搜档网
当前位置:搜档网 › 2018届高中数学专题05解密与椭圆双曲线抛物线概念有关的最值问题特色训练新人教A版选修2_1

2018届高中数学专题05解密与椭圆双曲线抛物线概念有关的最值问题特色训练新人教A版选修2_1

2018届高中数学专题05解密与椭圆双曲线抛物线概念有关的最值问题特色训练新人教A版选修2_1
2018届高中数学专题05解密与椭圆双曲线抛物线概念有关的最值问题特色训练新人教A版选修2_1

专题05 解密与椭圆双曲线抛物线概念有关的最值问题

一、选择题

1.【四川省绵阳南山中学2017-2018学年高二上学期期中】已知点P 是抛物线2

2y x =上的一个动点,则点

P 到点()0,2A 的距离与P 到该抛物线的准线的距离之和的最小值为( )

A .

9

2

B . 5

C . 2

D . 172

【答案】D

2.【吉林省舒兰一中2017-2018学年高二上学期期中】如图,已知椭圆

22

13216

x y +=内有一点()122,2,B F F 、是其左、右焦点, M 为椭圆上的动点,则1MF MB +的最小值为( )

A . 42

B . 62

C . 4

D . 6

【答案】B

【解析】()

122MF MB a MF MB +=-- 2

2BF a ≥-→ 822262==当且仅当2,,M F B 共线时取得最小值2故答案选B

3.【北京朝阳垂杨柳中学2016-2017学年高二上学期期中】已知经过椭圆

22

12516

x y +=右焦点2F 的直线交椭圆于A 、B 两点,则1AF B 的周长等于( )

A . 20

B . 10

C . 16

D . 8

【答案】A

【解析】因为椭圆的方程为

22

12516x y +=,所以由椭圆的定义可得1212210,210AF AF a BF BF a +==+==, 1ABF ∴?周长为112220AF BF AF BF +++=,故选A .

4.【内蒙古自治区太仆寺旗宝昌一中2016-2017学年高二下学期期中】设为定点,动点满

|,则动点的轨迹是( )

A . 椭圆

B . 直线

C . 圆

D . 线段

【答案】D

5.【福建省闽侯第六中学2018届高三上学期第一次月考】已知椭圆:

22

2

1(02)4x y b b +=<<,左、右焦点分别为12,F F ,过1F 的直线l 交椭圆于,A B 两点,若22BF AF +的最大值为5,则b 的值是( )

A . 1

B 2

C .

3

2

D 3【答案】D

【解析】试题分析:由椭圆定义,得2248AB AF BF a ++==,所以当线段AB 长度达最小值时,

22BF AF +有最大值.当AB 垂直于x 轴时, 22

2min ||222

b b AB b a =?=?=,所以22BF AF +的最大

值为285b -=,所以2

3b =,即3b =

D .

考点:1、椭圆的定义及几何性质;2、直线与椭圆的位置关系.

【方法点睛】(1)涉及椭圆上的点与两焦点的距离时,要注意联想椭圆的定义,要结合图形看能否运用定

义进行求解.点P 在椭圆上,则点P 一定满足椭圆的定义,同时点P 的坐标适合方程;(2)过焦点的所有

弦中,垂直于长轴的弦是最短的弦,而它的长为22b a

把这个弦叫作椭圆的通径.

6.【东北师大附中、哈尔滨师大附中、辽宁省实验中学2017届高三下学期第四次联合模拟考】P 是双曲线

22:2C x y -=左支上一点,直线l 是双曲线C 的一条渐近线, P 在l 上的射影为2,Q F 是双曲线C 的右焦

点,则2PF PQ +的最小值为( )

A .

2

2

B . 2

C . 32

D . 222+ 111111

【答案】C

【解析】

点睛:本题主要考查双曲线的标准方程和渐近线方程.关键在于利用双曲线的定义将2PF PQ +| 的最小值转化为1PF PQ +的最小值.作出图形,利用双曲线的对称性可知P 在何位置时取最小值.在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:(1)掌握方程;(2)掌握其倾斜角、斜率的求法;(3)会利用渐近线方程求双曲线方程的待定系数.. 7.【重庆市巴蜀中学2018届高三9月高考适应月考】已知双曲线

的左、右焦点分别为

点为异于的两点,且的中点在双曲线的左支上,点关于和的对称点分别为,

则的值为( )

A . 26

B .

C . 52

D .

【答案】D

本题选择D 选项.

点睛:(1)双曲线定义的集合语言:P ={M |||MF 1|-|MF 2||=2a,0<2a <|F 1F 2|}是解决与焦点三角形有关的计算问题的关键,切记对所求结果进行必要的检验.

(2)利用定义解决双曲线上的点与焦点的距离有关问题时,弄清点在双曲线的哪支上.

