的食品工业产值已达 2500 亿美元左右,其中转基因食品市场的销售额 2010 年将达到 250 亿美元。此外,保健食品行业是全球性的朝阳产业,市场增长迅速。环境生物技术是生物技术、工程学、环境学和生态学交叉渗透形成的新兴边缘学科,是 21 世纪国际生物技术的一大热点。环境生物技术兼有基础科学和应用科学的特点,在环境污染治理与修复、自然资源可持续再生等方面发挥着日益重要的作用。能源生物技术主要目标是利用生物质能源。生物质能一直是人类赖以生存的重要能源,是仅次于煤炭、石油和天然气而居世界能源消费总量第四位的能源。目前,全球储量为亿吨,相当于 640 亿吨石油。许多国家都制定了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划等,主要是开发生物柴油和生物乙醇汽油。尽管生物质液化燃料开发还处于初级阶段,市场份额还不大,但由于岂疫有环保和再生性特点,前景非常广阔。 2.国内生物技术发展现状我国政府一直把生物技术作为重点支持的战略高技术领域,提出了“加强源头创

微生物农药的研究应用及前景展望

第18卷 第1期 四川理工学院学报(自然科学版)V ol.18 No.1 JOURNAL OF SICHUAN UNIVERSITY OF 2005年3月 SCIENCE & ENGINEERING(NATURAL SCIENCE EDITION)Mar.2005文章编号:1673-1549(2005)01-0108-03 微生物农药的研究应用及前景展望 赵兴秀1,何义国2 (1.四川理工学院生物工程系,四川自贡643000;2.四川大学生命科学学院,四川成都 610064) 摘 要:综述了国内外微生物杀虫剂的研究、应用情况,展望了其发展前景,并对细菌杀虫剂、病毒杀虫剂、农用抗生素和真菌杀虫剂的研究、应用及进展情况进行了重点阐述。 关键词:微生物农药;Bt;病毒;抗生素;真菌 中图分类号:S4 文献标识码:A 微生物农药是指利用生物活体及其代谢产物制成的防治作物病害、虫害、杂草的制剂,也包括农药、辅助剂和增效剂以及模拟某些杀虫毒素和抗生素的人工合成的制剂[1]。当代农业的可持续发展战略,要求生产者在利用资源、提高产量的同时,注意保护和改善人们赖以生存的环境,而长期使用化学农药对生态环境的破坏日益严重,这就迫使人们急切寻找化学农药的替代品,微生物农药就成了较佳选择,近年来得到了广泛的开发和利用。目前,微生物农药主要包括细菌杀虫剂、农用抗生素、病毒杀虫剂和真菌杀虫剂等,本文仅就国内外微生物农药的研究、应用及发展前景进行阐述。 1 微生物农药 目前生产上大量使用的生物农药主要为细菌杀虫剂、农用抗生素、病毒杀虫剂、真菌杀虫剂等。 1.1 细菌杀虫剂 细菌杀虫剂是应用得最早的微生物农药,主要是从昆虫病体上分离得到的病原菌,目前已成功开发了某些芽孢杆菌,如Bt(苏云金芽孢杆菌)、球形芽孢杆菌,金龟子芽孢杆菌等。细菌杀虫剂作用对象主要是咀嚼式口器的害虫,如鳞翅目、翘翅目和双翅目等有害作物昆虫。球形芽孢杆菌对蚊幼虫特别是库蚊具有高毒力,金龟子芽孢杆菌可以防治芽孢害虫。新发现的类产碱假单孢菌可以分泌一种杀虫蛋白到胞外对蝗虫有一定的致死作用[2]。 Bt杀虫剂是细菌杀虫剂中研究最深入、应用最广泛的微生物杀虫剂[3]。Berliner于1911年首先从德国的带苏云金杆病毒的地中海粉螟中分离得到该菌[4]。其作用机理是依靠其所含有的伴孢晶体、外毒素及卵磷脂等致病物质引起昆虫肠道等病症而使昆虫致死。一般是δ-内毒素起作用使发生毒血症而死亡,也就是由于晶体毒素对中肠上皮作用,导致肠壁破损,中肠的碱性高渗内含物进入血腔,使血淋巴pH升高,从而导致感病幼虫麻痹死亡[5~6]。 1957年Bt制剂首次上市销售,如今是世界上产量最大的微生物杀虫剂,广泛用于防治农、林、贮藏害虫和医学昆虫[7]。据初步统计,1990年我国Bt杀虫剂产量超过1500吨,目前年产量约为3.5万吨,成为我国“无公害生产”中的首选杀虫剂[8],其主要通过液体深层发酵产生,剂型以悬浮剂、可湿性粉剂为主,还有原粉、水分散颗粒剂等[9]。每年防治棉铃虫面积达3000公顷。由于质量高,杀虫能力强,我国生产的Bt制剂还打开了国际市场,出口远销到新加坡、泰国等东南亚国家。在北美大陆Bt制剂用于防治毒蛾,市场占有率达60%;在美国Bt制剂用于防治粉纹夜蛾,市场占有率达80%以上,加拿大Bt制剂用于防治云杉粉芽蛾,市场占有率达95%以上[10]。 目前已报道有多种害虫对Bt制剂产生抗性,近年在我国的深圳、广州等地报道小菜蛾对Bt制剂已产生抗性,害虫对微生物农药的抗性无疑会对其应用效果和发展带来影响,且Bt制剂对家蚕的毒性较 收稿日期:2004-09-16 作者简介:赵兴秀(1977-),女,陕西人,助教,主要从事微生物病毒方面的研究。

