搜档网
当前位置:搜档网 › 升压斩波电路设计

升压斩波电路设计

升压斩波电路设计
升压斩波电路设计

湖南工程学院

课程设计任务书

课程名称电力电子技术

题目升压斩波电源设计

专业班级电气工及其自动化

学生姓名王振林学号 0505

指导老师颜渐德

审批谢卫才

任务书下达日期 2010 年 5 月 17 日设计完成日期 2010 年 5 月 28 日

摘要

本设计是基于SG3525芯片为核心控制的PWM升压斩波电路(Boost chopper).设计由Matlab仿真和Protel两大部分构成。

Matlab主要是理论分析,借助其强大的数学计算和仿真功能可也很直观的看到PWM控制输出电压的曲线图。通过设置参数分析输出与电路参数和控制量的关系。第二部分是电路板,它可以通过Protel设计完成,其中Protel原理图设计系统以其分层次的设计环境,强大的元件及元件库的组织功能,方便易用的连线工具,强大的编辑功能设计检验,与印制电路板设计系统的紧密连接,自定义原理图模板高质量的输出等等优点,和丰富的设计法则,易用的编辑环境,轻松的交互性手动布线,简便的封装形式的编辑及组织,高智能的基于形状的自定布线功能,万无一失的设计检验等印制电路板设计系统的优点,使其在我们学生选用PCB电路板设计软件中占了绝大部分比重。本设计也采用Protel设计原理图,和进行PCB板布线。它是本设计从理论到实际制作的必进途径,通过设定相应的规则,足以满足设计所要求的规定。

引言

直流斩波电路作为将直流电变成另一种固定电压或可调电压的DC-DC 变换器 ,在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用.随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路 . 直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。全控型电力电子器件IGBT 在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。但以

IGBT为功率器件的直流斩波电路在实际应用中需要注意以下问题:

(1)系统损耗的问;

(2)栅极电阻;

(3)驱动电路实现过流过压保护的问题。

1.逆变电源工作原理

DC/AC变换采用单相输出,全桥逆变形式,为减小逆变电源的体积,降低成本,输出使用工频LC滤波。由4个IRF740构成桥式逆变电路,IRF740最高耐压400V,电流10A,功耗125W,利用半桥驱动器IR2110提供驱动信号,其输入波形由SG3524提供,同理可调节该SG3524的输出驱动波形的D<50%,保证逆变的驱动方波有共同的死区时间。

IR2110是IR公司生产的大功率MOSFET和IGBT专用驱动集成电路,可以实现对MOSFET和IGBT的最优驱动,兼有光耦隔离和电磁隔离的优点,同时还具有快速完整的保护功能,可以提高控制系统的可靠性,减少电路的复杂程度。是中小功率变换装置中驱动器件的首选。

V V

S

B

CC 图6 IR2110内部框图

LO(引脚1):低端输出 COM(引脚2):公共端

Vcc(引脚3):低端固定电源电压 Nc(引脚4): 空端

Vs(引脚5):高端浮置电源偏移电压 VB (引脚6):高端浮置电源电压HO(引脚7):高端输出 Nc(引脚8): 空端

VDD(引脚9):逻辑电源电压 HIN(引脚10): 逻辑高端输入SD(引脚11):关断 LIN(引脚12):逻辑低端输入Vss(引脚13):逻辑电路地电位端,其值可以为0V

Nc(引脚14):空端

IR2110的内部结构和工作原理框图如图6所示。图中HIN和LIN 为逆变桥中同一桥臂上下两个功率MOS的驱动脉冲信号输入端。SD为保护信号输入端,当该脚接高电平时,IR2110的输出信号全被封锁,其对应的输出端恒为低电平;而当该脚接低电平时,IR2110的输出信号跟随HIN和LIN而变化,在实际电路里,该端接用户的保护电路的输出。HO和LO是两路驱动信号输出端,驱动同一桥臂的MOSFET。

IR2110的自举电容选择不好,容易造成芯片损坏或不能正常工作。VB和VS之间的电容为自举电容。自举电容电压达到以上,才能够正常工作,要么采用小容量电容,以提高充电电压,要么直接在VB和VS之间提供10~20V的隔离电源,本电路采用了1μF的自举电容。

为了减少输出谐波,逆变器DC/AC部分一般都采用双极性调制,即逆变桥的对管是高频互补通和关断的。

逆变桥逆变:

逆变桥部分,采用IGBT作为功率开关管。由于IGBT寄生电容和线路寄生电感的存在,同一桥臂的开关管在开关工作时相互会产生干扰,这种干扰主要体现在开关管门极上。如图3实际电路中,IR2110的输出推挽电路,这个电压尖刺幅值随母线电压VB、VS和负载电流的增大而增大,可能达到足以导致T2瞬间误导通的幅值,这时桥臂就会形成直通,造成电路烧毁。同样地,当T2开通时,T1的门极也会有电压尖刺产生。带有门极关断箝位电路的驱动电路通过减小RS和改善电路布线可以使这个电压尖刺有所降低,但均不能达到可靠防止桥臂直通的要求。本文将提出一种门极关断箝位电路,通过在开关管驱动电路中附加这种电路,可以有效地

