搜档网
当前位置:搜档网 › 三角函数公式与双曲函数

三角函数公式与双曲函数

三角函数公式与双曲函数
三角函数公式与双曲函数

公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα

cos(2kπ+α)=cosα

tan(2kπ+α)=tanα

cot(2kπ+α)=cotα

公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα

cot(π+α)=cotα

公式三:任意角α与 -α的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα

tan(-α)=-tanα

cot(-α)=-cotα

公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

sin(π-α)=sinα

cos(π-α)=-cosα

tan(π-α)=-tanα

cot(π-α)=-cotα

公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

sin(2π-α)=-sinα

cos(2π-α)=cosα

tan(2π-α)=-tanα

cot(2π-α)=-cotα

公式六:π/2±α与α的三角函数值之间的关系:

sin(π/2+α)=cosα

cos(π/2+α)=-sinα

tan(π/2+α)=-cotα

cot(π/2+α)=-tanα

sin(π/2-α)=cosα

cos(π/2-α)=sinα

tan(π/2-α)=cotα

cot(π/2-α)=tanα

诱导公式记忆口诀奇变偶不变,符号看象限。“奇、偶”指的是整数n的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。一全正;二正弦;三两切;四余弦这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。

编辑本段其他三角函数知识

同角三角函数的基本关系式

倒数关系

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

同角三角函数关系六角形记忆法

构造以"上弦、中切、下割;左正、右余、中间1"的正六边形为模型。

倒数关系

对角线上两个函数互为倒数;

商数关系

六边形任意一顶点上的函数值等于与它相邻的两个顶点上函数值的乘积。(主要是两条虚线两端的三角函数值的乘积)。由此,可得商数关系式。

平方关系

在带有阴影线的三角形中,上面两个顶点上的三角函数值的平方和等于下面顶点上的三角函数值的平方。

两角和差公式

sin(α+β)=sinαcosβ+cosαsinβ

sin(α-β)=sinαcosβ-cosαsinβ

cos(α+β)=cosαcosβ-sinαsinβ

cos(α-β)=cosαcosβ+sinαsinβ

tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα ·tanβ)

二倍角的正弦、余弦和正切公式

sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan2α=2tanα/(1-tan^2(α))

半角的正弦、余弦和正切公式

sin^2(α/2)=(1-cosα)/2

cos^2(α/2)=(1+cosα)/2

tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

万能公式

sinα=2tan(α/2)/(1+tan^2(α/2))

cosα=(1-tan^2(α/2))/(1+tan^2(α/2))

tanα=(2tan(α/2))/(1-tan^2(α/2))

三倍角的正弦、余弦和正切公式

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

三角函数的和差化积公式

sinα+sinβ=2sin((α+β)/2) ·cos((α-β)/2)

sinα-sinβ=2cos((α+β)/2) ·sin((α-β)/2)

cosα+cosβ=2cos((α+β)/2)·cos((α-β)/2)

cosα-cosβ=-2sin((α+β)/2)·sin((α-β)/2)

三角函数的积化和差公式

sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

sinα·sinβ=- 0.5[cos(α+β)-cos(α-β)]

编辑本段公式推导过程

万能公式推导

sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*,(因为cos^2(α)+sin^2(α)=1)

再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。

同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。

三倍角公式推导

tan3α=sin3α/cos3α

=(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα)

=(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-

cosαsin^2(α)-2sin^2(α)cosα)

上下同除以cos^3(α),得:

tan3α=(3tanα-tan^3(α))/(1-3tan^2(α))

sin3α=sin(2α+α)=sin2αcosα+cos2αsinα

=2sinαcos^2(α)+(1-2sin^2(α))sinα

=2sinα-2sin^3(α)+sinα-2sin^3(α)

=3sinα-4sin^3(α)

cos3α=cos(2α+α)=cos2αcosα-sin2αsinα

=(2cos^2(α)-1)cosα-2cosαsin^2(α)

=2cos^3(α)-cosα+(2cosα-2cos^3(α))

=4cos^3(α)-3cosα

sin3α=3sinα-4sin^3(α)

cos3α=4cos^3(α)-3cosα

和差化积公式推导

首先,我们知道

sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb

所以,sina*cosb=(sin(a+b)+sin(a-b))/2

同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2

同样的,我们还知道

cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb

所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2

同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

这样,我们就得到了积化和差的四个公式:

sina*cosb=(sin(a+b)+sin(a-b))/2

cosa*sinb=(sin(a+b)-sin(a-b))/2

cosa*cosb=(cos(a+b)+cos(a-b))/2

sina*sinb=-(cos(a+b)-cos(a-b))/2

好,有了积化和差的四个公式以后,我们只需一个变形,就可以得到和

差化积的四个公式.

我们把上述四个公式中的a+b设为x,a-b设为y,那么

a=(x+y)/2,b=(x-y)/2

把a,b分别用x,y表示就可以得到和差化积的四个公式:

sinx+siny=2sin((x+y)/2)*cos((x-y)/2)

sinx-siny=2cos((x+y)/2)*sin((x-y)/2)

cosx+cosy=2cos((x+y)/2)*cos((x-y)/2)

cosx-cosy=-2sin((x+y)/2)*sin((x-y)/2)

在数学中,双曲函数类似于常见的三角函数(也叫圆函数)。基本双曲函数是双曲正弦“sinh”,双曲余弦“cosh”,从它们导出双曲正切“tanh”等。也类似于三角函数的推导。反函数是反双曲正弦“arsinh”(也叫做“arcsinh”或“asinh”)以此类推。

