搜档网
当前位置:搜档网 › 偏导数全微分教案

偏导数全微分教案

偏导数全微分教案
偏导数全微分教案

高等数学教案

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

1。偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在d e t a x趋进于0时偏增量的线性主要部分d e t a z=f x(x,y)d e t a x+o(d e t a x) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分

全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系d z=A d x+B d y其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 d z/d t=(偏z/偏u)(d u/d t)+(偏z/偏v)(d v/d t) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数

偏导数与全导数-偏微分与全微分的关联

1。偏导数 代数意义 偏导数是对一个变量求导,另一个变量当做数 对x求偏导的话y就看作一个数,描述的是x方向上的变化率 对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义 对x求偏导是曲面z=f(x,y)在x方向上的切线 对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分 偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在detax趋进于0时偏增量的线性主要部分 detaz=fx(x,y)detax+o(detax) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分 这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分 全增量:x,y都增加时f(x,y)的增量 全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分

同样也有求全微分公式,也建立了全微分和偏导数的关系 dz=Adx+Bdy 其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数 全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。 u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 dz/dt=(偏z/偏u)(du/dt)+(偏z/偏v)(dv/dt) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数 如果z=f(x^2,2^x) 只有这种情况下dz/dx才是全导数!

偏导数与全微分习题

偏导数与全微分习题 1. 设y x y x y x f arcsin )1(),(-+=,求)1,(x f x '。 2. 习题8 17题。 3. 设?? ??? =+≠++=0 001sin ),(22222 2 y x y x y x y y x f ,考察f (x , y )在点(0,0)的偏导数。 4. 考察?? ??? =+≠++=0 001sin ),(22222 2 y x y x y x xy y x f 在点 (0,0)处的可微性。 5. 证 明 函 数 ?? ???=+≠+++=0 001sin )(),(222 22 22 2y x y x y x y x y x f 在 点(0,0)连续且偏导数存在,但偏导数在(0,0)不连续,而f (x , y )在点(0,0)可微。 }

1. 设y x y x y x f arcsin )1(),(-+=,求)1,(x f x '。 y y x y x y y x f x 1) (2111 )1(1),(21 ??- -+='- ∴ 1)1,(='x f x 。 : &

2.习题8 17题。 17. 设22)()(ln b y a x z -+-=(a , b 为常数),证明 02 22 2=??+??y z x z 。 先化简函数 ))()ln((2 1 22b y a x z -+-=, , 2 222)()() ()()()(221b y a x a x b y a x a x x z -+--= -+--?=??, 2222) ()() ()()()(221b y a x b y b y a x b y y z -+--=-+--?=??, 2 22 2 222 2))()(()(2)()(b y a x a x b y a x x z -+----+-= ?? 2 22 22) )()(()()(b y a x a x b y -+----= , 2 222 222 2))()(()(2)()(b y a x b y b y a x y z -+----+-= ?? 2 2222) )()(()()(b y a x b y a x -+----= , ∴ 02 22 2=??+ ??y z x z 。 3. $

十偏导数与全微分(学生用)

第十四章 偏导数与全微分 §1. 偏导数与全微分的概念 1.求下列函数的偏导数: (1) 2 2 2 ln()u x x y =+; (2) ()cos()u x y xy =+; (3) arctan x u y =; (4) sin()xy u xye =. 2.设22 22 221sin , 0,(,)0, 0.y x y x y f x y x y ?+≠?+=??+=? ,考察函数在(0,0)点的偏导数. 3 .证明函数u =(0,0)点连续但偏导数不存在. 4.求下列函数的全微分: (1) u = (2) yz x u xe e y -=++.