8.【北京市平谷区2016—2017高三第二学期质量监控】已知点()

0,15M 及抛物线2

4y x =上一动点(),N x y ,则x MN +的最小值为( )

. A . 5 B . 23 C . 3 D . 4

【答案】C

【解析】如图,设抛物线的焦点为()10F ,,连NF ,由抛物线的定义可得||1NF x =+。

∵||4NF NM MF +≥=,当且仅当三点共线时等号成立,即14x NM ++≥, ∵3x NM +≥。

因此x MN +的最小值为3。答案:C 。

点睛:(1)对于抛物线的有关问题,若出现了曲线上的点到焦点的连线,则应考虑抛物线的定义,将曲线上的点到焦点的距离转化为该点到准线的距离解决,这样会给解题带来方便。

(2)解析几何中的最值问题,可考虑平面几何图形的特点,运用几何法求解。

9.【广西桂林市第十八中学2018届高三上学期第三次月考】已知拋物线()2

20y px p =>的焦点F ,点A

和B 分别为拋物线上的两个动点,且满足120AFB ∠=?,过弦AB 的中点M 作拋物线准线的垂线MN ,垂足为N ,则

MN AB

的最大值为( )

A .

64 B . 6

3

C . 32

D . 33

【答案】D

得到|AB |≥

3

(a +b ). 所以MN AB ≤()()1

b 23

b a a ++=33,即MN AB 的最大值为3

3.

故选:D

点睛:本题重点考查了抛物线定义以及余弦定理,,借助重要不等式明确了|AB |与a +b 的不等关系,再结合|MN |与a +b 的等量关系,问题迎刃而解.

10.【黑龙江省牡丹江市第一高级中学2017-2018学年高二10月月考】已知F 是抛物线的焦点,M 是

抛物线上的一个动点,P (3,1)是一个定点,则的最小值为( )

A. 2

B. 3

C. 4

D. 5

【答案】C

故选C

【点睛】本题考查抛物线的定义、标准方程,以及简单性质的应用,判断当三点共线时最小,是解题的关键.

11.【黑龙江省牡丹江市第一高级中学2017-2018学年高二10月月考】抛物线的焦点为,已知点为抛物线上的两个动点,且满足,过弦的中点作准线的垂线,垂足为,则

的最大值为()

A. 1

B.

C. 2

D.

【答案】D

【解析】

如图所示,设|连接由抛物线定义,得|在梯形中,

由余弦定理得,配方得又

得到|

所以 ,即的最大值为

【点评】本题考查抛物线的定义和简单几何性质、基本不等式求最值和余弦定理的应用等.在抛物线中,利

用定义和余弦定理(或正弦定理)是解决之一类问题的基本思路.

12.【江西省抚州市南城县第二中学2016-2017学年高二下学期第一次月考】已知点P 是抛物线x =y 2上的一个动点,则点P 到点A (0,2)的距离与点P 到y 轴的距离之和的最小值为( )

A . 2

B .

C . ﹣1

D . +1

【答案】C

【点睛】

对圆锥曲线中距离和或差的最值问题,一般有两种处理方法,一种是利用圆锥曲线的定义把到准线(或与准线平行的直线)的距离转化到焦点,把到焦点的距离转化到准线,二种是利用函数思想,把最值问题转化为函数问题。一般优先考虑第一种,本题采用的是第一种。

13.【江西赣中南五校2017-2018学年高二上学期第一次联考】已知直线1:4360l x y -+=和直线

2:1l x =-,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )

A . 2

B . 3

C .

115 D . 37

16

【答案】A

【解析】抛物线2

4y x =的焦点坐标为F (1,0),准线方程是1x =-,根据抛物线定义,抛物线2

4y x =上

一动点P 到直线1l 和直线2l 的距离之和可以看成抛物线2

4y x =上一动点P 到焦点和直线2l 的距离之和,其最小值为焦点F 到直线1:4360l x y -+=的距离, ()

2

2

416243d ?+=

+-。故选A 。

【点睛】利用抛物线的定义,将抛物线上的点到准线的距离与到焦点的距离互相转化。

14.【2016-2017学年河南省新乡市高二上学期期末】抛物线2

4y x =上有两点,A B 到焦点的距离之和为7,则,A B 到y 轴的距离之和为 ( )

A . 8

B . 7

C . 6

D . 5

【答案】D

【解析】依题意,抛物线上的点到焦点的距离等于到准线的距离,准线与y 轴的距离是1,故,A B 到y 轴的距离之和为725-=.

点睛:本题主要考查抛物线的定义.对于圆锥曲线的定义,往往是解圆锥曲线小题的关键.如本题中的抛物线,由于抛物线上的点到焦点的距离等于到准线的距离,而准线与y 轴的为1,这样的话两个点到y 轴的距离就比到准线的距离少112+=.熟记圆锥曲线的定义,还需要熟练画出图像,结合图像来解题也是很重要的方法.

15.已知P 为抛物线y =12x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(6, 17

2

),则|PA |+|PM |的最小值是 ( )

A . 8

B .

192 C . 10 D . 212

【答案】B

16.【四川省成都外国语学校2016-2017学年高二下学期期中】已知P 为抛物线2

4y x =上一个动点, Q 为圆()2

241x y +-=上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是

( )

A . 171-

B . 252-

C . 251-

D . 172-

【答案】A 【解析】

【方法点晴】本题主要考查抛物线的标准方程和抛物线的简单性质及利用抛物线的定义求最值,属于难题.与抛物线的定义有关的最值问题常常实现由点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线的距化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解;(2)将拋物线上的点到焦点的距离转化为到准线的距离,利用“点与直线上所有点的连线中垂线段最短”原理解决.本题是将p 到准线的距离转化为到焦点的距离,再根据几何意义解题的.