因为双曲函数出现于某些重要的线性微分方程的解中,譬如说定义悬链线和拉普拉斯方程。

双曲函数接受实数值作为叫做双曲角的自变量。在复分析中,它们简单的是指数函数的有理函数,并因此是完整的。

射线出原点交双曲线x2 ? y2 = 1 于点(cosh a,sinh a),这里的a 被称为双曲角,是这条射线、它关于x 轴的镜像和双曲线之间的面积。定义

双曲函数(Hyperbolic Function)包括下列六种函数:

sinh / 双曲正弦:sinh(x) = [e^x - e^(-x)] / 2

cosh / 双曲余弦:cosh(x) = [e^x + e^(-x)] / 2

tanh / 双曲正切:tanh(x) = sinh(x) / cosh(x)=[e^x - e^(-x)] / [e^x + e^(-x)]

coth / 双曲余切:coth(x) = cosh(x) / sinh(x) = [e^x + e^(-x)] / [e^(x) - e^(-x)]

sech / 双曲正割:sech(x) = 1 / cosh(x) = 2 / [e^x + e^(-x)]

csch / 双曲余割:csch(x) = 1 / sinh(x) = 2 / [e^x - e^(-x)]

其中,

e是自然对数的底

e≈2.71828 18284 59045...= 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + 1/5!...+ 1/n! +...

e^x 表示e的x次幂,展开成无穷幂级数是:

e^x=x^0/0! + x^1/1! + x^2/2! + x^3/3! + x^4/4! + x^5/5!...+ x^n/n! +...

如同点(cost,sint) 定义一个圆,点(cosh t, sinh t) 定义了右半直角双曲线x^2 ? y^2 = 1。这基于了很容易验证的恒等式

和性质t > 0 对于所有的t。

双曲函数是带有复周期2πi 的周期函数。

参数t 不是圆角而是双曲角,它表示在x 轴和连接原点和双曲线上的点(cosh t, sinh t) 的直线之间的面积的两倍。

函数cosh x 是关于y 轴对称的偶函数。

函数sinh x 是奇函数,就是说-sinh x = sinh -x 且sinh 0 = 0。

编辑本段实变双曲函数图像的基本性质

y=sinh(x).定义域:R.值域:R.奇函数.函数图像为过原点并且穿越Ⅰ,Ⅲ象限的严格单调递增曲线,当x->+∞时是(1/2)e^x的等价无穷大.函数图像关于原点对称.

y=cosh(x).定义域:R.值域:[1,+∞).偶函数.函数图像是悬链线,最低点是(0,1),在Ⅰ象限部分是严格单调递增曲线,当x->+∞时是(1/2)e^x的等价无穷大.函数图像关于y轴对称.

y=tanh(x).定义域:R.值域:(-1,1).奇函数.函数图像为过原点并且穿越Ⅰ,Ⅲ象限的严格单调递增曲线.其图像被限制在两渐近线y=1和y=-1之间.lim[x->+∞,tanh(x)=1],lim[x->-∞,tanh(x)=-1].

y=coth(x).定义域:{x|x≠0}.值域:{x||x|>1}.奇函数.函数图像分为两支,分别在Ⅰ,Ⅲ象限,函数在(-∞,0)和(0,+∞)分别单调递减.垂直渐近线为y轴,两水平渐近线为y=1和y=-1.lim[x->+∞,coth(x)=1],lim[x->-∞,coth(x)=-1].

y=sech(x).定义域:R.值域:(0,1].偶函数.最高点是(0,1),函数在(0,+∞)严格单调递减.x轴是其渐近线.lim[x->∞,sech(x)]=0.

y=csch(x).定义域:{x|x≠0}.值域:{x|x≠0}.奇函数.函数图像分为两支,分别在Ⅰ,Ⅲ象限,函数在(-∞,0)和(0,+∞)分别单调递减.垂直渐近线为y轴,两水平渐近线为x 轴.lim[x->∞,csch(x)]=0.

双曲函数名称的变更:sh也叫sinh, ch也叫cosh

编辑本段复变中的双曲函数?

1、定义

双曲正弦:sh(z) = [e^z - e^(-z)] / 2

双曲余弦:ch(z) = [e^z + e^(-z)] / 2

2、性质

解析性:shz,chz是全平面的解析函数

周期性:shz,chz是周期函数,周期为2πi,这是完全不同于实变函数中的性质编辑本段双曲函数与三角函数的关系

双曲函数与三角函数有如下的关系:

* sinh x = -i * sin(i * x)

* cosh x = cos(i * x)

* tanh x = -i * tan(i * x)

* coth x = i * cot(i * x)

* sech x = sec(i * x)

* csch x = i * csc(i * x)

i 为虚数单位,即i * i = -1

编辑本段恒等式

与双曲函数有关的恒等式如下:

cosh^2(x) - sinh^2(x) =1

tanh^2(x)+sech^2(x)=1

加法公式

sinh(x+y) = sinh(x) * cosh(y) + cosh(x) * sinh(y)

cosh(x+y) = cosh(x) * cosh(y) + sinh(x) * sinh(y)

tanh(x+y) = [tanh(x) + tanh(y)] / [1 + tanh(x) * tanh(y)]

coth(x+y)=(1+coth(x) * coth(y))/(coth(x) + coth(y))

减法公式

sinh(x-y) = sinh(x) * cosh(y) - cosh(x) * sinh(y)

cosh(x-y) = cosh(x) * cosh(y) - sinh(x) * sinh(y)

tanh(x-y) = [tanh(x) - tanh(y)] / [1 - tanh(x) * tanh(y)]

coth(x-y)=(1-coth(x) * coth(y))/(coth(x) - coth(y))

