搜档网
当前位置:搜档网 › 51红外循迹小车报告(舵机版)最终版

51红外循迹小车报告(舵机版)最终版

51红外循迹小车报告(舵机版)最终版
51红外循迹小车报告(舵机版)最终版

简易教程

前言

往届全国大学生电子设计竞赛曾多次出现了集光、机、电于一体的简易智能小车题目,此次,笔者在通过多次论证、比较与实验之后,制作出了简易小车的寻迹电路系统。

整个系统基于普通玩具小车的机械结构,利用小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。系统分为检测、控制、驱动三个模块。首先利用光电对接收管和路面信号进行检测,然后经过比较器处理,对软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。

智能小车能在画有黑线的白纸“路面”上行驶,这是由于黑线和白纸对光线的反射系数不同,小车可根据接收到的反射光的强弱来判断“道路”---黑线,最终实现简单的循迹运动。

个人水平有限,有错误不足之处,还望各位前辈同学多多包含,指出修正,完善。谢谢!

李学云王维

2016年7月27号

目录

前言 (1)

第一部分硬件设计 (1)

1.1 车模选择 (1)

1.2传感器选择 (1)

1.3 控制模块选择 (2)

第二部分软件设计及调试 (3)

2.1 开发环境 (3)

2.2总体框架 (3)

2.3 舵机程序设计与调试 (3)

2.3.1 程序设计 (3)

2.3.2 调试 (3)

2.3.3 程序代码 (4)

2.4 传感器调试 (5)

2.4.1 传感器好坏的检测 (5)

2.4.2 单片机能否识别信号并输出信号 (5)

2.5 综合调试 (7)

附录1 (9)

第一篇舵机(舵机及转向控制原理) (9)

1.1概述 (9)

1.2舵机的组成 (10)

1.3舵机工作原理 (11)

1.4舵机使用中应注意的事项 (12)

1.5如何利用程序实现转向 (12)

1.6舵机测试程序 (13)

附录2 (14)

第二篇光电红外传感器 (14)

2.1传感器的原理 (14)

2.2红外光电传感器ST188 结构图 (15)

2.3传感器的选择 (15)

2.4传感器的安装 (16)

2.5使用方法 (16)

2.7红外传感器输入输出调试程序 (17)

一、课题任务及要求

用360°连续舵机设计一个自动循迹小车,可以自动行驶并检测到地面黑色轨迹,沿着黑色轨迹行驶.

二、小车行驶基本原理

小车在白色地板上循黑线行走,由于黑线和白色地板对光线的反射系数不同,可以根据接收到的反射光的强弱来判断“道路”。通常采取的方法是红外探测法。红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。

三、总体设计方案

传感器

51单片机

(查询输入)

舵机

通过51单片机,在“while(1){}”里面不断扫描外部输入I/O口,若能读到高电平,则输出相应的舵机控制程序。(要求:51 I/O口TTL门输入电压3.5V以上为高电平,1.2V以下为低电平。读取引脚时,先置1再读取).

第一部分硬件设计

1.1 车模选择

本教程选择带有两舵机和一万向轮的车模。舵机型号:SM-S4303R(360°旋转舵机).其原理及详细操作说明,见附录1.车模实物如图1.1.

图1.1

1.2传感器选择

本教程选择ST188 红外对管光电传感器,使用左、前、右分布的三个传感器(前伸为了检测十字路口)。传感器应用电路图如图1.2。光电传感器原理详情,请看附录2->传感器篇。

图1.2

应用原理:红外探测法

红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。

1.3 控制模块选择

因为循迹小车,只需要做简单的输入输出操作,普通51单片机都能实现其功能.本教程选用是51单片机型号为STC89C52RC的最小系统板(有引脚引出的)。本教程里的程序理论上具有51内核的单片机都可使用。最小系统原理图,如图1.3.

图1.3 51最小系统原理图

1.4 供电扩展版

为了控制的稳定,舵机直接从电源VCC串个二极管供电。这里采用简单的电源扩展,将5V电源引入扩展板,再引出供给电机和控制模块。(这里最好把二极管接上,消除电机感性对单片机的影响)

注意:当舵机与控制板供电电源不同时,两边必须共地,数字信号才能同步。否则控制信号会发生混乱,导致无法控制。

第二部分软件设计及调试

2.1 开发环境

Keil C51 v9.54a、stc-isp-15xx-v6.85H、USB-TLL 51下载器(烧录程序用)2.2总体框架

传感器

51单片机

(查询输入)

舵机

2.3 舵机程序设计与调试

2.3.1 程序设计

通过了解,知道89S51单片机自身没有PWM接口,故使用定时器模拟产生PWM波,进行舵机速度调试。使用51单片机的定时器T0工作在方式1,赋予初值“TH0=(65535-100)/256; TL0=(65535-100)%256;”定时0.1ms(晶振频率12MHz),用count计数200,产生50HZ的脉冲频率(舵机最适频率)。设全局变量LS、RS来控制占空比,从P1.0 P1.1输出PWM信号,两口外接舵机。

附:1.脉冲产生原理:周期20ms,定时1.2ms为高电平,其他时间为低电平.即可产生占空比为6%(一周期内高电平占比)的脉冲信号.