二、填空题

17.【辽宁省大连渤海高级中学2017-2018学年高二上学期期中】1F 是椭圆22

195

x y +=的左焦点, P 是椭圆上的动点, ()1,1A 为定点,则1PA PF +的最小值是_______________。 【答案】62【解析】椭圆22

195

x y +=的a =3,b 5c =2,

当P 不在直线AF ′上时,

根据三角形的两边之差小于第三边有, ||PA |﹣|PF ′||<|AF ′2;

∴当P 在F 'A 的延长线上时,|PA |﹣|PF ′|2, ∴|PA |+|PF |的最小值为62 故答案为:62.

18.【2017-2018学年高中数学(苏教版)课时跟踪训练(七)】已知椭圆上一点P 到两焦点F 1、F 2的距离之和为20,则PF 1·PF 2的最大值为________. 【答案】100

【解析】根据椭圆的定义可知: 12220PF PF a +==

结合基本不等式有: 2

21

212101002PF PF PF PF +???≤== ???

当且仅当: 1210PF PF ==时, 12PF PF ?取得最大值100 故12PF PF ?的最大值为100

19.【内蒙古包头市第三十三中2016-2017学年高一下学期期末】椭圆22189x y k +=+的离心率为1

2

,则k 的值为_____________. 【答案】5

4,4

-

【解析】试题分析:当焦点在x 轴时, 2891c k k =+-=-,所以211

84

k e k -=

=+,解得4k =,当焦点在y 轴时, ()2981c k k =-+=-,所以21194k e -==,解得54k =-,所以答案应填: 5

4,4

-或. 考点:1、椭圆的离心率;2、分类讨论.

20.【内蒙古自治区太仆寺旗宝昌一中2016-2017学年高二下学期期中】设

分别是椭圆

的左,

右焦点,为椭圆上任一点,点的坐标为,则的最小值为________.

【答案】

21.【湖南省长郡中学2017-2018学年高二上学期第一次模块检测】椭圆22

221(0)43x y a a a

+=>的左焦点为

F ,直线x m =与椭圆相交于点A B 、,则FAB ?的周长的最大值是__________.

【答案】8α 【解析】如图,

设椭圆的右焦点为M ,椭圆的长轴为2×2a =4a , △FAB 的周长AF +FB +AB ≤FA +AM +FB +BM =2×2a +2×2a =8a , 故答案为:8a

点睛:本题充分体现了解析几何的思想方法:数形结合,利用椭圆的定义结合三角形的基本性质得到周长的最值.

22.【2017届河南省安阳市高三第一次模拟考】已知抛物线1C : 2

y ax =(0a >)的焦点F 也是椭圆2C :

22214y x b +=(0b >)的一个焦点,点M , 3,12P ??

???

分别为曲线1C , 2C 上的点,则MP MF +的最

小值为__________. 【答案】2

2

11:4

C y x =

的交点即为所求M 点,所以MP MF MP d +=+的最小值为()112--=. 点睛:此题主要考查抛物线方程、定义、焦点,椭圆的方程、焦点,以及它们与直线的位置关系等有关方面的知识,属于中档题型,也是高频考点.经过审题,可由点312P ??

???

,求得椭圆方程,算出焦点F 的坐标,从而求出抛物线方程,并可求出其准线:1l y =-,由抛物线定义可求出MP MF +最小值,有必要可画出草图.

高考数学椭圆与双曲线的经典性质50条技巧归纳总结

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切 点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和 A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2O M A B b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b +=+.

高中数学有关圆-椭圆-双曲线-抛物线的详细知识点

<一>圆的方程 (x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。 (1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0 此方程可用于解决两圆的位置关系: 配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4 其圆心坐标:(-D/2,-E/2) 半径为r=√[(D^2+E^2-4F)]/2 此方程满足为圆的方程的条件是: D^2+E^2-4F>0 若不满足,则不可表示为圆的方程 (2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系: ⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。 ⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。 ⑶当(x1-a)^2+(y1-b) ^20,则圆与直线有2交点,即圆与直线相交。 如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。 如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1x2时,直线与圆相离; 当x1 (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4 => 圆心坐标为(-D/2,-E/2) 其实只要保证X方Y方前系数都是1 就可以直接判断出圆心坐标为(-D/2,-E/2) 这可以作为一个结论运用的 且r=根号(圆心坐标的平方和-F) <二>椭圆的标准方程 椭圆的标准方程分两种情况: 当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0); 当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0); 其中a>0,b>0。a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2-b^2)^0.5,焦距与长、短半轴的关系:b^2=a^2-c^2,准线方程是x=a^2/c和x=-a^2/c ,c为椭圆的半焦距。 又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。即