二倍角公式

sinh(2x) = 2 * sinh(x) * cosh(x)

cosh(2x) = cosh^2(x) + sinh^2(x) = 2 * cosh^2(x) - 1 = 2 * sinh^2(x) + 1

tanh(2x) = 2tanh(x)/(1+tanh^2(x))

coth(2x) = (1+coth^2(x))/2coth(x)

三倍角公式

sinh(3x)=3sinh(x)+4sinh^3(x)

cosh(3x)=4cosh^3(x)-3cosh(x)

半角公式

cosh^2(x / 2) = (cosh(x) + 1) / 2

sinh^2(x / 2) = (cosh(x) - 1) / 2

tanh(x / 2) = (coth(x)-1)/sinh(x)=sinh(x)/(coth(x)+1)

coth(x / 2) = sinh(x)/(coth(x)-1)=(coth(x)+1)/sinh(x)

德莫佛公式

(cosh(x)±sinh(x))^n=cosh(nx)±sinh(nx)

双曲函数的恒等式都在圆三角函数有相应的公式。Osborn's rule指出:将圆三角函数恒等式中,圆函数转成相应的双曲函数,有两个sinh的积时(包括coth^2(x), tanh^2(x), csch^2(x), sinh(x) * sinh(y))则转换正负号,则可得到相应的双曲函数恒等式。如三倍角公式

sin(3 * x) = 3 * sin(x) ? 4 * sin^3(x)

sinh(3 * x) = 3 * sinh(x) + 4 * sinh^3(x)

编辑本段反双曲函数

反双曲函数是双曲函数的反函数. 它们的定义为:

arcsinh(x) = ln[x + sqrt(x^2 + 1)]

arccosh(x) = ln[x + sqrt(x^2 - 1)]

arctanh(x) = ln[sqrt(1 - x^2) / (1 - x)] = ln[(1 + x) / (1 - x)] / 2

arccoth(x) = ln[sqrt(x^2 - 1) / (x - 1)] = ln[(x + 1) / (x - 1)] / 2

arcsech(x) = ±ln[1 + sqrt(1 - x^2) / x]

arccsch(x) = ln[1 - sqrt(1 + x^2) / x] , 如果x < 0

ln[1 + sqrt(1 + x^2) / x] , 如果x > 0

其中,

sqrt 为square root 的缩写, 即平方根

编辑本段双曲函数与反双曲函数的导数

(sinh(x))'=cosh(x)

(cosh(x))'=sinh(x)

(tanh(x))'=sech^2(x)

(coth(x))'=-csch^2(x)

(sech(x))'=-sech(x)tanh(x)

(csch(x))'=-csch(x)coth(x)

(arcsinh(x))'=1/sqrt(x^2+1)

(arccosh(x))'=1/sqrt(x^2-1) (x>1)

(arctanh(x))'=1/(1-x^2) (|x|<1)

(arccoth(x))'=1/(1-x^2) (|x|>1)

编辑本段双曲函数与反双曲函数的不定积分

∫sinh(x)dx=cosh(x)+c

∫cosh(x)dx=sinh(x)+c

∫sech^2(x)dx=tanh(x)+c

∫csch^2(x)dx=-coth(x)+c

∫sech(x)tanh(x)dx=-sech(x)+c

∫csch(x)coth(x)dx=-csch(x)+c

∫tanh(x)dx=ln(cosh(x))+c

∫coth(x)dx=ln|sinh(x)|+c

∫sech(x)dx=arctan(sinh(x))+c=2arctan(e^x)+c1=2arctan(tanh(x/2))+c2

∫csch(x)dx=ln|coth(x)-csch(x)+c=ln|tanh(x/2)|+c

∫[1/sqrt(x^2+1)]dx=arcsinh(x)+c=ln(x+sqrt(x^2+1))+c

∫[1/sqrt(x^2-1)]dx=sgn(x)arccosh|x|+c=ln|x+sqrt(x^2-1)|+c

(sgn是符号函数.sgn(x)=x/|x|,x≠0;sgn(x)=0,x=0)

编辑本段双曲函数与反双曲函数的级数表示

sinh(z)=z+z^3/3!+z^5/5!+z^7/7!+...+z^(2k-1)/(2k-1)!+... (z∈C)

cosh(z)=1+z^2/2!+z^4/4!+z^6/6!+...+z^(2k)/(2k)!+... (z∈C)

arcsinh(z)=z-(1/6)z^3+(3/40)z^5-(5/112)z^7+...+(-1)^k[(2k-1)!!/(2k)!!][z^(2k+1)/(2k+1)]+... (|z|<1)

arctanh(z)=z+z^3/3+z^5/5+z^7/7+...+z^(2k-1)/(2k-1)+... (|z|<1)

编辑本段实际应用

双曲函数并非单纯是数学家头脑中的抽象,在物理学众多领域可找到丰富的实际应用实例。

1、阻尼落体

在空气中由静止开始下落的小石块既受重力的作用又受到阻力的作用。设小石块的质量为m,速度为v,重力加速度为g,所受空气阻力假定与v2正比,阻尼系数为μ。设初始时刻小石块静止。求其小石块运动速度与时间的关系。

解:

小石块遵循的运动方程为

mdv/dt=mg―μv2 (8)

这是Riccati方程,它可以精确求解。

依标准变换方式,设

v=(m/μ)(z′/z)(9)

代入(8)式,再作化简,有

z'' ―(gμ/m)z=0 (10)

(10)式的通解是

z=C1exp(√gμ/m t)+ C2exp(-√gμ/m t)(11)

其中,C1和C2是任意常数。

由于小石块在初始时刻是静止的,初始条件为

v(0)=0 (12)

这等价于

z′(0)=0 (13)

因此,容易定出

C2=-C1 (14)