2.pwm控制舵机原理,可理解为一个高电平舵机一动,给的多动的快,

但有范围。

2.3.2 调试

调试目的:得到正反转占空比范围。

我的调试数据为: 正转范围0.5%~6%(即:LS=1,LS=12)

反转范围6.5%以上(即:LS>=13)

2.3.3 程序代码

/******************************************************

51单片机舵机调试程序

调试参数: 1.定时器定时0.1ms,计数200,定时20ms(50HZ)

. (360°左舵机为例): 频率50HZ

LS=12 (即占空比%6),电机正转最慢

*******************RS=13 (即占空比%6.5),电机正转最慢****************/

/*提示:1.调试舵机时,最好单独供电(控制信号与电源供电分离)

.2.控制信号与供电电源必须共地。*/

/*****************作者:李学云2016.7.23****************/(......排版好乱)

#include "reg52.h"

#define uchar unsigned char

uchar count=0,LS=2,RS=15; //count: 定时计数LS:左路舵机脉宽调试

sbit pwm_L=P1^0; //左路电机输出

sbit pwm_R=P1^1;

void init()

{

pwm_L=0; //占空比控制变量初始化

pwm_R=0;

//定时器,初始化,定时器T0工作方式1

TMOD=0x01;

TH0=(65535-100)/256; //基准定时时间为0.1ms

TL0=(65535-100)%256;

EA=1;

ET0=1;

TR0=1;

}

void main()

{

init();

while(1)

{ }

}

void timer0() interrupt 1 //定时器T0中断服务函数, 1 为T0中断号,3 为T1中断号{

TH0=(65535-100)/256;

TL0=(65535-100)%256;

count++;

if(count<=LS) {pwm_L=1;} else {pwm_L=0;}

if(count<=RS) {pwm_R=1;} else {pwm_R=0;}

count=count%200; //定时20ms 频率50hz

}

2.4 传感器调试

2.4.1 传感器好坏的检测

给传感器通上电,使传感器高度在0.3mm-10mm,并来回的在黑白线间移动,同时用万用表检测,看在黑线时,电压输出是否大于 3.5V,白线时电压是否低于1.2V。

2.4.2 单片机能否识别信号并输出信号

三路传感器分别接到单片机P1.5 P1.6 P1.7口,P0口接8个LED灯。下好程序,接好线,通电并移动传感器在黑白之间(高度0.5mm左右),观察P0.5 P06 P0.7口LED是否有闪烁,有则单片机能识别信号并输出信号。

/******三路红外光电传感器测试程序*********/

/*****P0口接上一排LED灯做指示用*********/

/****现象:单片机能识别到传感器信号,则对应P0.5 P06 P0.7口LED闪烁,否则只有P0.1 P02 P0.3闪烁。***********/

#include "reg52.h"

#define uchar unsigned char

uchar count=0,LS=0,RS=0;

sbit pwm_L=P1^0; //左路电机输出

sbit pwm_R=P1^1;

sbit k1=P1^5;

sbit k2=P1^6;

sbit k3=P1^7;

sbit led1=P0^1;

sbit led2=P0^2;

sbit led3=P0^3;

sbit led4=P0^5;

sbit led5=P0^6;

sbit led6=P0^7;

void delay(uchar k)

{

uchar i;

for(;k>0;k--)

for(i=0;i<=128;i++);

void init()

{

pwm_L=0;

pwm_R=0;

P1=0xff;

TMOD=0x01;

TH0=(65535-100)/256;

TL0=(65535-100)%256;

EA=1;

ET0=1;

TR0=1;

}

void main()

{

init();

while(1)

{

if(k1==1) {LS=0; RS=5;led1=0;delay(100);led1=1;} if(k2==1) {LS=16;RS=0;led2=0;delay(100);led2=1;} if(k3==1) {LS=0; RS=5;led3=0;delay(100);led3=1;}

if(k1==0) {LS=16;RS=0;led4=0;delay(100);led6=1;} if(k2==0) {LS=0; RS=5;led5=0;delay(100);led5=1;} if(k3==0) {LS=16;RS=0;led6=0;delay(100);led6=1;} }

}

void timer0() interrupt 1

{

TH0=(65535-100)/256;

TL0=(65535-100)%256;

count++;

if(count<=LS) {pwm_L=1;} else {pwm_L=0;}

if(count<=RS) {pwm_R=1;} else {pwm_R=0;}

count=count%200;

}

第三部分综合调试

3.1综合调试

3.1.1接线

3.1.2 调试程序

接线:P2.0 P2.1分别接舵机pwm输入线。P1.5 P1.6 P1.7接红外传感器三路输入。此程序只是简单的测试程序。

#include "reg52.h"

#define uchar unsigned char

uchar count=0,LS=0,RS=0;

sbit pwm_L=P2^0;

sbit pwm_R=P2^1;

sbit k1=P1^5;

sbit k2=P1^6;

sbit k3=P1^7;

uchar L2,M3,R4;

void init()

{

pwm_L=0;

pwm_R=0;

P1=0xff;

TMOD=0x01;

TH0=(65535-100)/256;

TL0=(65535-100)%256;

EA=1;

ET0=1;

TR0=1;

}

void Straight()

{

LS=1,RS=25;

}

void line_left()

{

LS=11;

RS=25;

}

void line_right()

{

LS=1;

RS=12;

}

void detect_infrared() //循迹,红外检测

{

if(k1==1){line_right();}

else

if(k3==1){line_left();}

else

Straight();

}

void main()

{

init();

while(1)

{

detect_infrared();

}

}

void timer0() interrupt 1

{

TH0=(65535-100)/256;

TL0=(65535-100)%256;

count++;

if(count<=LS) {pwm_L=1;} else {pwm_L=0;} if(count<=RS) {pwm_R=1;} else {pwm_R=0;} count=count%200;

}

附录1

第一篇舵机(舵机及转向控制原理)

1.1概述

什么是舵机?舵机也叫伺服电机,它最早用于船舶转向,通过程序可以连续控制转动的角度,因而被广泛应用。例如,智能小车的弯道行驶以及机器人的各类关节运动。

图1 舵机用于机器人图2 舵机用于智能小车中舵机是小车转向的控制机构,它体积小、力矩大、外部机械设计简单、稳定性高,不论在硬件设计还是在软件设计中,都是小车控制单元的重要组成部分,如图3为舵机的外形图。

图3 舵机外形图

1.2舵机的组成

一般来讲,舵机主要由舵盘、减速齿轮组、位置反馈电位计、直流电机、控制电路等几个部分组成,如图4、图5所示。

图4 舵机组成

图5 舵机的组成示意图

舵机有三条输入线,如图6,红色的是电源线,黑色的为地线,这两根线是舵机最基本的能源保证,承担着电机的转动消耗。此外,还有一条控制信号线,

Futaba的一般为白色,JR的一般为桔黄色。另外要注意一点,SANWA的某些型号的电源线并不是在中间,所以在使用之前,我们一定要先辨认清楚:红为电,黑为地,其他是信号。