高二数学椭圆双曲线抛物线测试题

高二《椭圆 双曲线 抛物线》测试题 班级 姓名: 一、选择题 (每小题5分 共40分) 1、抛物线28y x =的准线方程是 ( ) (A) 2x =- (B) 4x =- (C) 2y =- (D) 4y =- 2、双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是( ) (A)0003x y x y x -≥??+≥??≤≤? (B)0003x y x y x -≥??+≤??≤≤? (C) 0003x y x y x -≤??+≤??≤≤? (D) 0003x y x y x -≤?? +≥??≤≤? 3、若抛物线2 2y px =的焦点与椭圆22 162 x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .4 4、双曲线与椭圆15 22 =+y x 共焦点,且一条渐近线方程是03=-y x ,则此双曲线方程为 ( ) A .13 2 2=-x y B .1322 =-x y C .13 2 2=-y x D .13 22 =-y x 5、已知椭圆19162 2=+y x 的左、右焦点分别为F 1、F 2,点P 在椭圆上,若PF 1⊥PF 2,则点P 到x 轴的距离为( )A .59 B .3 C .7 79 D .49 6、过抛物线焦点任意作一条弦,以这条弦为直径作圆,这个圆与抛物线的准线的位置关系是( ) A 、相交 B 、相切 C 、相离 D 、不确定 7、一动圆的圆心在抛物线y x 82 -=上,且动圆恒与直线02=-y 相切,则动圆必过定点( ) A 、(4,0) B 、(0,–4) C 、(2,0) D 、(0,–2) 8、以椭圆 116 252 2=+y x 的中心为顶点,以这个椭圆的左准线为准线的抛物线与椭圆的右准线交于A 、B 两点,则|AB|=( ) A 、 5 18 B 、 5 36 C 、 3 80 D 、 3 100 二、填空题(每小题5分 共25分) 9、抛物线的焦点为双曲线17 92 2=-y x 的左焦点,顶点在双曲线的中心,则抛物线方程为 10、抛物线y px p 2 20=>()上,横坐标为4的点到焦点的距离为5,则此抛物线焦点与准线的距离为 11、P 1P 2是抛物线的通径,Q 是准线与对称轴的交点,则∠=P QP 12 。 12、设抛物线y x 24=被直线y x b =+2截得的弦长为35,则b 的值是 13、抛物线y x =2上的点到直线l x y :--=20的最短距离是

高中数学【椭圆与双曲线】知识点总结

高中数学【椭圆与双曲线】知识点总结 姓名: (一)椭圆 1.椭圆的定义 如果平面内一动点到两定点距离之和等于正的常数(大于两定点的距离),则动点的规迹是椭圆 即|PF1|+|PF2|=2a 其中P是动点,F1,F2是定点且|F1F2|=2C 当a>c时表示 当a=c时表示 当a

标准方程 x,y的范围 顶点焦点对称轴对称中心 长半轴的长短半轴的长焦距 离心率e= 范围e越大椭圆越e越小椭圆越 准线焦半径公式|PF1|= |PF2|= (F1,F2分别为椭圆的下上两焦点,P为椭圆上的一点) 4.椭圆系 (1)共焦点的椭圆系方程为 22 2 1 x y k k c += - (其中k>c2,c为半焦距) (2 )具有相同离心率的标准椭圆系的方程 22 22 (0) x y a b λλ +=> (二) 双曲线 1.双曲线的定义 如果平面内一个动点到两定点距离之差的绝对值等于正的常数(小于两定点间的距离),那么动点的轨迹是双曲线 若一个动点到两定点距离之差等于一个常数,常数的绝对值小于两定点间的距离,那么动点的轨迹是双曲线的一支 F1,F2为两定点,P为一动点,(1)若||PF1|-|PF2||=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 (2) 若|P F1|-|PF2|=2a ①0<2a<|F1F2|则动点P的轨迹是 ②2a=|F1F2|则动点P的轨迹是 ③2a=0则动点P的轨迹是 2.双曲线的标准方程

椭圆、双曲线、抛物线的标准方程与几何性质

一、知识要点: 椭圆、双曲线、抛物线的标准方程与几何性质

第一种定义:平面内与两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准方程: (1))0(122 22>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中 c=2 2b a -. (2))0(122 22>>=+b a a y b x ,焦 点 :F 1(0,-c),F 2(0,c), 其 中 c= 2 2b a -. 3.椭圆的参数方程:? ??==θθ sin cos b y a x ,(参数θ是椭圆上任意一点的离心率). 4.椭圆的几何性质:以标准方程)0(12222>>=+b a b y a x 为例: ①范围:|x|≤a,|y|≤b; ②对称性:对称轴x=0,y=0,对称中心为O(0,0); ③顶点A(a,0),A ′(-a,0),B(0,b),B ′(0,-b);长轴|AA ′|=2a,短轴|BB ′|=2b; ④离心率:e=a c ,0