5.求下列函数在给定点的全微分: (1) u =在点(1,1,1); (2) (u x y =+-0,1). 6.证明函数22222 22, 0,(,) 0, 0.x y x y f x y x y x y ?+≠?=+??+=? 在(0,0)点连续且偏导数存在,但在此点不可微。 7 .证明:函数22 220(,)0, 0x y f x y x y +≠=+=?在点(0, 0)处偏导数存在,但不可微. 8.设,x y 很小,利用全微分推出下列式(1)(1)m n x y ++的近似公式:

9.求下列函数指定阶的偏导数: (1) 3 3 sin sin u x y y x =+,求633u x y ???; (2) ln()u ax by =+,求m n m n u x y +???. §2. 求复合函数偏导数的链式法则 1.求下列函数指定的偏导数: (1).设(,,),x y z Φ=Φ ,,,x u v y u v z uv =+=-=求, u v ?Φ?Φ ??. (2) 设),,22(xyz z y x f z --=求x z ?? 2. 求下列函数指定的偏导数(假定所有二阶偏导数都连续) (1) 2 2 (,)u f xy x y =,22u x ?? ; (2) (,)x y u f y z =,2u x y ???; (3) 2 2 2 ()u f x y z =++,22u y ??; (4) (,,)x u f x y xy y =+,2u y x ???.

第十三讲:多元函数的偏导数与全微分的练习题答案

第十三讲:多元函数的偏导数与全微分的练习题答案 一、单项选择题(每小题4分,共24分) 1. 设2(,)f x y x y xy y +-=+ 则(,)f x y = (A ) A . ()2x x y - B .2xy y + C .()2 x x y + D .2x xy - 解: (,)()f x y x y x y y +-=+ []1()()()2 x y x y x y = ++-- (,)()2x f x y x y ∴=- 2. 22 1cos lim 1x x y o e y x y →→++= (D ) A . 0 B .1 C . 1e D . 2 e 解:22cos (,)1x e y f x y x y =++在点(1,0)连续 '221cos cos 0lim 11102x x y o e y e e x y →→∴==++++ 3.设(,) f x y 在点00(,)x y 处有偏导数存在,则0000(2,)(,)lim h o f x h y f x h y h →+--=(D ) A .0 B .'00(,)x f x y C .'002(,)x f x y D .'003(,)x f x y 解:原式=0000(2,)(,)lim 22h o f x h y f x y h →+-? 0000(,)(,)lim h o f x h y f x y h →--+- ='''0000002(,)(,)3(,)x x x f x y f x y f x y += 4.(,)z f x y =偏导数存在是(,)z f x y =可微的 (B ) A .充分条件 B .必要条件 C .充分必要条件 D .无关条件

偏导数与全导数偏微分与全微分的关系

偏导数与全导数偏微分与全微分的关系 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

1。偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在d e t a x趋进于0时偏增量的线性主要部分d e t a z=f x(x,y)d e t a x+o(d e t a x) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分

全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系d z=A d x+B d y其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 d z/d t=(偏z/偏u)(d u/d t)+(偏z/偏v)(d v/d t) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导 3.中间变两有一元也有多元,还是求偏导。

全微分方向导数偏导数与连续四者之间的关系

全微分方向导数偏导数与连续四者之间的关系 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

全微分、方向导数、偏导数与连续四者之间的关系 朱丽娜 郑州工业安全职业学院 451192 摘要 本文结合具体实例分三种情况分别讨论了二元函数的全微分、偏导数和连续之间的关系,全微分存在和任意方向的方向导数存在之间的关系,任意方向的方向导数、偏导数和连续之间的关系,从而得出他们四者之间的所有关系。 关键词 全微分,任意方向上的方向导数,偏导数,连续 对于多元函数的偏导数、方向导数、偏导数和连续等基本概念及其内在联系,既是多元函数微分学中的重难点知识,也是我们教学过程中容易出现的误解和错误盲点.本文就该问题分三种情况、以二元函数为例来加以阐述,以做到加强理解和灵活掌握的目的. 一、 全微分、偏导数和连续三者之间的关系 定理1:(必要条件)如果函数(,)z f x y =在点(,)x y 可微分,则该函数在点(,)x y 连续且一阶偏导数存在. 定理2:(充分条件)函数(,)z f x y =在点00(,)x y 处对,x y 的一阶偏导数存在且连续,则在该点处必可微分. 读者还可以从可微的定义看到函数在可微点处必连续,但是在函数的连续点处不 一定存在偏导数,当然更不能保证函数在该点可微.如z =在原点连续,但是在该点处偏导数不存在,也不可微. 偏导数存在,函数却不一定可微,也不一定连续. 二、 全微分存在和任意方向的方向导数存在之间的关系