图6

1.3舵机工作原理

电机与齿轮组相连。在舵机工作时,控制电路板通过接收来自信号线的控制信号,来控制电机转动,进而控制齿轮的转动,齿轮减速后将传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机转动的方向和速度,从而达到目标停止。其工作流程为:控制信号→控制电路板→电机转动→齿轮组减速→舵盘转动→位置反馈电位计→控制电路板反馈。

舵机的控制信号周期一般为20MS的脉宽调制(PWM)信号,其中脉冲宽度从0.5-2.5MS,相对应的舵盘位置为0-180度,呈线性变化。也就是说,给它提供一定的脉宽,它的输出轴就会保持一定对应角度上,无论外界转矩怎么改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应位置上。如图7所求。舵机内部有一个基准电路,产生周期为20MS,宽度1.5MS的基准信号,有一个比出较器,将外加信号与基准信号相比较,判断出方向和大小,从而生产电机的转动信号。由此可见,舵机是一种位置伺服驱动器,转动范围不能超过180度,适用于那些需要不断变化并可以保持的驱动器中,比如说机器人的关节、飞机的舵面等。(在我们平时所用的电源中,大致分为两种规格,一4.8V,一是6.0V,它们分别对应不同的转矩标准,即输出力矩不同,6.0V对应的要大一些,具体看应用条件)

图7

1.4舵机使用中应注意的事项

1.常用舵机的额定工作电压一般为6V,我们可以使用LM1117等芯片来提供电压。如果直接使用5V的供电来简化硬件上的设计,影响也不会很大,但最好将舵机与单片机分开供电,否则很有可能会造成单片机无法正常工作。

2.一般来说,想要控制舵机,我们要将信号线连接至单片机的任意引脚,还需通过51单片机定时器模块的PWM才能进行控制。但是如果是像飞思卡尔之类的芯片,我们将信号线连到专用的PWM输出引脚上即可,因为飞思卡尔内部自带有PWM模块,可以直接输出PWM信号。

1.5如何利用程序实现转向

在舵机信号端输入一个50HZ的方波信号,然后控制信号周期的高电平脉冲持续的时间,进而就可以控制舵机的速度、正反转方向及是否停转。一个高电平脉冲持续的时间对应一个速度。高电平为1-1.5毫秒时,舵机正转(1毫秒时正转速度最快,越接近1.5毫秒越慢,1.5毫秒时舵机停转),高电平为1.5毫秒-2毫秒时舵机反转(1.5毫秒时舵机停转,越接近2毫秒反转的速度越快,2毫秒时以最快速度反转)

而对于不同类型的舵机,它们的特点也各不相同:

1.180度的舵机,需脉宽1500-2500us,可以达到165-180度,有略微误差。

2.300度可控的类型,舵机机械角度360度,可控角度270-300度。

3.360度连续旋转的舵机,是PWM控制它的旋转速度和旋转方向,

500-1500us的PWM是控制它正转,值越小,旋转速度越大;

1500-2500us的PWM是它反转,值越大,旋转速度越大。

1500us的PWM是控制它停止。(由于每一个舵机的中位可能会不一样,所以有些舵机可能是1520us的PWM,舵机才会停下来,所以需要自己实际测试出舵机的中位)只能连续旋转,不能定位.

1.6舵机测试程序

#include "reg52.h"

#define uchar unsigned char

uchar count=0,LS=12,RS=1; //LS:

sbit pwm_L=P2^0; //左右舵机

sbit pwm_R=P2^1;

void init()

{

pwm_L=0;

pwm_R=0;

TMOD=0x01;

TH0=(65535-50)/256;

TL0=(65535-50)%256;

EA=1;

ET0=1;

TR0=1;

}

main()

{

init();

while(1)

{

}

}

void timer0() interrupt 1

{

TH0=(65535-50)/256;

TL0=(65535-50)%256; //

count++;

附录2

第二篇光电红外传感器

红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点进行探测。在行驶过程中,小车不断地向地面发射红外光,当红外光遇到白色地面发生漫射,反射光被装在小车上的接收管接收;如果遇到黑线,则红外光被吸收,小车上接收不到信号。

2.1传感器的原理

R1限制发射二极管的电流,发射管的电流和发射功率成正比,但受其极限输入正向电流50mA的影响,用R1=150的电阻作为限流电阻,Vcc=5V作为电源电压,测试发现发射功率完全能满足检测需要;可变电阻R2可限制接收电路的电流,一方面保护接收红外管;另一方面可调节检测电路的灵敏度。因为传感器输出端得到的是模拟电压信号,所以在输出端增加了比较器,先将ST168输出电压与2.5V进行比较,再送给单片机处理和控制。

ce端电阻比较灵活,它将用来输出高低电平,在此,我们可以接一个5K的电阻。(电路图中的滑动变阻器只是为了测试方便,调整阈值电压,可以不用)当没有物体反射红外线时,ce之间无电流流过,输出电压为电源电压,高电平。当有物体反射红外线时,be饱和导通,ce导通,输出端相当于接地,输出

电压为低电平。(详见附件ST188.pdf)

ST188.p d f

2.2红外光电传感器ST188 结构图

2.3传感器的选择

在红外探测法中,传感器的选择是非常重要的。市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射和接收器件,其内部结构和外接电路均较为简单。

2.4传感器的安装

ST168采用高发射功率红外光、电二极管和高灵敏光电晶体管组成,采用非接触式检测方式。ST168的检测距离很小,一般为8~15毫米,因为8毫米以下是它的检测盲区,而大于15毫米则很容易受干扰。笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。

2.5使用方法

根据光电特性,选取发射管的静态电流为20mA。典型的压降为0.01.25v,如果供电电压为5V,那么,此时在发射管上需要串联电阻,电阻大小为R=(5-1.25)/0.02;即:R=187.5欧姆。取标称电阻,R=200,那么此时的电流小于20mA,但是不影响结果。