⑤准线x=±c a 2 ;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任 意一点. 二、基本训练 1.设一动点 P 到直线3x =的距离与它到点A (1,0)的距离之比为 3, 则动点P 的轨迹方程是 ( ) () A 22 132 x y += ()B 22 132 x y -= ()C 2 2 (1)132 x y ++= ()D 22 123 x y += 2.曲线 192522=+y x 与曲线)9(19252 2<=-+-k k y k x 之间具有的等量关系 ( ) ()A ()C 3且过点(3,0)A 4.底面直径为12cm 30的平面所截, , 短轴长 ,离心率5.已知椭圆22 221(x y a b +=的离心率为5,若将这个椭圆绕着它的右

椭圆、双曲线、抛物线综合测试题

椭圆、双曲线、抛物线综合测试题 一选择题(本大题共 是符合要求的) 2 y m J 12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项 1设双曲线 x 2 1的一个焦点为( 0, 2),则双曲线的离心率为(). 2 x 2椭圆 16 7 1的左、右焦点分别为 F 1, F 2,一直线经过 F i 交椭圆于A 、B 两点,则 ABF ?的周长为 A 32 B 16 C 3两个正数a 、 b 的等差中项是 ,等比中项是,6,则椭圆 1的离心率为() 13 3 4设F 1、F 2是双曲线x 2 24 1的两个焦点,P 是双曲线上的一点,且 3|PR |=4|PF 2 |, 则PF 1F 2的面积为 A 4,2 8.3 C 24 D 48 2 x 5 P 是双曲线— 9 16 =1的右支上一点, M 、N 分别是圆( x 5)2 1 和(x 5)2 y 2 =4 上的点,贝U | PM | |PN |的最大值为( 6已知抛物线 x 2 4y 上的动点P 在x 轴上的射影为点 M ,点 A(3, 2),则 | PA| | PM | 的 最小值为( A .10 10 C .10 D 10 2 7 一动圆与两圆 x 2 1 和 x 2 2 y 8x 12 0都外切,则动圆圆心的轨迹为( 椭圆 双曲线 D 抛物线 2 x 8若双曲线— a 2 y_ b 2 1(a 0,b 0)的焦点到渐近线的距离等于实轴长,则双曲线的离心 率为( )

S p FiF2=1^ 3,离心率为2,则双曲线方程的标准方程为 _______________ 2 2 2 2 xy xy 14已知椭圆 1与双曲线 1 (m, n, p,q m n p q 16 已知双曲线a 2 "2= 1 a 2 的两条渐近线的夹角为 三 解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 9抛物线y x 2上到直线2x y 0距离最近的点的坐标( ) 3 5 (1,1) 3 9 D (2,4) A - J B C ,- 2 4 2 4 10已知c 是椭圆 2 2 x y 1 (a K b 0)的半焦距,则一 C 的取值范围( ) a b a A (1, ) B (2 ) C (1,、 ② D (1,辽] 11方程mx ny 2 0 与 mx 2 2 ny 1 (m 0, n 0,m n )表示的曲线在同一坐标系中图 A D 2 12若AB 是抛物线y 2 2px(p 0)的动弦, 且 | AB | a(a 2 p ),则AB 的中点M 到y 轴的最近距离是( ) 1 1 1 1 1 1 A a B -p C a -p D a — p 2 2 2 2 2 2 二填空题(本大题共 4个小题, 每小题 5分 ,共20分.把答案填写在题中横线上) 13设F i 、F 2分别是双曲线的左、右焦点, P 是双曲线上一点,且 o C .5 F 1PF 2 =60 R ,m n ),有共同的焦点F 1、 F 2,点P 是双曲线与椭圆的一个交点,则 |PF 1|?|PF 2|= ----------------- 15已知抛物线x 2py(p 0)上一点A (0, 4)到其焦点的距离为 17 ,贝V p = 4 —,则双曲线的离心率为 3 象可能是( )

高中数学椭圆、双曲线、抛物线历年真题及详解

【考点8】椭圆、双曲线、抛物线 2009年考题 1、(2009湖北高考)已知双曲线141222 2 222=+=-b y x y x 的准线经过椭圆(b >0)的焦点,则b=( ) A.3 B.5 C.3 D.2 选C.可得双曲线的准线为2 1a x c =±=±,又因为椭圆焦点为2(4,0)b ±-所以有241b -=.即b 2=3故b=3. 2、(2009陕西高考)“0m n >>”是“方程2 21mx ny +=”表示焦点在y 轴上的椭圆”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D) 既不充分也不必要条件 【解析】选C.将方程2 2 1mx ny +=转化为 22 111x y m n +=, 根据椭圆的定义,要使焦点在y 轴上必须 满足 11 0,0,m n >>且11n m >,故选C.3、(2009湖南高考)抛物线 28y x =-的焦点坐标是( ) A .(2,0) B .(- 2,0) C .(4,0) D .(- 4,0) 【解析】选B.由 28y x =-,易知焦点坐标是(,0)(2,0)2 p - =-,故选B. 4、(2009全国Ⅰ)已知椭圆2 2:12 x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B , 若3FA FB =u u u r u u u r ,则||AF uuuu r =( ) (A) 2 (B) 2 3 (D) 3 【解析】选A.过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =u u u r u u u r ,故2 ||3 BM =. 又由椭圆的第二定义,得222 ||233 BF = = ||2AF ∴=5、(2009江西高考)设1F 和2F 为双曲线22 221x y a b -=(0,0a b >>)的两个焦点, 若12F F ,,(0,2)P b 是正三角形的 三个顶点,则双曲线的离心率为( ) A . 32 B .2 C .5 2 D .3