将(14)式代入(11)式,再将(11)式代入(9)式,就可得

满足初始条件的解

v=√mg/μtanh(√μg/m t ) (15)

我们可以作一下定性的分析。小石块初始时刻静止。因此,随着时间增加,开始时小石块速度较小,小石块所受的阻力影响较小,此时,小石块与不受阻力的自由落体运动情况相类似,小石块加速度几乎是常数。反映在图1中,起始段t和v的关系是直线。当小石块速度很大时,重力相对于阻力来说可以忽略,阻力快速增加到很大的数值,导致小石块的速度几乎不再增加。此时,小石块加速度接近零,v几乎不随时间而变化。从图1中可以看到,一段时间后,v相不多是一平行于t轴的直线。

2、导线电容

真空中两条圆柱形无穷长平行直导线,横截面的半径分别为R1和R2,中心线相距为d(d >R1+R2)。试求它们间单位长度的电容。

解:

设这两条导线都带电,单位长度的电荷量分别是为λ和―λ。

我们可以用电像法精确求解。电像法的思路是:

由于在静电平衡情况时,导线是等势体,因而我们可设想用偶极线来取代这两条圆柱形带电导线,适当地选择偶极线的位置,使它们所产生的两个等势面恰好与原来两导线的表面重合。这样就满足了边界条件。这里采用的偶极线是两条无穷长的均匀带电平行直线,它们单位长度的电荷量也分别为λ和―λ。这偶极线便是原来两带电导线的电像。于是就可以计算电势,从而求出电容来。为此先求偶极线的等势面。

以偶极线所在的平面为z-x平面,取笛卡儿坐标系,使偶极线对称地处在z轴的两侧,它们到z轴的距离都是a。如图2所示。这偶极线所产生的电势便为

φ=φ1+φ2

=(λ/2πε0)In(r1′/ r1)+(―λ/2πε0)In(r2′/ r2)

=(λ/2πε0)In[(r2 / r1)(r1′/ r2′)] (16)

y

P

r2 r1

R2 ―λ+λR1 x

O

a a

a2 a1

图2:带电导线与其镜像

式中r1′和r2′分别是偶极线λ和―λ到某个电势参考点的距离。为方便起见,我们取z轴上的电势为零,这样,r1′=r2′= a,于是,(16)式便化为

φ=(λ/2πε0)In(r2 / r1)(17)

由于对称性,平行于z轴的任何一条直线都是偶极线的等势线。所以,我们只须考虑z-y平面内任意一点P(z,y)的电势即可。于是

φ=(λ/4πε0)In{[(x2+a2)+y2] /[(x2―a2)+y2] } (18)

故偶极线的等势面方程便为

[(x2+a2)+y2] /[(x2―a2)+y2]=k2 (19)

式中

k2 =e4πε0φ/λ(20)

c=[(k2+1)/(k2―1)]a (21)

则(19)式可化为

(x―c)2+y2=[4k2/(k2―1)2]a 2 (22)

这表明,偶极线的等势面都是轴线平行于z轴的圆柱面,它们的轴线都在z轴上z=c处,其横截面的半径为

R=∣2k/(k2―1)∣a (23)

这个结果启示,我们可以找到偶极线的两个等势面,使它们分别与原来两导线的表面重合。这只要下列等式成立就可以了:

a1= ∣c1∣=[(k12+1)/(k12―1)]a (24)

R1=∣2k1/(k12―1)∣a (25)

a2= ∣c2∣=[(k22+1)/(k22―1)]a (26)

R2=∣2k2/(k22―1)∣a (27)

d=a1+a2 (28)

由(24)至(27)式得

a12―R12=a2= a22―R22 (29)

原来两导线表面的方程是

R1:(x―a1)2+y2= R12 (30)

R2:(x+a2)2+y2= R22 (31)

利用(29)式,可以把(30)和(31)式分别化为

x2+y2+ a2= 2a1 x (32)

x2+y2+ a2= ―2a2 x (33)

利用(32)和(33)两式,由(18)式得出,半径为R1和R2的两导线的电势分别为

φ1=(λ/4πε0)In[(a1+a)/ (a1―a)] (34)

φ2=―(λ/4πε0)In[(a2+a)/ (a2―a)] (35)

于是两导线的电势差便为

U=φ1+φ2=(λ/2πε0)In[(a1+a)(a2―a)/ R1R2] (36)

用已知的量消去未知数,可以得出

U=(λ/2πε0)In[(d2―R12―R2)/ 2R1R2+√[(d2―R12―R2)/ 2R1R2]2―1] (37)

最后得出原来两导线为l一段的电容为

C=Q/U=2πε0l/ In[(d2―R12―R22)/ 2R1R2+√[(d2―R12―R22)/ 2R1R2]2―

1] (38)

单位长度的电容为

c=2πε0/ In[(d2―R12―R22)/ 2R1R2+√[(d2―R12―R22)/ 2R1R2]2―1] (39)

利用反两曲余弦关系式

archx= In[(x+√x2―1)] (40)

对本题的精确解表示作简洁表示

c=2πε0/ arch[(d2―R12―R22)/ 2R1R2] (41)

最后一式可以在一般手册上查到。

3、粒子运动轨迹

一电荷量为q、静质量为m0的粒子从原点出发,在一均匀电场E中运动,E=Eez 沿z轴方向,粒子的初速度沿y轴方向,试证明此粒子的轨迹为

x=(W0/qE)[cosh(qEy/p0c)―1] (42)

式中p0是粒子出发时动量的值,W0是它出发时的能量。

解:

带有电荷量q的粒子在电磁场E和B中的相对论性的运动方程为

dp/dt=q(E+v×B)(43)

式中v是粒子的速度,p是粒子的动量

p=mv=mv0/√1-v2/c2 (44)