2.6如何提高循迹的可靠性

传感器的安装,正确选择检测方法和传感器件是决定循迹效果的重要因素,而正确的器件安装方法也是循迹电路好坏的一个重要因素。从简单、方便、可靠等角度出发,我门可以同时在底盘装设4个红外探测头,进行两级方向纠正控制,这将大大提高其循迹的可靠性。

循迹传感器一般在一条直线上。其中X1与Y1为第一级方向控制传感器,X2与Y2为第二级方向控制传感器,并且黑线同一边的两个传感器之间的宽度不

智能循迹小车实验报告18447

简单电子系统设计报告 ---------智能循迹小车 学号201009130102 年级10 学院理学院 专业电子信息科学与技术姓名马洪岳 指导教师刘怀强

摘要 本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。采用与白色地面色差很大的黑色路线引导小车按照既定路线前进,在意外偏离引导线的情况下自动回位。 本设计采用单片机STC89C51作为小车检测、控制、时间显示核心,以实验室给定的车架为车体,两直流机为主驱动,附加相应的电源电路下载电路,显示电路构成整体电路。自动寻迹的功能采用红外传感器,通过检测高低电平将信号送给单片机,由单片机通过控制驱动芯片L298N驱动电动小车的电机,实现小车的动作。 关键词:STC89C51单片机;L298N;红外传感器;寻迹 一、设计目的 通过设计进一步掌握51单片机的应用,特别是在控制系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 二、设计要求 该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N发出控制命令,控制电机的工作状态以实现对小车姿态的控制,绕跑到行驶一周。 三、软硬件设计 硬件电路的设计 1、最小系统: 小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。主要包括:时钟电路、电源电路、复位电路。其中各个部分的功能如下: (1)、电源电路:给单片机提供5V电源。 (2)、复位电路:在电压达到正常值时给单片机一个复位信号。

图1 单片机最小系统原理图 2、电源电路设计: 模型车通过自身系统,采集赛道信息,获取自身速度信息,加以处理,由芯片给出指令控制其前进转向等动作,各部分都需要由电路支持,电源管理尤为重要。在本设计中,51单片机使用5V电源,电机及舵机使用5V电源。考虑到电源为电池组,额定电压为4.5V,实际充满电后电压则为4-4.5V,所以单片机及传感器模块采用最小系统模块稳压后的5V电源供电,舵机及电机直接由电池供电。 3、传感器电路: 光电寻线方案一般由多对红外收发管组成,通过检测接收到的反射光强,判断黑白线。原理图由红外对管和电压比较器两部分组成,红外对管输出的模拟电压通过电压比较器转换成数字电平输出到单片机。

基于51单片机智能小车循迹程序

#include #define uchar unsigned char #define uint unsigned int ////电机驱动模块位定义//// sbit M11=P0^0; //左轮 sbit M12=P0^1; sbit M23=P0^2; //右轮 sbit M24=P0^3; sbit ENA=P0^4; //左轮使能PWM输入改变dj1数值控制转速sbit ENB=P0^5; //右轮使能PWM输入改变dj2数值控制转速////占空比变量定义//// unsigned char dj1=0; unsigned char dj2=0; uchar t=0; ////红外对管位定义//// sbit HW1=P1^0; //左前方 sbit HW2=P1^1; //右前方 sbit HW3=P1^2; //左后方 sbit HW4=P1^3; //右后方 ////小车前进//// void qianjin() { M11=1; //左轮 M12=0; // M23=1; //右轮 M24=0; // dj1=50; dj2=50; } ////向左微调//// void turnleft2() { M11=1; M12=0; M23=1; M24=0; dj1=7; //左轮 dj2=50; //右轮 } ////向右微调//// void turnright2() { M11=1; M12=0;

M23=1; M24=0; dj1=50; dj2=7; } ////向左大调//// void left() { M11=0; M12=1; M23=1; M24=0; dj1=7; dj2=80; } ////向右大调//// void right() { M11=1; M12=0; M23=0; M24=1; dj1=80; dj2=7; } ////循迹动作子函数//// void xj() { if(HW1==0&&HW2==0&&HW3==0&&HW4==0) //前进逻辑 { qianjin(); } if(HW1==1&&HW2==0&&HW3==0&&HW4==0) //左右微调 { turnleft2(); } if(HW1==0&&HW2==1&&HW3==0&&HW4==0) { turnright2(); } if(HW1==1&&HW2==0&&HW3==1&&HW4==0) //左右大调 { left(); }

智能循迹小车___设计报告

智能循迹小车___设计报告

智能循迹小车设计 专业:自动化 班级:自动化132 姓名:罗植升莫柏源梁 桂宾 指导老师: 2014年4月——2010年6月

本课题是基于STC89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 STC89C52单片机为系统控制处理 器; 采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

循迹小车课程设计报告

南京工程学院 工程基础实验与训练中心 本科课程设计说明书(论文)题目:自动循迹小车 专业: 班级: 学号: 学生姓名: 指导教师: 起迄日期:2012.6.11~2012.7.6 设计地点:工程中心B208

目录 摘要: (4) Abstract (5) 一、系统方案 (6) 1、课设要求: (6) 1.1、完成基本设计功能: (6) 1.2、发挥部分 (6) 2、总体设计 (6) 3、模块方案比较与论证 (7) 3.1、电源模块: (7) 3.2、电机驱动模块: (7) 3.3、传感器模块: (9) 3.4、显示模块: (10) 3.5、测速模块 (12) 二、循迹小车硬件设计 (13) 1、机械设计 (13) 2、小车各模块分布 (13) 3、小车传感器位置排布 (13) 三、循迹小车软件设计 (14) 1、循迹小车主函数流程图 (14) 2、计算路程模块流程图 (14) 3、循迹模块流程图 (16)

四、程序 (18) 五、开发总结与心得 (18) 1、总体方案论证和确立 (18) 2、各分立模块的制作调试 (18) 3、总车的装配调试 (19) 4、总结与展望 (19) 六、参考文献 (19)