圆锥曲线(椭圆、双曲线、抛物线)基础知识及常用结论

圆锥曲线必背口诀(红字为口诀)-椭圆 一、椭圆定义 定点为焦点,定值为长轴.(定值=2a ) 椭圆.定点为焦点,定直线为准线,定值为离心率.(定值=e ) 定点为短轴顶点,定值为负值. (定值2k e 1=-) 二、椭圆的性质定理 长轴短轴与焦距,形似勾股弦定理① 准线方程准焦距,a 方、b 方除以c ② 通径等于 2 e p ,切线方程用代替③ 焦三角形计面积,半角正切连乘b ④ 注解: 1长轴2a =,短轴2b =,焦距2c =,则:222a b c =+ 2准线方程:2 a x c = ( a 方除以c ) 3椭圆的通径 d :过焦点垂直于长轴的直线与椭圆的两交点之间的距

离称为椭圆的通径.(通径22 c b 2b 2a c a d 2ep =??==) 过椭圆上00x y (,)点的切线方程,用00x y (,)等效代替椭圆方程得到. 等效代替后的是切线方程是:0022x x y y 1a b += 4、焦三角形计面积,半角正切连乘b 焦三角形:以椭圆的两个焦点12F F ,为顶点,另一个顶点P 在椭圆上的三角形称为焦三角形.半角是指12F PF θ=∠的一半. 则焦三角形的面积为:2 S b 2 tan θ = 证明:设1PF m =,2PF n =,则m n 2a +=由余弦定理: 222m n 2mn 4c cos θ+-?= 22224a 4b m n 4b ()=-=+- 即:2 2mn 2mn 4b cos θ-?=-,即:22b 1mn (cos )θ=+. 即:2 122b mn PF PF 1||||cos θ==+ 故:12 F PF 1S m n 2sin θ=??△2 2 12b b 211sin sin cos cos θθθθ=? ?=?++ 又:22221222 sin cos sin tan cos cos θθ θ θ θθ = =+ 所以:椭圆的焦点三角形的面积为122 F PF S b 2tan θ ?=. 三、椭圆的相关公式 切线平分焦周角,称为弦切角定理① 1F 2F O x y P m n

椭圆双曲线抛物线经典求法及历年真题

解决圆锥曲线常用的方法 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有 020 20=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 4、数形结合法 解析几何是代数与几何的一种统一,常要将代数的运算推理与几何的论证说明结合起来考虑问题,在解题时要充分利用代数运算的严密性与几何论证的直观性,尤其是将某些代数

高中数学椭圆、双曲线、抛物线

椭圆 第一定义:平面内与两定点F、F'的距离的和等于常数2a(2a>|FF'|的动点P的轨迹叫做椭圆。 即:│PF│+│PF'│=2a 其中两定点F、F'叫做椭圆的焦点,两焦点的距离│FF'│叫做椭圆的焦距。第二定义:平面内与一个定点F的距离与到一条定直线间距离之比为常数e()的点轨迹叫做椭圆。 不在定直线上,该常数为小于1的正数) 一.图像 标准方程 图形 顶点(四个) 焦点 中心(0,0) 长轴长2a 短轴长2b 焦距2c a、b、c的关 系 范围 对称性 离心率 焦点弦 焦半径曲线上任意一点与 焦点的连线段的长 通径通过焦点且与长轴垂直的弦 焦点三角形

的面积 二.椭圆的参数方程 三.点与椭圆 点P在椭圆内 点P在椭圆上 点P在椭圆外 四.直线与椭圆 1.位置关系 方程联立 △ △ △ 2.所交弦长 五.附加 1.周长 2.求椭圆方程 方法:待定系数法、定义法

双曲线 双曲线(Hyperbola)是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹。 一。图像 标准方程 图形 顶点(四个) 中心(0,0) 实轴长:2a 虚轴长:2b 焦距2c a、b、c的关 系 范围 对称性 离心率 渐近线方程 焦点弦 焦半径 通径通过焦点且与长轴垂直的弦

焦准距 焦点三角形 的面积 二性质补充 1.等轴双曲线 性质e= 渐近线方程 渐近线成角 三.点与双曲线 点P在双曲线开口内 点P在双曲线上 点P在双曲线开口外 四.附加 1.双曲线系方程 2.求双曲线方程 方法:待定系数法、定义法