本题运动方程的分量表示式为

dpx=qE

dpy=0

dpz=0 (45)

解之,有

px =qEt+C1

py = C2

pz = C3 (46)

代入t=0时初始条件

px(0)=0

py(0)= p0

pz(0)= 0 (47)

定出积分常数后,可知

px=qEt

py= p0

pz= 0 (48)

粒子的能量为

W=mc2

=√p2c2+m02c4

=√(px2+ py2+ pz2)c2+m02c4

=√q2E2 c2t2+W02 (49)

因dx/dt=qEt/m=qEc2t/√q2E2 c2t2+W02 (50)

积分得

x=∫[qEc2t/√q2E2 c2t2+W02 ]dt

= [√q2E2 c2t2+W02 -W02]/qE (51)

又由(48)式得

dy/dt=p0/m=p0c2/√q2E2 c2t2+W02 (52)

积分得

y=∫[p0c2 /√q2E2 c2t2+W02 ]dt

=(p0c /qE)arsh(qEct/W0)(53)

或(qEct/W0)= sinh (qEy/ p0c)(54)

在(51)式和(54)式中消去t,有

x=(W0/qE)[√1+ sinh2(qEy/ p0c)-1 ] (55)

利用恒等变换公式

cosh2x―sinh2x=1 (56)

(55)式可以写成

x=(W0/qE)[cosh2(qEy/ p0c)-1 ] (57)

(57)式是一种悬链线。

图3:匀强电场中粒子的悬链线运动轨迹

讨论:

因双曲余弦泰勒级数展开式是

cosh(x)=1+x2/2!+x4/4!+x6/6!+ (58)

当v/c →0时,保留前2项,得

x=(qE/2m v02)y2 (59)

(59)式是抛物线轨迹。《普通物理学》教材用经典牛顿力学求解,普遍会给有这个结果。这表示,非相对论确是相对论在v/c →0时的极限。或者说,(59)式成立的条件是v/c<<1,这也是牛顿力学的适用范围。

4、非线性方程求解

如著名的KdV(Korteweg-de Vries)方程的形式为

ux+uux+βuxxx=0 (60)

它是非线性的频散方程,其中β是频散系数。用双曲函数展开法求其某些特殊精确解。

解:

考虑其行波解

u(x,t)=φ(ξ)(61)

其中,

ξ=kx-ωt+ξ0 (62)

KdV方程成为

-ωφξ+kφφξ+k3βφξξξ=0 (63)

f=1/(coshξ+r),g=sinhξ/(coshξ+r)(64)

尝试

φ=a0+a1f+a2g (65)

注意存在关系式

df/dξ=-fg

dg/dξ=1-g2-rg

g2=1-2rf+(r2-1)f2 (66)

将(65)式代入(63)式,并在(66)式的帮助下使所得方程中各项只含有f和g的幂次项,且g的幂次项不大于1。合并f和g的同次幂项并取其系数为零,就得到方程(63)对应的非线性代数方程组

-6βk3b1(r2-1)2=0,

-6βk3a1(r2-1)=0,

-2kb1(r2-1)(-6βk2r+ a1)=0,

-k(-6βk2r a1+ a12-b12+ b12r2)=0,

b1(4βk3+ka0-ka0r2+3ka1 r-7βk3 r2+ cr2-c)=0,

ωa1+kb12 r-βk3 a1-ka0a1=0,

-b1(ka1+ωr-βk3r-ka0r)=0 (67)

用计算机代数系统Maple对此超定方程组进行运算,可求得k≠0,ω≠0时的一个非平凡精确解

φ=(ω-βk3)/k+6βk2/(coshξ+1)=0 (68)

其中,k、ω、ξ0为任意常数。

(68)式是孤波解,图4绘出了其函数图像形状(作图时取了β=1/6 k2,ω=βk3)。

图4:KdV方程的孤波解

从以上的讨论中可知,无论是在经典或近代的物理学内容中,还是在正在发展中的物理学内容中,双曲函数起着不可或缺的重要作用。

悬链线(Catenary)

形如y=a cosh(x/a)(a为常数)的函数的图象又叫悬链线,可以由柔软的绳子得到,有点象抛物线,但其实两者差距很大.据说莱布尼兹(Leibniz)于1690年最先解出悬链线方程,惠更斯(Huygens)和伯努利兄弟(Jacob Bernoulli,Johann Bernoulli)随其后.惠更斯在1691年把悬链线命名为catenary.悬链线与抛物线有这样的关系:悬链线是直线上滚动的抛物线的焦点的运动轨迹.悬链线的顶点的渐开线是曳物线(tractrix).这条曳物线的渐进线称为悬链线的准线,悬链线绕准线旋转形成的曲面叫做悬链面.

编辑本段参考文献

1、林旋英、张之翔,《电动力学题解》,科学出版社,1999年第一版。

2、吕克璞、石玉仁等,《物理学报》,50(2001)2074。

扩展阅读:

双曲函数(Hyperbolic Function)包括下列六种函数:

sinh / 双曲正弦:sinh(x) = [e^x - e^(-x)] / 2

cosh / 双曲余弦:cosh(x) = [e^x + e^(-x)] / 2

tanh / 双曲正切:tanh(x) = sinh(x) / cosh(x)=[e^x - e^(-x)] / [e^x + e^(-x)]

coth / 双曲余切:coth(x) = cosh(x) / sinh(x) = [e^x + e^(-x)] / [e^(x) - e^(-x)]

sech / 双曲正割:sech(x) = 1 / cosh(x) = 2 / [e^x + e^(-x)]

csch / 双曲余割:csch(x) = 1 / sinh(x) = 2 / [e^x - e^(-x)]