课程设计说明书(论文)中文摘要 摘要: 硬件设计:自动循迹小车控制器采用STC89C52单片机,采用LCD1602液晶显示屏显示当前小车速度和里程等数据;电机正反转采用L298N集成电路模块来驱动,也可以直接采用三极管组成桥式驱动电路来控制。里程检测传感器采用霍尔传感器或光电发射接收对管。跑道标志线采用光电发射接收对管检测并使用软件整形消抖措施,电源采用4节7号充电电池供电(在条件允许情况下单片机与电机可使用独立稳压电源供电)。 软件设计:主程序主要任务一方面扫描光电发射接收对管检测到的信号,然后判断小车转向;另一方面主程序还需要完成速度里程显示任务。采用外部中断0来实现小车速度检测,通过光电接收对管或霍尔传感器检测小车转速,小车每转动一周将会使传感器发出一中断申请信号;采用外部中断1来实现金属块检测,传感器选用接近开关,检测到金属后,接近开关将申请中断。 关键词:单片机液晶显示桥式驱动电路主程序

基于AT89S51单片机的智能超声波避障小车

基于 AT89S51 单片机的智能 超声波避障小车
姓名: 班级: 学号:
钟洋 08 电子二班 200810330219 张儒
指导老师:

目录
摘要...........................................3 一、总体方案概述.......................................3 二、总体电路原理图....................................3 三、各模块功能介绍.................................4 (一) 、超声波测距模块................................4 (二) 、数码管显示模块................................4 (三) 、步进电机控制模块..............................6 (四) 、语音提示模块..................................7 (五) 、速度自控模块..................................8 (六) 、信号提示模块..................................8 (七) 、单片机控制模块...............................8 四、系统软件设计..................................9 五、元件清单.....................................10 六、应用前景.....................................10 六、参考文献.....................................11
2

循迹小车原理

寻迹小车 在历届全国大学生电子设计竞赛中多次出现了集光、机、电于一体的简易智能小车题目。笔者通过论证、比较、实验之后,制作出了简易小车的寻迹电路系统。整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行。 总体方案 整个电路系统分为检测、控制、驱动三个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 传感检测单元 小车循迹原理 该智能小车在画有黑线的白纸“路面”上行驶,由于黑线与白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。笔者在该模块中利用了简单、应用也比较普遍的检测方法——红外探测法。 红外探测法,即利用红外线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。 传感器的选择 市场上用于红外探测法的器件较多,可以利用反射式传感器外接简单电路自制探头,也可以使用结构简单、工作性能可靠的集成式红外探头。ST系列集成红外探头价格便宜、体积小、使用方便、性能可靠、用途广泛,所以该系统中最终选择了ST168反射传感器作为红外光的发射与接收器件,其内部结构与外接电路均较为简单,如图2所示: 图2 ST168检测电路 ST168采用高发射功率红外光、电二极管与高灵敏光电晶体管组成,采用非接触式检测方式。ST168的检测距离很小,一般为8~15毫米,因为8毫米以下就是它的检测盲区,而大于15毫米则很容易受干扰。笔者经过多次测试、比较,发现把传感器安装在距离检测物表面10毫米时,检测效果最好。 R1限制发射二极管的电流,发射管的电流与发射功率成正比,但受其极限输入正向电流50mA的影响,用R1=150的电阻作为限流电阻,Vcc=5V作为电源电压,测试发现发射功率完全能满足检测需要;可变电阻

循迹小车制作报告

综合电子设计与实践 课程实验报告 课题名称:循迹小车的制作 班级:XXXXXX 实验者:XXXXXX 实验时间:XXXXX

摘要 本设计主要有三个模块包括信号检测模块、主控模块、电机驱动模块。信号检测模块采用红外光对管,用以对黑线进行检测。主控电路采用宏晶公司的8051核心的STC89C52单片机为控制芯片。电机驱动模块采用意法半导体的L298N专用电机驱动芯片,单片控制与传统分立元件电路相比,使整个系统有很好的稳定性。信号检测模块将采集到的路况信号传入STC89C52单片机,经单片机处理过后对L298N发出指令尽心相应的调整。小车速度由单片机输出的PWM波控制。控制电动小车的速度及转向,从而实现自动循迹的功能。 关键词:智能小车STC89C52单片机L298N 红外光对管 一.绪论 (一)智能小车的作用和意义 自第一台工业机器人诞生以来,机器人的发展已经遍及机械、电子、冶金、交通、宇航、国防等领域。近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式。人们在不断探讨、改造、认识自然的过程中,制造能替代人劳动的机器一直是人类的梦想。随着科学技术的发展,机器人的感系统,对于视觉的各种技术而言图像处理技术已相当发达,而基于图像的理解技术还很落后,机器视觉需要通过大量的运算也只能识别一些结构化环境简单的目标。视觉传感器的核心器件是摄像管或CCD,目前的CCD已能做到自动聚焦。但CCD传感器的价格、体积和使用方式上并不占优势,因此在不要求清晰图像只需要粗略感觉的系统中考虑使用接近觉传感器是觉传感器种类越来越多,其中视觉传感器成为自动行走和驾驶的重要部件。视觉的典型应用领域为自主式智能导航一种实用有效的方法。机器人要实现自动导引功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能。避障控制系统是基于自动导引小车(A VG—auto-guide vehicle)系统,基于它的智能小车实现自动识别路线,判断并自动避开障碍,选择正确的行进路线。使用传感器感知路线和障碍并作出判断和相应的执行动作。该智能小车可以作为机器人的典型代表。它可以分为三大组成部分:传感器检测部分、CPU、执行部分。机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物。可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避。基于上述要求,传感检测部分考虑到小车一般不需要感知清晰的图像,只要求粗略感知即可,所以可以舍弃昂贵的CCD传感器而考虑使用价廉物美的红外反射式传感器来充当。智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度。单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有PWM功能的单片机,这样可以实现精确调速;第二,可以由软件模拟PWM输出调制,需要占用单片机资源,难以精确调速,但单片机型号的选择余地较大。考虑到实际情况,本文选择第二种方案。CPU使用STC89C52单片机,配合软件编程实现 (二)智能小车的现状 现智能小车发展很快,从智能玩具到其它各行业都有实质成果。其基本可实现循迹、避障、检测贴片、寻光入库、避崖等基本功能,这几节的电子设计大赛智能小车又在向声控系