椭圆双曲线抛物线公式性质表

高中数学循环记忆学案

基本题目过关; 22 12 211,F F 1F AB 169 FAB _____,|AB|=5|x y +=?11 已知,是椭圆的两个焦点,过点 的直线交椭圆于两点 则的周长为若,则AF|+|BF|=______. 22 2,x+y=4,如图OA中点为N,M在圆上,MN的垂直平分线交 OM于P点,当M点在椭圆上运动时P点的轨迹方程是什么图形__ 3,已知椭圆的中心在原点,焦点在坐标轴上,椭圆与坐标轴交点坐标为 A (-3,0),B(0,5),则椭圆的标准方程为______ 且常州常时段周长的两倍,则该椭圆的标准方程为________ 5,已知椭圆的中心在原点,焦点x轴上,椭圆C上的点到焦点的最大值为 3,最小值为1,则椭圆的标准方程为_________ 22 xy 6,若方程+=1,表示焦点在 y轴上的椭圆,则m的 |m|-12-m 取值范围是_________ 7,椭圆的短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点 9,设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴的两端点的连线互相垂直 且此焦点与长轴上较近的端点距离为4,则此椭圆的方程为________________ 2210,椭圆5x +ky =5的一个焦点为(0,2)则k=_________

22 11,M 123 M x y w 是椭圆+=1的焦点为焦点,过直线L;x-y+9=0上一点作椭圆, 要使所作椭圆长轴最短,点应在何处____并求出椭圆的方程_____ PQ OP OQ ⊥12,已知椭圆的中心在原点,坐标轴为对称轴直线y=x+1与椭圆相交于两点,且, 11122 121222213,F A B P PF FA PO//AB e=( ) 11 A B C.D 232 AB F BAF =90x y a b ⊥∠o 如图已知是椭圆的左焦点,,分别是椭圆的右顶点和上顶点为椭圆上一点,当,时, 14,F F 是椭圆+=1(a>b>0)的两焦点,过F 的弦与构成等 腰直角三角形,若角,则e=_________ F C B C BF C D BF FD u u u r u u u r 15,已知是椭圆的一个焦点,是椭圆短轴的一个端点,线段 的延长线交于点,且=2,则e=______ 22 122212P x y a b F PF ∠o 16,F F 是椭圆+=1(a>b>0)的两焦点,为椭圆上一点, =90,离心率的最小值为__________ 22 12221217,P =x y x a b F F PF ∠o 过椭圆+=1(a>b>0)的左焦点F ,作轴的垂线交椭圆于, 为右焦点,若60,则e=______ 22 12122212P PF 1 2 x y PF a b ∠u u u r u u u u r 18,为F F 为焦点的椭圆+=1(a>b>0)上一点,若=0 tan PF F =,则e=______

椭圆、双曲线抛物线综合练习题及答案

一、选择题(每小题只有一个正确答案,每题6分共36分) 1. 椭圆22 1259 x y +=的焦距为。 ( ) A . 5 B. 3 C. 4 D 8 2.已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线的方程为 ( ) A . 221412x y -= B. 221124x y -= C. 221106x y -= D 22 1610x y -= 3.双曲线22 134 x y -=的两条准线间的距离等于 ( ) A C. 185 D 16 5 4.椭圆22 143 x y +=上一点P 到左焦点的距离为3,则P 到y 轴的距离为 ( ) A . 1 B. 2 C. 3 D 4 5.双曲线的渐进线方程为230x y ±=,(0,5)F -为双曲线的一个焦点,则双曲线的方程为。 ( ) A . 22149y x -= B. 22194x y -= C. 2213131100225y x -= D 2213131225100y x -= 6.设12,F F 是双曲线22221x y a b -=的左、右焦点,若双曲线上存在点A ,使1290F AF ? ∠=且 123AF AF =,则双曲线的离心率为 ( ) A . 2 B. 2 C. 2 7.设斜率为2的直线l 过抛物线y 2 =ax (a ≠0)的焦点F ,且和y 轴交于点A ,若△OAF (O 为坐标原点)的面积为4,则抛物线方程为( ) A .y 2 =±4 B .y 2 =±8x C .y 2 =4x D .y 2 =8x 8.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线 l 1和直线l 2的距离之和的最小值是( ) A .2 B .3 9.已知直线l 1:4x -3y +6=0和直线l 2:x =-1,抛物线y 2 =4x 上一动点P 到直线

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高中数学—16—椭圆双曲线(A)-教师版

教师日期 学生 课程编号课型 课题椭圆与双曲线 教学目标 1.理解椭圆的定义,会推导椭圆的标准方程;掌握两种类型的椭圆的标准方程(焦点位于x轴或y 轴) 2.掌握椭圆的几何性质和应用 3.掌握双曲线的定义和焦距顶点、渐近线的概念;掌握双曲线的标准方程 4掌握椭圆的几何性质和应用 5.直线被椭圆所截得的弦长公式;与椭圆有关的弦长、中点、垂直等问题的一些重要解题技巧; 6.在最值、定值等问题中进一步树立数形结合、函数方程、等价转化、分类讨论等重要数学思想 教学重点 1.椭圆和双曲线的几何性质和应用; 2.直线被椭圆所截得的弦长公式;与椭圆有关的弦长、中点、垂直等问题的一些重要解题技巧; 3.在最值、定值等问题中进一步树立数形结合、函数方程、等价转化、分类讨论等重要数学思想 教学安排 版块时长 1 知识梳理15 2 例题解析50 3 巩固训练35 4 师生总结10 5 课后练习10 椭圆与双曲线