定理3:函数(,)z f x y =在点00(,)x y 处可微分,则在该点处任意方向上的方向导数存在,反之不成立. 例1 :函数z =在点(0,0)处对,x y 的全微分不存在,但在该点处沿任意方向的方向导数存在. 证明:0(0,0)(,0)(0,0)lim x z z x z x x ?→??-=?? 故z =在点(0,0)处对x 的偏导数不存在, 同理z =在点(0,0)处对y 的偏导数不存在, 由定理1 z =在点(0,0)处对,x y 的全微分不存在. 但z =在点(0,0)处沿任意方向的方向导数为 即任意方向上的方向导数存在. 三、任意方向的方向导数、偏导数和连续之间的关系 咱们下面介绍一个更易出错的概念,大多数人以为“若函数在一点处沿任意方向的方向导数存在,则函数在该点处必连续”.这是一个完全错误的概念,如: 例2: 2 222422,0,0,0,xy x y z x y x y ?+≠?=+??+=? 它在任意方向上的方向导数为: 这一结果表明2 222422,00,0xy x y z x y x y ?+≠?=+??+=? 在点(0,0)处沿任意方向的方向导数都存在. 但是222001lim (0,0)2 y x x x z z x x ++ →→==≠+,即函数在该点不连续. 定理4:函数(,)z f x y =在点00(,)x y 沿任意方向上的方向导数存在,则在该点处偏导数必存在. 证明:函数在点00(,)x y 的任意方向的方向导数为:

偏导数与全导数 偏微分与全微分的关系

1。偏导数代数意义偏导数是对一个变量求导,另一个变量当做数对x求偏导的话y就看作一个数,描述的是x方向上的变化率对y求偏导的话x就看作一个数,描述的是y方向上的变化率 几何意义对x求偏导是曲面z=f(x,y)在x方向上的切线对y求偏导是曲面z=f(x,y)在x方向上的切线 这里在补充点。就是因为偏导数只能描述x方向或y方向上的变化情况,但是我们要了解各个方向上的情况,所以后面有方向导数的概念。 2。微分偏增量:x增加时f(x,y)增量或y增加时f(x,y) 偏微分:在d e t a x趋进于0时偏增量的线性主要部分d e t a z=f x(x,y)d e t a x+o(d e t a x) 右边等式第一项就是线性主要部分,就叫做在(x,y)点对x的偏微分这个等式也给出了求偏微分的方法,就是用求x的偏导数求偏微分

全增量:x,y都增加时f(x,y)的增量全微分:根号(detax方+detay方)趋于0时,全增量的线性主要部分同样也有求全微分公式,也建立了全微分和偏导数的关系d z=A d x+B d y其中A就是对x求偏导,B就是对y求偏导 希望楼主注意的是导数和微分是两个概念,他们之间的关系就是上面所说的公式。概念上先有导数,再有微分,然后有了导数和微分的关系公式,公式同时也指明了求微分的方法。 3.全导数全导数是在复合函数中的概念,和上面的概念不是一个系统,要分开。u=a(t),v=b(t) z=f[a(t),b(t)] dz/dt 就是全导数,这是复合函数求导中的一种情况,只有这时才有全导数的概念。 d z/d t=(偏z/偏u)(d u/d t)+(偏z/偏v)(d v/d t) 建议楼主在复合函数求导这里好好看看书,这里分为3种情况。1.中间变量一元就是上面的情况,才有全导数的概念。2.中间变量有多元,只能求偏导3.中间变两有一元也有多元,还是求偏导。 对于你的题能求对x的偏导数,对y的偏导数,z的全微分,不能求全导数

相关主题