基于单片机89c51循迹小车原理与程序

自循迹小车 第一章引言 1.1 设计目的 通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 1.2 设计方案介绍 该智能车采用红外对管方案进行道路检测,单片机根据采集到的红外对管的不同状态判断小车当前状态,通过pid控制发出控制命令,控电机的工作状态以实现对小车姿态的控制。 1.3 技术报告内容安排 本技术报告主要分为三个部分。第一部分是对整个系统实现方法的一个概要说明,主要内容是对整个技术方案的概述;第二部分是对硬件电路设计的说明,主要介绍系统传感器的设计及其他硬件电路的设计原理等;第三部分是对系统软件设计部分的说明,主要内容是智能模型车设计中主要用到的控制理论、算法说明及代码设计介绍等。

第二章技术方案概要说明 本模型车的电路系统包括电源管理模块、单片机模块、传感器模块、电机驱动模块. 在整个系统中,由电源管理模块实现对其他各模块的电源管理。其中,对单片机、光电管提供5V电压,对电机提供6V电压 路径识别电路由3对光电发送与接收管组成。由于路面存在黑色引导线,落在黑线区域内的光电接收管接收到反射的光线的强度与白色的路面不同,进而在光电接收管两端产生不同的电压值,由此判断路线的走向。传感器模块将当前采集到的一组电压值传递给单片机,进而根据一定得算法对舵机进行控制,使小车自动寻线行走。 单片机模块是智能车的核心部分,主要完成对外围各个模块的管理,实现对外围模块的信号发送,以及对传感器模块的信号采集,并根据软件算法对所采集的信号进行处理,发送信号给执行模块进行任务执行,还对各种突发事件进行监控和处理,保证整个系统的正常运作。 电机驱动采用L293驱动芯片,该芯片支持2路电机驱动同时支持PWM 调速

创新性实验 循迹小车实验报告

时间:周三上午 组号:5 创新性实验报告 题目寻迹小车 学院电子信息学院 专业xxx 班级xxx 学号xxx 学生姓名xxx 指导教师xxx 完成日期2014年5月

目录 1 摘要 (3) 2 引言 (3) 3系统总体设计 (3) 4硬件电路设计 (5) 5 制作与调试 (6) 5.1 硬件电路的布线与焊接 (6) 第一步:电路部分基本焊接 (6) 第二步:机械组装 (6) 第三步:安装光电回路 (7) 5.2 调试 (7) 整车调试: (7) 6 结论及建议 (7) 7 附录 (8)

1 摘要 本实验完成采用红外反射式传感器的自寻迹小车的设计与实现。采用与白色地面色差很大的黑色路线引导小车按照既定路线前进。LM393随时比较着两路光敏电阻的大小,当出现不平衡时(例如一侧压黑色跑道)立即控制一侧电机停转,另一侧电机加速旋转,从而使小车修正方向,恢复到正确的方向上,整个过程是一 个闭环控制,因此能快速灵敏地控制。 关键词:红外反射式传感器,自寻迹小车,闭环控制 2 引言 随着素质教育的越来越被重视,很多学校都把制作智能小车作为首选课题,智能小车生动有趣还牵涉到机械结构、电子基础、传感器原理、自动控制甚至单片机编程等诸多学科知识,学生通过动手实践能大大提高解决实际问题的能力,而且智能小车还是一个很好的硬件平台,只要增加一些控制电路就能完成循迹小车、救火机器人、足球机器人、避障机器人、遥控汽车等课题。 我们制作的是一款由数字电路来控制的智能循迹小车,在组装过程中我们不但能熟悉机械原理还能逐步学习到:光电传感器、电压比较器、电机驱动电路等相关电子知识。 3 系统总体设计 本系统的整体框图如图1所示。它包括传感器电路、电压比较电路、电 机驱动电路、电源电路。

循迹小车课程设计报告

智能循迹小车设计与制作 课程设计报告 系别: 专业: 班级: 成员: 指导老师: 时间:二〇一一年6月30日

一、设计目的: 1、学会智能电子产品的功能设计与任务分析,能进行小型电子产品方案设计; 2、掌握基于51单片机、FPGA模数混合硬件系统设计和程序设计; 3、熟悉电子信息类企业项目完整的运作过程及管理规范,培养团队协作能力、沟通能力、创新能力和组织能力。 二、智能循迹小车任务分析 这是一种基于STC89C51单片机的小车寻迹系统。该系统采用两组高灵敏度的光电对管,对路面黑色(白色)轨迹进行检测,并利用单片机产生PWM波,控制小车速度。测试结果表明,该系统能够平稳跟踪给定的路径。 整个系统基于普通玩具小车的机械结构,并利用了小车的底盘、前后轮电机及其自动复原装置,能够平稳跟踪路面黑色轨迹运行 三、智能循迹小车循迹原理 该智能小车在画有黑线的白纸“路面”上行驶,由于黑线和白纸对光线的反射系数不同,可根据接收到的反射光的强弱来判断“道路”—黑线。利用了简单、应用比较普遍的检测方法—发光二极管+光敏电阻。 发光二极管+光敏电阻,即利用光线在不同颜色的物理表面具有不同的反射性质的特点。在小车行驶过程中不断地向地面发射白光,当白光遇到白色地面时发生漫发射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,则小车上的接收管接收不到信号。

四、智能循迹小车总体方案 整个电路系统分为检测、控制、显示、驱动四个模块。首先利用光电对管对路面信号进行检测,经过比较器处理之后,送给软件控制模块进行实时控制,然后显示小车的运行状态,输出相应的信号给驱动芯片驱动电机转动,从而控制整个小车的运动。系统方案方框图如图1所示。 图1 智能小车寻迹系统框图 五、智能循迹小车各模块方案 1、循迹模块设计 方案1: 用红外发射管:接收管自己制作光电对管循迹传感器。红外发射管发出红外线,当发出的红外线照射到白色的平面后反射,若红外接收管能接收到反射回的光线则检测出白线继而输出低电平,若接收不到发射出的光线则测出黑线继而输出高电平。这样自己制作组装的寻迹传感器基本能够满足要求,但是工作不够稳定,且容易受外界光线的影响,因此我们放弃了这个方案。 方案2: 发光二极管+光敏电阻组成光敏探测器,光敏电阻的阻值可以根跟随周围 环境光线的变化而变化。当光线照射到白线上面时,光线发射强烈,光线照射