1.已知点A (2,3)、B (1,5)则直线AB 的倾角为( ) A.arctan2 B.arctan(-2) C.2π+arctan2 D. 2π+arctan 2 1 【难度】★ 【答案】D 2.下列四个命题中的真命题是( ) A.经过定点000(,)P x y 的直线都可以用方程00()y y k x x -=-. B.经过任意两个不同的点111222(,),(,)P x y P x y 的直线方程都可以用方程 121121()()()()y y x x x x y y --=--表示. C.不经过原点的直线方程都可以用方程1x y a b +=表示. D.经过定点(0,)A b 的直线都可以用方程y kx b =+表示. 【难度】★ 【答案】B 3.在ABC ?中,a 、b 、c 为三内角所对的边长,且C 、B 、A sin lg sin lg sin lg 成等差数列,则直线 a A y A x =+sin sin 2和c C y B x =+sin sin 2的位置关系是 . 【难度】★★ 【答案】两直线重合 4.设),(y x P 为圆1)1(22=-+y x 上任意一点,要使不等式m y x ++≥0恒成立,则m 取值范围是( ) A .m ≥0 B .m ≥12- C .m ≥12+ D .m ≥21- 【难度】★★ 【答案】B 5.过圆52 2 =+y x 内点??? ? ??23,25P 有n 条弦,这n 条弦的长度成等差数列{}n a ,如果过P 点的圆 的最短的弦长为1a ,最长的弦长为n a ,且公差)3 1 ,61(∈d ,那么n 的取值集合为 . 【难度】★★ 【答案】{}7,6,5 热身练习

高考数学椭圆与双曲线的经典性质

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的 两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是 002 2 1x x y y a b + =. 6. 若000(,)P x y 在椭圆 222 2 1x y a b + =外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程 是 002 2 1x x y y a b + =. 7. 椭圆 222 2 1x y a b + = (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点 角形的面积为1 2 2 tan 2 F P F S b γ ?=. 8. 椭圆 2 2 221x y a b +=(a >b >0)的焦半径公式: 10||M F a ex =+,20||M F a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的椭圆准线于M 、N 两点,则MF ⊥NF . 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆 2222 1x y a b + =的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22 OM AB b k k a ?=- , 即0 2 02 y a x b K AB - =。 12. 若000(,)P x y 在椭圆 222 2 1x y a b +=内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b + = + . 13. 若000(,)P x y 在椭圆 222 2 1x y a b +=内,则过Po 的弦中点的轨迹方程是22002 2 2 2 x x y y x y a b a b + = + . 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长 轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是 002 2 1x x y y a b - =. 6. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则 切点弦P 1P 2的直线方程是002 2 1x x y y a b -=. 7. 双曲线 222 2 1x y a b - =(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=, 则双曲线的焦点角形的面积为1 2 2 t 2 F P F S b co γ ?=. 8. 双曲线 2 2 2 21x y a b - =(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||M F ex a =+,20||M F ex a =-. 当00(,)M x y 在左支上时,10||M F ex a =-+,20||M F ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别 交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于 点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是双曲线 222 2 1x y a b - =(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 02y a x b K K AB OM = ?,即0 202 y a x b K AB = 。 12. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则被Po 所平分的中点弦的方程是 2 2 00002 2 2 2 x x y y x y a b a b - = - . 13. 若000(,)P x y 在双曲线 222 2 1x y a b - =(a >0,b >0)内,则过Po 的弦中点的轨迹方程是 22002 2 2 2 x x y y x y a b a b - = - .

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

椭圆,双曲线,抛物线练习题及答案

1、已知椭圆方程为 22 12332 x y +=,则这个椭圆的焦距为( ) A .6 B .3 C . D .2、椭圆2 2421x y +=的焦点坐标是( ) A .( B .(0, C .11(0,),(0,)22- D .( 3、12F F ,是定点,且12FF =6,动点M 满足12MF +MF 6=,则M 点的轨迹方程是( ) A .椭圆 B .直线 C .圆 D .线段 4、已知方程2 21x my +=表示焦点在y 轴上的椭圆,则m 的取值范围是( ) A .m <1 B .-1<m <1 C .m >1 D .0<m <1 5、过点(3,-2)且与椭圆2 24936x y +=有相同焦点的椭圆方程是( ) A . 2211510x y += B .22 2211510x y += C . 2211015 x y += D .22 2211015x y += 6、若直线 1y mx =+与椭圆2241x y +=只有一个公共点,那么2m 的值是( ) A . 1 2 B . 34 C . 23 D . 45 7、已知椭圆C :22 192 x y +=,直线l :110x y +=,点P (2,-1),则( ) A .点P 在C 内部,l 与C 相交 B .点P 在 C 外部,l 与C 相交 C .点P 在C 内部,l 与C 相离 D .点P 在C 外部,l 与C 相离 8、过椭圆C :22 221x y a b +=的焦点引垂直于x 轴的弦,则弦长为( ) A . 2 2b a B . 2 b a C . b a D . 2b a 9、抛物线220x y +=的准线方程是( )

相关主题