降低上述门极尖刺。门极关断箝位电路由MOSFET 管MC1和MC2,MC1门极

下拉电阻RC1和MC2门极上拉电阻RC2组成。实际上该电路是由MOSFET

构成的两级反相器。当MC1门极为高电平时,MC1导通,MC2因门极为低

电平而关断,不影响功率开关管的正常导通;当MC1门极为低电平时,MC1

关断,MC2因门极为高电平而饱和导通,从而在功率开关管的门极形成了

一个极低阻抗的通路,将功率开关管的门极电压箝位在0V ,基本上消除

了上文中提到的电压尖刺。在使用这个电路时,要注意使MC2D 、S 与功率

开关管GE 间的连线尽量短,以最大限度地降低功率开关管门极寄生电感

和电阻。在电路板的排布上,MC 2要尽量靠近功率开关管,而MC1,RC1和

RC2却不必太靠近MC2,这样既可以发挥该电路的作用,也不至于给电路

板的排布带来很大困难。可以看到在门极有一个电压尖刺,这个尖刺与门

极脉冲的时间间隔刚好等于死区时间,由此可以证明它是在同一桥臂另一

开关管开通时产生的。此时电压尖刺基本消除。通过实验验证,该电路确

实可以抑制和消除干扰,有一定的使用价值,可以提高电路的可靠性

2. 单相交流调压工作原理

主电路工作原理

假设L 值、C 值很大,V 通时,E 向L 充电,充电电流恒为I1,同时

C 的电压向负载供电,因C 值很大,输出电压uo 为恒值,记为Uo 。设V 通

的时间为ton ,此阶段L 上积蓄的能量为EI1ton

V 断时,E 和L 共同向C 充电并向负载R 供电。设V 断的时间为toff ,

则此期间电感L 释放能量为

稳态时,一个周期T 中L 积蓄能量与释放能量相等

(1-1)

()off o on t I E U t EI 11-= off

o t I E U 1

化简得:

(1-2)

1/≥off t T ,输出电压高于电源电压,故称升压斩波电路。也称之为boost

chooper 变换器。

off

t T /——升压比,调节其即可改变Uo 。将升压比的倒数记作β,即T t off

=β。和导通占空比,有如下关系:

1=+βα (1-3)

因此,式(1-2)可表示为

(1-4)

升压斩波电路能使输出电压高于电源电压的原因:

① L 储能之后具有使电压泵升的作用

② 电容C 可将输出电压保持住

IGBT 驱动电路选择 IGBT 的门极驱动条件密切地关系到他的静态和动态特性。门极电路

的正偏压uGS 、负偏压-uGS 和门极电阻RG 的大小,对IGBT 的通态电压、

开关、开关损耗、承受短路能力及du/dt 电流等参数有不同程度的影响。

其中门极正电压uGS 的变化对IGBT 的开通特性,负载短路能力和duGS/dt

E t T E t t t U off off off on o =+=E E U o α

β-==111

电流有较大的影响,而门极负偏压对关断特性的影响较大。同时,门极电路设计中也必须注意开通特性,负载短路能力和由duGS/dt电流引起的误触发等问题。根据上述分析,对IGBT驱动电路提出以下要求和条件:

(1)由于是容性输出输出阻抗;因此IBGT对门极电荷集聚很敏感,驱动电路必须可靠,要保证有一条低阻抗的放电回路。

(2)用低内阻的驱动源对门极电容充放电,以保证门及控制电压uGS 有足够陡峭的前、后沿,使IGBT的开关损耗尽量小。另外,IGBT开通后,门极驱动源应提供足够的功率,使IGBT不至退出饱和而损坏。

(3)门极电路中的正偏压应为+12~+15V;负偏压应为-2V~-10V。

(4)IGBT 驱动电路中的电阻RG对工作性能有较大的影响,RG较大,有利于抑制IGBT 的电流上升率及电压上升率,但会增加IGBT 的开关时间和开关损耗;RG较小,会引起电流上升率增大,使IGBT 误导通或损坏。RG的具体数据与驱动电路的结构及IGBT 的容量有关,一般在几欧~几十欧,小容量的IGBT 其RG值较大。

(5)驱动电路应具有较强的抗干扰能力及对IGBT 的自保护功能。IGBT 的控制、驱动及保护电路等应与其高速开关特性相匹配,另外,在未采取适当的防静电措施情况下,IGBT的G~E极之间不能为开路。