基于 单片机设计智能避障小车

单片机设计智能避障小车 摘要 利用红外对管检测黑线与障碍物,并以STC89C51单片机为控制芯片控制电动小汽车的速度及转向,从而实现自动循迹避障的功能。其中小车驱动由L298N 驱动电路完成,速度由单片机输出的PWM波控制。本文首先介绍了智能车的发展前景,接着介绍了该课题设计构想,各模块电路的选择及其电路工作原理,最后对该课题的设计过程进行了总结与展望并附带各个模块的电路原理图,和本设计实物图,及完整的C语言程序。 关键词:智能小车;51单片机;L298N;红外避障;寻迹行驶 abstract Using infrared detection black and obstacles to the line and STC89C51 microcontroller as the control chip to control the speed of the electric car and steering, so as to realize the function of automatic tracking and obstacle avoidance. Which the car driven by the L298N driver circuit is completed, the speed of the microcontroller output PWM wave control. This article first introduces the development of the intelligent car prospect, then introduces the design idea, the subject selection of each module circuit and working principle of the circuit, the design process of the subject is summarized and prospect with each module circuit principle diagram, and the real figure design, and complete C language program. Key words: smart car; 51 MCU; L298N; infrared obstacle avoidance; track driving

基于某51单片机的智能小车控制系统

工业职业技术学院 毕业设计 课题名称基于51与单片机的智能小车控制系统 系(院)名称电气工程系 专业及班级 学生 学号 指导教师

完成日期年11 月19 日

摘要 随着我国科学技术的进步,智能化作为现代社会的新产物开始越来越普及,各种高科技也广泛应用于智能小车和机器人玩具制造领域,使智能机器人越来越多样化。智能小车是一个多种高薪技术的集成体,它融合了机械、电子、传感器、计算机硬件、软件、人工智能等许多学科的知识,可以涉及到当今许多前沿领域的技术。 整个小车平台主要以51单片机为控制核心,通过无线遥控实现前进后退和转向行驶,通过红外线传感器,实现小车的自适应巡航、避障等功能。设计采用对比选择,模块独立,综合处理的研究方法。通过翻阅大量的相关文献资料,分析整理出有关信息,在此基础上列出不同的解决方案,结合实际情况对比方案优劣选出最优方案进行设计。从电机车体,最小系统到无线遥控,红外线对管的自动寻迹再到红外线自动避障和语音控制,完成各模块设计。通过调试检测各模块,得到正确的信号输出,实现其应有的功能。最后将各个调试成功的模块结合到小车的车体上,结合程序,通过单片机的控制,将各模块有效整合在一起,达到所预期的目标,完成最终设计与制作,能使小车在一定的环境中智能化运转。 关键字:智能小车,单片机,红外传感器。

目录 第一章绪论.............................................................................................................................- 1 - 1.1.1智能循迹小车概述........................................................................................................- 1 - 1.1.2课题研究的目的和意义 ...............................................................................................- 2 - 1.1.3智能循迹小车智能循迹分类.......................................................................................- 3 - 1.1.4智能循迹小车的应用....................................................................................................- 3 - 第二章方案设计 ..........................................................................................................................- 5 - 2.1 主控系统.........................................................................................................................- 5 - 2.2单片机最小系统 ...............................................................................................................- 6 - 2.2.1 STC89C52简介...................................................................................................- 6 - 2.2.2 时钟电路...............................................................................................................- 8 - 2.2.3复位及复位电路....................................................................................................- 8 - 2.3 电机驱动模块................................................................................................................ - 10 - 2.4 循迹及避障模块............................................................................................................ - 11 - 2.5 机械系统......................................................................................................................... - 11 - 2.6电源模块......................................................................................................................... - 11 - 第三章硬件设计 ..................................................................................................................... - 12 - 3.1总体设计......................................................................................................................... - 12 - 3.1.1主板设计框图..................................................................................................... - 12 - 主板设计框图如图3-1,所需原件清单如表3-1 .................................................. - 12 -

51单片机循迹小车开题报告

一、研究课题的目的和意义 1)研究目的: 随着汽车工业的迅速发展,其与电子信息产业的融合速度也显著提高,汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。关于汽车的研究也就越来越受人关注。全国电子大赛和省内电子大赛几乎每次都有智能小车这方面的题目,全国各高校也都很重视该题目的研究。可见其研究意义很大。本设计就是在这样的背景下提出的,为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。设计的智能电动小车应该能够具有自动寻迹、小灯显示等功能。 此项设计以AT89S52单片机为控制核心,逐步实现小车的循线行走功能。2)研究意义: 1、加深课堂上的学习 由于单片机教学例子有限,因此,单片机智能车能综合学生课堂上的知识来实践,使学习者更好的了解单片机的发展。通过此次的单片机寻轨车制作,使学 生从理论到实践,初步体会单片机项目的设计、制作、调试和成功完成项目的过 程及困难,以此学会用理论联系实际。通过对实践中出现的不足与学习来补充教 学上的盲点。 2、从理论转为实际运用 智能汽车是一种高新技术密集的新型汽车,是在网络环境下利用信息技术、智能控制技术、自动控制、模式识别、传感器技术、汽车电子、电气、计算机 和机械等多个学科的最新科技成果,使汽车具有自动识别行驶道路、自动驾驶等 先进功能.随着控制技术、计算机技术和信息技术的发展,智能车在工业生产和日 常生活中已经扮演了非常重要的角色.近年来,智能车在野外、道路、现代物流 及柔性制造系统中都有广泛运用,已成为人工智能领域研究和发展的热点。 二、研究内容 1)系统设计: 智能寻迹小车采用后轮驱动,左右后轮各用一个直流减速电机驱动,通过调制后面两个轮子的转速从而达到控制转向的目的在车体前部分别装有左中右三或者两个红外反射式传感