农药的发展及现状

国内农药中杀虫剂的现状及发展 摘要:我国是一个农药生产和使用大国,我国现有农药生产企业2600多家,能够生产600多种农药原药的农药,在世界农药发展上占有举足轻重的地位。农药行业满足了农业生产防治病虫草害的需要,对于保证夏粮、秋粮丰收发挥了重要作用,功不可没。自2008年以来,农药工业大力调整结构,努力提高质量,积极拓展服务,在上半年取得了产销两旺、效益增长的好成绩,呈现出又好又快发展的态势。杀虫剂是农药中使用最多的一类,是主要用于防治农业病虫害和城市卫生害虫的药品。但是杀虫剂的危害却是不容忽视的,不单单对环境有较大危害,甚至会危及动物及人类的生存。所以,农药中杀虫剂的现状及发展就有待研究了,本文就是针对农药中杀虫剂的危害和改进方法,以及未来我国农药中杀虫剂的发展研究进行讨论。 关键词:杀虫剂;危害;改进;发展 前言 在我国农药的使用十分广泛,农药中的杀虫剂更是屡见不鲜,相关资料表明自十年前起,农药中杀虫剂占70%,杀虫剂中高毒农药占70%,高毒农药中有机磷农药占70%,到目前为止高毒农药所占的比例不到3%,多年以来,我国生产的农药中,杀虫剂一直占据主导地位,在杀虫剂中又是以高毒有机磷杀虫剂为主,其中甲胺磷、对硫磷、甲基对硫磷、久效磷和氧化乐果5个品种的使用规模最大。但是杀虫剂带来的危害也是比比皆是,在这种情况下便给生物农药杀虫剂的兴起创造了一个发展的平台。 1.农药杀虫剂的分类 在二十世纪,农业的迅速发展,杀虫剂令农业产量大升。但是,几乎所有杀虫剂都会严重地改变生态系统,大部分对人体有害,其它的会被集中在食物链中。我们必须在农业发展与环境及健康中取得平衡。那么农药杀虫剂的分类有哪些呢? 按化学成分来源和发展过程分 无机杀虫剂和有机杀虫剂。无机杀虫剂,如砷酸钙、亚砷酸、氟化钠等。有机杀虫剂包括天然的有机杀虫剂、人工合成有机杀虫剂和生物杀虫剂。1、天然的有机杀虫剂包括植物性杀虫剂(如鱼藤、除虫菊、烟草等)和矿物性杀虫剂(如机油、柴

苏云金杆菌&阿维菌素简介

苏云金杆菌 苏云金杆菌又称苏云金芽胞杆菌,英文名称:Bacillus thuringiensis(B.t.)为了方便都将B.T.写成BT或Bt,故Bt即苏云金杆菌的简称。苏云金杆菌杀虫剂是利用苏云金杆菌杀虫菌经发酵培养生产的一种微生物制剂。苏云金杆菌在自然状态下以一种生物细菌的形式生存于土壤及水中。这种杀虫菌在生长发育过程中产生芽胞并形成一种蛋白质毒素,在显微镜下观察,通常是不规则的菱形结晶,叫做伴孢晶体。 当害虫蚕食了伴孢晶体和芽孢之后,在害虫的肠内碱性环境中,伴孢晶体溶解,释放出对鳞翅目幼虫有较强毒杀作用的毒素。这种毒素使幼虫的中肠麻痹,呈现中毒症状,食欲减退,对接触刺激反应失灵,厌食,呕吐,腹泻,行动退缓,身体萎缩或卷曲。一般对作物不再造成危害,经一段发病过程,害虫肠壁破损,毒素进入血液,引起败血症,同时芽孢在消化道内迅速繁殖,加速了害虫的死亡。死亡幼虫身体瘫软,呈黑色。所以,害虫只有把Bt细菌吃到肚子里,再经过一个发病过程,才能死掉,大约48小时方能达到杀灭害虫的目的。 Bt杀虫剂与化学农药相比有许多优点 第一,对人畜无毒,使用安全。Bt细菌的蛋白质毒素在人和家畜、家禽的胃肠中不起作用。