三角函数公式大全与立方公式

【立方计算公式,不是体积计算公式】 完全立方和公式 (a+b)^3 =(a+b)(a+b)(a+b) = (a^2+2ab+b^2)(a+b)=a^3 + 3(a^2)b + 3a(b^2)+ b^3 完全立方差公式 (a-b)^3 = (a-b)(a-b)(a-b)= (a^2-2ab+b^2)(a-b) = a^3 - 3(a^2)b + 3a(b^2)-b^3 立方和公式: a^3+b^3 = (a+b) (a^2-ab+b^2) 立方差公式: a^3-b^3=(a-b) (a^2+ab+b^2) 3项立方和公式: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac) 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差

三角函数公式大全81739

三角函数公式大全三角函数定义 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系:

公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系: 记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数

名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的范围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项 数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

三角函数公式知识点及应用

三角函数公式 ? 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 基本信息 ?中文名称 三角函数 ?外文名称

相关概念

余切:cotangent(简写cot)['k?u't?nd??nt] 正割:secant(简写sec)['si:k?nt] 余割:cosecant(简写csc)['kau'si:k?nt] 正矢:versine(简写versin)['v?:sain] 余矢:versed cosine(简写vercos)['v?:s?:d][k?usain] 直角三角函数 直角三角函数(∠α是锐角) 三角关系 倒数关系:cotα*tanα=1 商的关系:sinα/cosα=tanα 平方关系:sin2α+cos2α=1 三角规律 三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 三角函数本质: 根据三角函数定义推导公式根据下图,有sinθ=y/ r;cosθ=x/r; tanθ=y/x; cotθ=x/y 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来, 比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

三角函数万能公式及推导过程

三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。接下来分享三角函数万能公式及推导过程。 三角函数万能公式 (1)(sinα)^2+(cosα)^2=1 (2)1+(tanα)^2=(secα)^2 (3)1+(cotα)^2=(cscα)^2 (4)tanA+tanB+tanC=tanAtanBtanC(任意非直角三角形) 三角函数万能公式推导过程 由余弦定理:a^2+b^2-c^2-2abcosC=0 正弦定理:a/sinA=b/sinB=c/sinC=2R 得(sinA)^2+(sinB)^2-(sinC)^2-2sinAsinBcosC=0 转化1-(cosA)^2+1-(cosB)^2-[1-(cosC)^2]-2sinAsinBcosC=0 即(cosA)^2+(cosB)^2-(cosC)^2+2sinAsinBcosC-1=0 又cos(C)=-cos(A+B)=sinAsinB-cosAcosB 得(cosA)^2+(cosB)^2-(cosC)^2+2cosC[cos(C)+cosAcosB]-1=0 (cosA)^2+(cosB)^2+(cosC)^2=1-2cosAcosBcosC 得证(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC 同角三角函数的关系公式 倒数关系公式 ①tanαcotα=1 ②sinαcscα=1 ③cosαsecα=1 商数关系公式 tanα=sinα/cosα

cotα=cosα/sinα平方关系公式 ①sin2α+cos2α=1 ②1+tan2α=sec2α ③1+cot2α=csc2α

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数公式的推导及公式大全

诱导公式 目录2诱导公式 2诱导公式记忆口诀 2同角三角函数基本关系 2同角三角函数关系六角形记忆法 2两角和差公式 2倍角公式 2半角公式 2万能公式 2万能公式推导 2三倍角公式 2三倍角公式推导 2三倍角公式联想记忆 2和差化积公式 2积化和差公式 2和差化积公式推导 诱导公式 ★诱导公式★ 常用的诱导公式有以下几组: 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα 公式五: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα (以上k∈z) 诱导公式记忆口诀 ※规律总结※ 上面这些诱导公式可以概括为: 对于k2π/2±α(k∈z)的个三角函数值,

三角函数公式推导过程

三角函数公式推导过程 万能公式推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得 sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式推导: tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 和差化积公式推导: 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a- b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2

三角函数公式应用及原理解说

三角函数是数学中常见的一类关于 角度的函数。三角函数将 直角三角形 的内角和它的两个边 的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三 角形和圆等几何形状的性质时有重要作用,也是研究 周期性现象的基础数学工具 ⑴。在数学 分析中,三角函数也被定义为 无穷级数 或特定微分方程的解,允许它们的取值扩展到任意实 数值,甚至是复数值。 常见的三角函数包括正弦函数(sin )、余弦函数(cos )和正切函数(tan 或者tg )。在航 海学、测绘学、工程学等其他学科中,还会用到如 余切函数、正割函数、余割函数、正矢 函数、半正矢函数 等其他的三角函数。 不同的三角函数之间的关系可以通过几何直观或者计 算得出,称为三角恒等式。 三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方 面都有广泛的用途。另外,以三角函数为模版,可以定义一类相似的函数, 叫做双曲函数[2] 。 常见的双曲函数也被称为双曲 正弦函数、双曲余弦函数等等。 直角三角形中的定义 右直供二闻张中仅苕期 伙水左画90至力间的录)二角藝的宦义[叩?络匡F 锐甬机可 以滋出一牛直集二角形,庚再其申的一个内芻是和设連个三甬殛孔9旳对匹需也和得世长度 g afliSE 是更迎弓痔辺的毗面冋百?: &抽余弦是澤边与斜辺的乂道;| ft H 制正切灵对迥与糾盅柏"■宜 伽 e ¥ b &的余切是嘟边2舛边的比■包co tfi = - q &闌正甥足斜辺弓押辺的比朗 ; &的余割是斜边与对边的比值!宀诃二2 a 标系中的奩义【姗< iftH 吟F 】是平面直角H 标菇咕的一牛知声是欖轴正向程时计疑術I 励 方向驱aeiJS, F = C +扌A 礎序 順点涮柜离?刚砒林三 JB 曲隸定 义 为【口 12#可?帅7血划腹圧駆定三三角血也雪主意知:也LL 却宦汩頤左定>朮 自盍買的时僕成立-比如逋当■ = &的时僂.世和二自漲由盍乩 遞说朗对丹幢 正花;B 口 0—1.正切; -■耀h