IGBT驱动电路分类驱动电路分为:分立插脚式元件的驱动电路;光耦驱动电路;厚膜驱动电路;专用集成块驱动电路。本文设计的电路采用的是专用集成块驱动电路。

IGBT驱动电路分析随着微处理技术的发展(包括处理器、系统结构和存储器件),数字信号处理器以其优越的性能在交流调速、运动控制领域得到了广泛的应用。一般数字信号处理器构成的控制系统, IGBT驱动信号由处理器集成的PWM模块产生的。而PWM接口驱动能力及其与IGBT的

接口电路的设计直接影响到系统工作的可靠性。因此本文采用SG3525设

计出了一种可靠的IGBT 驱动方案。

最优参数选择

当IGBT 处于导通时,得

11M di L Ri E dt += ( 1 - 6 )

设1i 的初值为10I ,解上式得

1101t t M E i I e

e R ττ--??=+- ???

( 1 – 7 ) 当IGBT 处于关断时,设电动机电枢电流为2i ,得

22M di L Ri E E dt +=- ( 1

– 8 )

设2i 的初值为

20I ,解上式得 2201on

on t t t t M E E i I e

e R ττ----??-=-- ??? ( 1 – 9 ) 当电流连续时,从图 3-2 的电流波形可看出,t =on t 时刻

1i =20I ,t =T 时刻2i =10I ,由此可得

20101on on t t M E I I e

e R ττ--??=+- ??? ( 1

– 10 ) ff off 10201o t t M E E I I e

e R ττ--??-=+- ??? ( 1

– 11 ) 故由上两式求得: off 101111t M T E e E e E I m R R e R e βρτρτ----????-- ?=-=- ? ?-?? ?-??

( 1 – 12 ) on 2011t

T M T E e e E e e E I m R R e R

e αρρττρτ------????-- ?=-=- ? ?-?? ?-??

( 1 – 13 )

把上面两式用泰勒级数线性近似,得 1020()E I I m R β==-

( 1 – 14 )

该式表示了L 为无穷大时电枢电流的平均值o I ,即

()

M o E E E I m R R ββ-=-=

( 1 – 15 ) 当电流断续时的波形如图 3-2所示。当t =0时刻 1i =10I =0,令式

(1-10)中10I =0即可求出20I ,进而可写出2i 的表达式。另外,当

t =2t 时,2i =0,可求得2i 持续的时间x t ,即

on n

1l 1t x me m t ττ--=- ( 1 –

16 ) 当

off x t t <时,电路为电流断续工作状态,off x t t <是电

流断续的条件,即 11e m e βρ

ρ---<- ( 1 –

17 )

根据上式可对电路的工作状态做出判断。该式也是最优参数选择的依

据。

二、硬件实验

硬件电路

2.1.1 整流电路

本设计采用桥式电路整流:由四个二极管组成一个全桥整流电路. 对整流出来的电压进行傅里叶变换得2444

cos2cos46...

31535

out in

v t t t

ωωω

ππππ

??

=---

?

??,由整流电路出来的电压含有较大的纹波,电压质量不太好,故需要进行滤波。本电路采用RL低通滤波器(通过串联一个电感,滤除电流的高次谐波,并联一个电容滤除电压的高次谐波),以减小纹波。Protel原理图如下图4所示:

输入端接220V、50Hz的市电,进过变压器T1(原线圈/副线圈为4/1)后输出55V、50Hz。当同名端为正时D2、D5导通,D3、D4截止,电压上正下负。当同名端为负时D2、D5截止,D3、D4导通,电压同样是上正下负,从而实现整流。电感具有电流不能突变,通直流阻交流特性,因此串

图 4 protel原理图

联一个电感可以提高直流电压品质。而电容具有电压不能突变,通交流阻直流特性,因此并联一个大电容可以滤除杂波,减小纹波。结合两种元器件的特性,组成上图整流电路,可以得到比较理想的直流电压(幅值为50V左右)。

2.1.2 斩波信号产生电路

此电路主要用来驱动IGBT斩波。产生PWM信号有很多方法,但归根到底不外乎直接产生PWM的专用芯片、单片机、PLC、可编程逻辑控制器等本电路采用直接产生PWM的专用芯片SG3525.该芯片的外围电路只需简单的连接几个电阻电容,就能产生特定频率的PWM波,通过改变IN+输入电阻就能改变输出PWM波的占空比,故在IN+端接个可调电阻就能实现PWM控制。为了提高安全性,该芯片内部还设有保护电路。它还具有高抗干扰能力,是一款性价比相当不错的工业级芯片。

为了减少不同电源之间的相互干扰,SG3525输出的PWM经过光电耦合之后才送至驱动电路。其电路图如下图 5所示:

工作原理:通过R2、R3、C3结合SG3525产生锯齿波输入到SG3525的振荡器。

其产生的PWM信号由OUTA、OUTB输出,调节R7可以改变占空比。输出的PWM信号通过二极管D6、D7送至光电耦合器U2,光耦后通过驱动电路对信号进行放大。放大后的电压可以直接驱动IGBT。此电路具有信号稳定,安全可靠等优点。因此他适用于中小容量的PWM斩波电路。

2.1.3 斩波电路

本设计为直流升压斩波(boost chopper)电路,该电路是本系统的核心。应为输出电压比较大,故斩波器件选用能够承受大电压和导通内阻小,开关频率高,开关时间小的大功率IGBT管。原理图如下图6所示:

左边接经整流之后的50V 电压。右边为斩波电压输出,J2为测试点。

V-G 为SG3525输出的PWM 斩波信号。Q1为IGBT ,D1为电力二极管,L2

为电感,C1为电容,R1为负载。

原理分析:首先假设电感L 值很大,电容C 值也很大。当V-G 为高电

平时,Q1导通,50V 电源向L2充电,充电基本恒定为1I ,同时电容C 上的

电压向负载R 供电,因C 值很大,基本保持输出电压

o u 为恒值,记为o U 。设V 处于通态的时间为on t ,此阶段电感L 上积储的能量为1on EI t 。当V 处

于段态时E 和L 共同向电容C 充电,并向负载R 提供能量。设V 处于段态

的时间为off t ,则在此期间电感L 释放的能量为01()off U E I t -。当电路工作

于稳态时,一个周期T 中电感L 积储的能量于释放的能量相等,即

101()on off EI t U E I t =- (2-1)

化简得 on off 0off off t t T U E E t t +== (2-2)

图 6 主电路仿真图

上式中的off /1T t ,输出电压高于电源电压。式(2-1)中

off /T t 为升压比,调节其大小即可改变输出电压

o U 的大小。

2.1.4 总原理图 图形如下图7所示。其中J1为市电插口,P1接15V 驱动,P2为驱动

IGBT 的PWM 信号T1为变压器,将220 V 市电转换成频率不变的55V 交流

电(题目要求整理输出50V ,由于元器的阻抗会分压,故把输入电压提高

5 V ,此时变压器变比为T1:T2=4:1)。变压器变压后输入到由D2、D3、

D4、D5四个整流二极管组成的整流电路输入端 。经整流后电压含有较大

的纹波,故通过L1、C2组成的LC 低通滤波器进行滤波。滤波后输出的电

压就比较平滑了。接下来就是由电感L2、斩波器件IGBT Q1,电力二极管

D1、电容C1组成的升压斩波电路(Boost Chopper ).改变驱动信号PWM

的占空比就可以调节输出到负载R1两端电压,J2是负载两端的电压测试

点,接至示波器就可以看到输出电压。

图 7 总原理图

三课程设计总结

现在我们所使用到能源中电能占了很大的比重,它具有成本低廉,输送方便,绿色环保,控制方便能很容易转换成其他的信号等等。我们的日常生活已经离不开电了。在如今高能耗社会,合理的利用电能,提高电能品质和用电效率成为了全球研究的当务之急。而《电力电子技术》正是与这一主题相关联的。直流升压斩波电路是里面的一部分,它开关电源,与线性电源相比,具有绿色效率高,控制方便,智能化,易实现计算机控制。

在做课程设计的这段时间里,通过不断地查找资料,最升压斩

波电路有了一定的理解。并且在matlab中仿真实现了,最后在protel中绘制了原理图和PCB板。

在做课程设计过程中,我对matlab在仿真中的应用有了进一步的了解和掌握。Matlab在电力电子方面的仿真应用时,可以将电力电子电路输出效果图形化,形象直观,可以帮助我们对电路的理解。

在制作PCB板的过程中,我对protel的各种功能有了一定的了解,也让我明白了理论和实际有很大差别。

经过这次课程设计,我认识到自己还有很多东西需要进一步加强学习,而且要把理论联系实践来学习,不仅要懂理论知识,还要懂如何作出实物。

设计体会

做了两周的课程设计,使我有了很多的心得体会,可以说这次直流电机斩波调速控制系统课程设计是在大家共同努力和在老师的精心指导下共同完成的。

一开始接触这个课题时我还不知道该从何下手,很多东西不知该如何实现,经过2星期的努力,在图书馆和网上查资料,请教同学,终于是完成了任务。

通过这次设计加深了我对这门课程的了解,以前总是觉得理论结合不了实际,但通过这次设计使我认识到了理论结合实际的重要性。但由于我知识的限制,设计还有很多不足之处,希望老师指出并教导。

通过对电路图的研究,也增强了我们的思考能力。另外,在使用protel 软件绘制电路图的过程中,我学到了很多实用的技巧,这也为以后的工作

相关主题