第二,选择性强,不伤害天敌。Bt细菌只特异性地感染一定种类的昆虫,对天敌起到保护作用。 第三,不污染环境,不影响土壤微生物的活动,是一种干净的农药。 第四,连续使用,会形成害虫的疫病流行区,造成害虫病原苗的广泛传播,达到自然控制虫口密度的目的。 第五,没有残毒,生产的产品可安全食用,同时,也不改变蔬菜和果实的色泽和风味。 第六,不易产生抗药性,这只是相对而言。最近已经发现了抗药性的报道,但不象化学农药产生的那么快。 毒性: 鼠经口按2*10^22活芽孢/Kg体重给药无死亡,也无中毒症状。18名志愿者每人每天吞服30亿芽孢,连服5天,1个月后检查,一切化验正常,无毒性反应。亚急性和毒性试验未见异常,对猪、禽、鸟、鱼、蜂的急性和慢性饲喂养试验未见不正常现象,对家蚕敏感。无致癌、致畸、致突变作用。注意事项: [1]本品对家蚕有毒,蚕室和桑园附近禁用; [2]不能与内吸性有机磷杀虫剂或杀菌剂混合使用(如乐果、甲基内吸磷、稻丰散、伏杀硫磷、杀虫畏)及碱性农药等物质混合使用。

苏云金杆菌说明书

苏云金杆菌说明书 篇一:常用农药安全技术说明书 常用农药安全技术说明书 目录 百菌清......................................................................................................... 1 甲基托布津................................................................................................... 2 甲霜灵......................................................................................................... 3 福美双......................................................................................................... 4 多菌灵......................................................................................................... 5 井冈霉素...................................................................................................... 6 辛硫磷.........................................................................................................7 苏云金杆菌 (8) 1. 百菌清

苏云金杆菌对环境生物的安全性评价

Open Journal of Nature Science 自然科学, 2018, 6(1), 63-70 Published Online January 2018 in Hans. https://www.sodocs.net/doc/0914482524.html,/journal/ojns https://https://www.sodocs.net/doc/0914482524.html,/10.12677/ojns.2018.61010 Safety Evaluation of Bacillus thuringiensis to Environmental Organisms Zeqing Wang1,2, Fanmin Huang1,3, Jianhua Chen1,3 1Guangdong Engineering Research Center of Microbe Pesticides, Yangjiang Guangdong 2Guangzhou Harit Bioscience CO. LTD, Guangzhou Guangdong 3Guangdong New Scene Biological Engineering CO. Ltd., Yangjiang Guangdong Received: Jan. 1st, 2018; accepted: Jan. 12th, 2018; published: Jan. 19th, 2018 Abstract This study evaluates the safety of Bacillus thuringiensis GDX026 to environmental organisms based on degrees of toxicity and division standards. The results showed that the toxic degree of Bacillus thuringiensis8000 IU/μL SC to birds, bees, zebrafish, Daphnia, Trichogramma and silk-worm was Ib. The toxic degrees of Bacillus thuringiensis·Indoxacarb 5% SC to bees, silkworm and Daphnia magna was I b, to zebrafish and Trichogramma was II and low toxicity to birds. The toxic degrees of Emamectinbenzoate·Bacillus thuringiensis2.4% SC of silkworm and Daphnia magna was Ia, Ib to bees and zebrafish, II to Trichogramma and no risk to birds. Mixture of Bacillus thu-ringiesis GDX026 and chemical pesticides showed higher risk levels to environmental organisms compared with Bacillus thuringiesis GDX026. Keywords Bacillus thuringiensis, Environmental Organisms, Safety Evaluation 苏云金杆菌对环境生物的安全性 评价 王泽清1,2,黄番敏1,3,陈建华1,3 1广东省微生物农药工程技术研究中心,广东阳江 2广州禾立田生物科技有限公司,广东广州 3广东新景象生物工程有限公司,广东阳江 收稿日期:2018年1月1日;录用日期:2018年1月12日;发布日期:2018年1月19日