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

三角函数定义及其三角函数公式大全

三角函数定义及其三角函数公式汇总 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。 2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B): 3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。 4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值 sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A 邻边 A C A 90 B 90 ∠ - ? = ∠ ? = ∠ + ∠ 得 由B A

6、正弦、余弦的增减性: 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。 7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。 1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。依据: ①边的关系:2 22c b a =+;②角的关系:A+B=90°;③边角关系:三角函数的定义。(注 意:尽量避免使用中间数据和除法) 2、应用举例: (1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。

仰角铅垂线 水平线 视线 视线俯角 (2)坡面的铅直高度h 和水平宽度l 的比叫做坡度( 坡比)。用字母i 表示,即h i l =。坡度一般写成1:m 的形式,如1:5i =等。 把坡面与水平面的夹角记作α(叫做坡角),那么tan h i l α= =。 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。 4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向), 南偏西60°(西南方向), 北偏西60°(西北方向)。 sin (α+β)=sinαcosβ+cosαsinβ sin (α-β)=sinαcosβ-cosαsinβ cos (α+β)=cosαcosβ-s inαsinβ cos (α-β)=cosαcosβ+sinαsinβ 三角函数公式汇总1 :i h l =h l α

高考冲刺 三角函数公式及应用(提高)

高考冲刺 三角函数公式及应用 编稿:孙永钊 审稿:张林娟 【高考展望】 高考对三角恒等式部分的考查仍会是中低档题,无论是小题还是大题中出现都是较容易的.主要有三种可能: (1)以小题形式直接考查:利用两角和与差以及二倍角公式求值、化简; (2)以小题形式与三角函数、向量、解三角形等知识相综合考查两角和与差以及二倍角等公式; (3)以解答题形式与三角函数、向量、解三角形、函数等知识相综合考查,对三角恒等变换的综合应用也可能与解三角形一起用于分析解决实际问题的应用问题,主要考查综合运用数学知识分析问题和解决问题的能力 复习时,要注重对问题中角、函数名及其整体结构的分析,提高公式选择的恰当性,还要重视相关的思想方法,如数形结合思想、特值法、构造法、等价转换法等的总结和应用,这有利于缩短运算程序,提高解题效率 【知识升华】 1.三角函数的化简与求值、证明的难点在于众多三角公式的灵活运用和解题突破口的合理选择,要认真分析所给式子的整体结构,分析各个三角函数及角的相互关系是灵活选用公式的基础,是恰当寻找解题思维起点的关键所在 (1)化简,要求使三角函数式成为最简:项数尽量少,名称尽量少,次数尽量底,分母尽量不含三角函数,根号内尽量不含三角函数,能求值的求出值来; (2)求值,要注意象限角的范围、三角函数值的符号之间联系与影响,较难的问题需要根据上三角函数值进一步缩小角的范围 (3)证明是利用恒等变换公式将等式的左边变同于右边,或右边变同于,或都将左右进行变换使其左右相等 2.对于三角变换公式务必要知道其推导思路,从而清晰地“看出”它们之间的联系,它们的变化形式.如 tan()(1tan tan )tan tan αβαβαβ+-=+, 2 21cos 1cos cos ,sin 2 222 α ααα +-= = 等.从而可做到:正用、逆用、变形用自如使用各公式;三角变换公式除用来化简三角函数式外,还为研究三角函数图象及性质做准备。 3.三角函数恒等变形的基本策。 ①常值代换:特别是用“1”的代换,如1=cos 2 θ+sin 2 θ=tanx 2cotx=tan45°等。 ②项的分拆与角的配凑。如分拆项:222222sin 2cos (sin cos )cos 1cos x x x x x x +=++=+;

三角函数公式总结与推导--很全很实用

三角函数公式总结与推导 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: { } Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180 | ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211||22 s lr r α==?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 r y =αsin ; r x =αcos ; x y =αtan ; y x =αcot ; x r =αsec ;. y r =αcsc . 5、三角函数在各象限的符号:(一全二正弦,三切四余弦) 正切、余切 余弦、正割 正弦、余割 SIN \COS 1、2、3、4表示第一、二、三、四象限一半所在区域

三角函数公式大全

三角函数公式大全 三角函数定义 锐角三角函数任意角三角函数 图形 直 任 角三角形 意角三角函数 正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 函数关系 倒数关系: 商数关系: 平方关系: . 诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等:

公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限: 其中的奇偶是指的奇偶倍数,变余不变试制三角函数的名称变化若变,则是正弦变余弦,正切变余切------------------奇变偶不变 根据教的围以及三角函数在哪个象限的争锋,来判断三角函数的符号-------------符号看象限 记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终 边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数 值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得 到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终 边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的 三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负 值.这样,就得到了诱导公式四. 诱导公式的应用:运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角 的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要项数要 最少,次数要最低,函数名最少,分母能最简,易求值最好。

三角函数公式总结与推导(全)

三角函数公式总结与推导(全) 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: { } Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{} Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°=180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:211 ||22 s lr r α= =?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 r y =αsin ; r x = α cos ; x y =αtan ; y x =αcot ; x r =αsec ;. y r =αcsc . 5、三角函数在各象限的符号:(一全二正弦,三切四余弦) 正切、余切 余弦、正割 正弦、余割 SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域