循迹小车课程设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:单片机课程设计 设计题目:智能循迹小车 院系:测控技术与仪器系 班级:1001104 设计者:陈哲 学号:1100100534 指导教师:周庆东 设计时间:2013/9/2—2013/9/13 哈尔滨工业大学

哈尔滨工业大学课程设计任务书

开题报告 (一)立项背景 本次的课程设计的主要任务是设计一个能够通过红外对管识别黑线、通过PWM电路模块进行调速跟踪黑色条纹带以及通过LCD液晶模块进行脉冲、速度、PWM的占空比三个参数的显示的智能小车。控制板的设计以16位的MC9S128单片机为控制核心,MC9S12XS128是一款功能强大的16位微控制器,具有非常丰富的片上资源,如:10位精度的ADC,节省了片外AD;强大的定时器,方便对电机进行控制,可以进行浮点型运算。另外还有精密的比较器,大容量的RAM和ROM,可存储大容量的程序。驱动板则以L289N 驱动芯片为核心,应用红外对管和LCD液晶模块,成功的实现小车的循迹、测速、调速和显示功能这四大功能。课题完成了红外对管、单片机、控制板、驱动板选择,采购接口电路的设计和连接以传感器和电路的安装位置和方式的安排,并完成了整个硬件的安装工作。除此之外,还对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成了软件和硬件的融合,基本实现了智能小车要求实现的预期的功能。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以选择“基于单片机的智能小车循迹设计”一题作为尝试。 本次设计主要解决问题是如何实现所要求的四大功能,最后完成硬件实物的组装,并编制相关程序,使其实现功能的融合,做出具有预先要求功能的实物。 (二)课题目的 在我们基本掌握了51单片机的基本使用方法的基础之上,本学期开学初,单片机课程设计给了我们更大的挑战,课题的目的有以下几点。 (1)进一步熟练其他更加高级的单片机的使用方法、提高程序的编写能力 (2)掌握单片机系统外扩器件的连接与使用 (3)学会选择合适的传感器来完成任务 (4)掌握软件和硬件调试的基本技巧与方法 (三)设计思路

51单片机循迹小车程序

/*功能:寻迹小车 使用芯片:AT89S52或者STC89C52 或A T89S51 STC89C51 晶振:12MHZ 编译环境:Keil 作者:MH~?*/ #include <reg51、h>// 引用标准库得头文件 #include #define ucharunsignedchar #defineuintunsigned int //=================电机驱动===================== sbit dianji_r = P3^0;//右边电机控制口,低电平转? sbitdianji_l= P3^7;//左边电机控制口,低电平转 //=============循迹感应接口====================== sbit xjmk_r=P3^2;// 右边寻迹模块检测口INT0 sbit xjmk_l= P3^3;// 左边寻迹模块检测口INT1 void check_righet();//右边时候检测到黑线测试程序 voidcheck_left();//左边时候检测到黑线测试程序 void delay_50us(uint t); void delayms(uintMs); ucharr_count;//右边传感器检测到得次数计数单元 uchar l_count; uint time; //***********************主程序****************************** main() { time=50; dianji_r=0;//上电时右侧电机运行 dianji_l=0;//上电时左侧电机运行 EA=1; EX1=1; EX0=1; IT1=0; IT0=0; xjmk_r=1;//置IO为1,准备读取数据 xjmk_l=1; _nop_(); r_count=0; l_count=0; while(1) { _nop_(); //check_righet();//调用右边寻迹检测传感器 //check_left();//

智能循迹小车设计报告

电子作品设计报告 项目名称:智能小车 学院:机电工程学院 专业:应用电子技术 班级:09应电(1)班 组别:第三组 姓名:杨磊赖焕宁梁广生 指导老师:杨青勇玉宁

目录 摘要: (3) 关键词: (3) 引言: (3) 一、系统设计 (3) 1.1设计要求 (4) 1.2车体方案认证与选择 (4) 二、硬件设计及说明 (5) 2.1原理图设计 (5) 2.1.1稳压电源 (5) 2.1.2基本系统 (5) 2.1.3电机驱动 (5) 2.1.4液晶显示部分 (6) 2.1.5RS485数据总线 (6) 2.1.6循迹部分 (7) 2.2PCB设计 (7) 2.2.1主板PCB (7) 2.2.2循迹板PCB (8) 三、软件设计及说明 (8) 四、系统测试过程 (10)

五、总结 (11) 六、附录 (11) 附录一:系统元器件清单 (11) 附件二:系统测试源程序 (12) 摘要:本组的智能小车是采用凌阳的车架,是以两个电机来驱动小车,主板部 分自行设计。通过接收器MAX1483来采集信息,传送进主控芯片PIC16F886单片机,进行数据处理后,送进驱动芯片L293D以完成相应的操作。采用反射式红外光电传感器ST178来实现小车自动循迹功能,并且整个过程采用液晶显示屏RT1602来显示相应的数据。 关键词:PIC16F886 L293D 反射式红外光电传感器ST178 自动循迹引言: 近现代,随着电子科技的迅猛发展,人们对技术也提出了更高的要求。汽车的智能化在提高汽车的行驶安全性,操作性等方面都有巨大的优势,在一些特殊的场合下也能满足一些特殊的需要。智能小车系统涉及到自动控制,车辆工程,计算机等多个领域,是未来汽车智能化是一个不可避免的大趋势。本文设计的小车以PIC16f886 为控制核心,用反射式红外光电传感器作为检测元件实现小车的自动循迹前行,并显示等功能。 一、系统设计 本组智能小车的硬件主要有以PIC16f886 作为核心的主控器部分、自动循迹部分、显示部分、电机驱动部分。其中电机驱动部分和其他部分分别由两个不同的电源分开供电。 小车硬件系统结构示意图如下:

智能循迹小车___设计报告

智能循迹小车设计 专业:自动化 班级:自动化132 姓名:罗植升莫柏源梁桂宾 指导老师: 2014年4月——2010年6月 摘要:

本课题是基于STC89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 STC89C52单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 引言

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

相关主题