苏云金杆菌(2014551355)

品名:苏云金杆菌(无添加任何化学杀虫成分) 有效含量:16000iu/mg 剂型:可湿性粉剂 净含量:100克 一、作用方式及特点 苏云金杆菌又称苏云金芽胞杆菌是一种革兰氏阳性细菌,英文名称:Bacillus thuringiensis (B.t.)即苏云金杆菌的简称。苏云金杆菌(Bt菌)杀虫剂是利用苏云金杆菌杀虫菌经发酵培养生产的一种微生物制剂。Bt的杀虫活性物质,主要有二种,即晶体和孢子.晶体又叫原毒素,它是一种蛋白质。当害虫蚕食了伴孢晶体和芽孢之后,在害虫的肠内碱性环境中,伴孢晶体溶解,释放出对鳞翅目幼虫有较强毒杀作用的毒素—毒性肽。这种毒素使幼虫的中肠麻痹,肠道内碱性内含物漏入血腔,孢子和菌体通过被破坏的肠壁进入体腔。使其呈现中毒症状,食欲减退,对接触刺激反应失灵,厌食,呕吐,腹泻,行动退缓,身体萎缩或卷曲。一般对作物不再造成危害,经一段发病过程,害虫肠壁破损,毒素进入血液,引起败血症,同时芽孢在消化道内迅速繁殖,加速了害虫的死亡。死亡幼虫身体瘫软,呈黑色。所以,害虫只有把Bt细菌吃到肚子里,再经过一个发病过程,才能死掉,大约48小时方能达到杀灭害虫的目的,不象化学农药作用那么快,但染病后的害虫,上吐下泻,不吃不动,不再危害作物。 毒性:对人、畜低毒,大鼠口服急性LD50 852.7-856.7毫克/公斤,对家禽、鸟类、鱼、畜等低毒,对害虫天敌无伤害。 中毒症状: 吞服了制剂可能引起胃肠炎。 中毒急救:溅到皮肤或眼内立即用清水冲洗15分钟后就医。吸入,应将病人移到通风处,就医。误服,立即催吐,并送医院对症治疗。 二、杀虫原理 苏云金杆菌长得像根棍棒,矮矮胖胖,身高不到5‰毫米。当它长到一定阶段,身体一端会形成一个卵圆形的芽孢,用来繁殖后代;另一端便产生一个菱形或近似正方形的结晶体,因为它与芽孢相伴而生,我们叫它伴孢晶体,有很强的毒性。昆虫取食后,晶体蛋白在昆虫碱性肠道内溶解,经过中肠蛋白酶的酶解作用,将前毒素降解为活性蛋白。活性蛋白插入昆虫中肠细胞膜,形成跨膜离子通道或孔,破坏钾离子平衡,最终使昆虫中毒,麻痹而死。三、防治对象 Bt对鳞翅目、双翅目、鞘翅目等100多种害虫和动植物线虫有很好的毒杀作用。国内外应用统计,Bt对64种森林害虫,34种果树害虫,12种茶树害虫都显示高毒力。最常用具特效的防治对象有:菜青虫、小菜蛾、斜纹夜蛾、玉米螟、稻苞虫、稻纵卷叶螟、二化螟、三化螟、棉铃虫、棉小造桥虫、茶毛虫、茶尺蠖、松毛虫、天幕毛虫、毒蛾、刺蛾等鳞翅目、膜翅目、双翅目、鞘翅目等害虫有很好的防治效果,且有杀卵作用。此外对大豆拌种防治地下线虫也有特效。 四、使用方法 1.一包100克可兑水100斤 2.可放农用喷雾器里(一喷雾30斤水),也可放园艺喷雾(800ml约可配18桶/1500ml 可配10桶。记得喷撒之前先过滤沉淀物哦,以免塞住喷壶嘴) 3.杀虫剂苏云金杆菌制剂可用于喷雾、喷粉、灌心、制成颗粒剂或毒饵等,也可进行 大面积飞机喷洒,也可与低剂量的化学杀虫剂混用以提高防治效果。草坪害虫的防 治用100亿孢子/g的菌粉750g/hm2对水稀释2000倍喷洒,或用乳剂1500~ 3000g/hm2与52.5~75kg的细沙充分拌匀,制成颗粒剂撒人草坪草根部,防治危 害根部的害虫。也可将苏云金杆菌致死的发黑变烂的虫体收集起来,用纱布袋包好,在水中揉搓,每50g虫尸洗液加水50~l00kg 喷雾(病毒重复利用!)。(2)防治蔬

相关主题