(完整版)高中高考数学三角函数公式汇总.doc

高中数学三角函数公式汇总(正版)一、任意角的三角函数 在角正弦:正切:正割:的终边上任取一点 P(x, y) ,记: 2 2 rx y ,.. y x sin 余弦: cos r r y x tan 余切: cot x y r r sec 余割: csc x y 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向线段 MP 、 OM 、 AT 分别叫做角的正弦线、余弦线、正.. 切线。 二、同角三角函数的基本关系式 倒数关系: sin csc 1 , cos sec 1, tan cot 1 。 商数关系: tan sin , cot cos 。cos sin 平方关系: sin 2 cos2 1,1 tan 2 sec2 ,1 cot 2 csc2 。三、诱导公式 ⑴2k( k Z ) 、、、、2的三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符号。(口诀:函数名 .. 不变,符号看象限) ⑵、、3 、 3 的三角函数值,等于的异名函数值, 222 2 前面加上一个把看成锐角时原函数值的符号。(口诀:函数名改变,符号看 .. 象限)

四、和角公式和差角公式 sin( ) sin cos cos sin sin( ) sin cos cos sin cos( ) cos cos sin sin cos( ) cos cos sin sin tan( ) tan tan 1 tan tan tan( ) tan tan 1 tan tan 五、二倍角公式 sin 22sin cos cos2cos2sin 22cos2 1 1 2sin2( ) 2tan tan2 1 tan2 二倍角的余弦公式( ) 有以下常用变形:(规律:降幂扩角,升幂缩角) 1 cos 2 2cos2 1 cos2 2 sin 2 1 sin 2 (sin cos )2 1 sin 2 (sin cos )2 2 1 cos2 sin 2 1 cos2 ,tan 1 cos2 sin 2 cos 2 , 2 sin 2 。 1 cos2 六、万能公式(可以理解为二倍角公式的另一种形式) 2 tan 1 tan 2 , tan 2 2 tan 。 sin 2 2 , cos2 tan2 1 tan 2 1 tan 1 万能公式告诉我们,单角的三角函数都可以用半角的正切..来表示。 七、和差化积公式 sin sin 2 sin cos⑴ 2 2

三角函数公式大全及推导过程

三角函数公式大全及推导过程 一、任意角的三角函数 在角α的终边上任取.. 一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x =αcos 正切:x y =αtan 二、同角三角函数的基本关系式 商数关系:α ααcos sin tan =,平方关系:1cos sin 22=+αα,221cos 1tan αα=+ 三、诱导公式 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinα cos (2kπ+α)= cosα tan (2kπ+α)= tanα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin (π+α)= -sinα cos (π+α)= -cosα tan (π+α)= tanα 公式三: 任意角α与 -α的三角函数值之间的关系: sin (-α)= -sinα cos (-α)= cosα tan (-α)= -tanα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin (π-α)= sinα cos (π-α)= -cosα tan (π-α)= -tanα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin (2π-α)= -sinα cos (2π-α)= cosα tan (2π-α)= -tanα 公式六: 2 π±α及23π±α与α的三角函数值之间的关系: sin (2π-α)= cosα cos (2 π-α)= sinα sin (2π+α)= cosα cos (2 π+α)= -sinα sin (23π-α)= -cosα cos (2 3π-α)= -sinα sin (23π+α)= -cosα cos (2 3π+α)= sinα 三、两角和差公式 βαβαβαsin cos cos sin )sin(?+?=+ βαβαβαsin cos cos sin )sin(?-?=-

高中三角函数公式大全

高中三角函数公式大全 2009年07月12日 星期日 19:27 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2 A )=2cos 1A - cos(2 A )=2cos 1A + tan(2 A )=A A cos 1cos 1+- cot( 2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2 b a -

sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2 b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -2 1[cos(a+b)-cos(a-b)] cosacosb = 2 1[cos(a+b)+cos(a-b)] sinacosb = 2 1[sin(a+b)+sin(a-b)] cosasinb = 2 1[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2 π-a) = cosa cos(2 π-a) = sina sin(2 π+a) = cosa cos(2 π+a) = -sina sin(π-a) = sina cos(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA =a a cos sin 万能公式 sina=2 )2 (tan 12tan 2a a + cosa=2 2 )2(tan 1)2(tan 1a a +-

三角函数公式推导和应用大全

三角函数公式推导和应用大全 三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数看似很多、很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在中文名 三角函数公式 外文名 Formulas of trigonometric functions 应用学科 数学、物理、地理、天文等 适用领域范围 几何,代数变换,数学、物理、地理、天文等 适用领域范围 高考复习 目录 1 定义式 2 函数关系 3 诱导公式 4 基本公式 ?和差角公式 ?和差化积 ?积化和差 ?倍角公式 ?半角公式 ?万能公式 ?辅助角公式 5 三角形定理 ?正弦定理 ?余弦定理 三角函数公式定义式 编辑 锐角三角函数任意角三角函数 图形 直角三角形

任意角三角函数正弦(sin) 余弦(cos) 正切(tan 或tg) 余切(cot 或ctg) 正割(sec) 余割(csc) 表格参考资料来源:现代汉语词典. 三角函数公式函数关系 编辑 倒数关系: ; ; 商数关系: ; . 平方关系: ; ; . 三角函数公式诱导公式 编辑 公式一:设 为任意角,终边相同的角的同一三角函数的值相等:

公式二:设 为任意角, 与 的三角函数值之间的关系: 公式三:任意角 与 的三角函数值之间的关系: 公式四: 与 的三角函数值之间的关系: 公式五: 与 的三角函数值之间的关系:

相关主题