搜档网
当前位置:搜档网 › 桩基础沉降计算方法研究现状的综述

桩基础沉降计算方法研究现状的综述

桩基础沉降计算方法研究现状的综述
桩基础沉降计算方法研究现状的综述

桩基础沉降计算方法研究现状的综述

(西南交通大学土木工程学院岩土工程系四川成都)

摘要:桩基础是一种常用的深基础形式,它由桩和桩顶的承台组成。按桩的受力情况,桩分为摩擦桩和端承桩两类。桩的沉降分为单桩和群桩两种沉降。单桩受到荷载后,其沉降量由下述两部分组成:桩自身的压缩变形和桩底以下土层的压缩。目前,计算单桩沉降量的计算方法主要有分层总合法、弹性理论法、荷载传递分析法、剪切变形传递法、有限元法及其他简化算法,这些方法都是在一定的简化基础上考虑一种或几种因素对桩基沉降量的影响。而对于群桩的沉降计算;当桩都为端承桩时,由于不需要考虑群桩效应,故可将单桩的沉降作为整个桩基础的沉降;当桩都为摩擦桩时,由于要考虑桩与桩之间的相互影响、承台的影响等。其沉降计算方法有整体分析法、等代墩基法经验法。

关键词:桩基础计算方法沉降

桩基础的承载力与沉降是桩基设计中的重要内容,沉降常常是设计中需控制的一个重要因素,与承载力相比,沉降的计算更为复杂。在过去漫长的时间内,从事岩土工程的研究者和工程师们,为了精确计算和预测桩基的沉降,曾进行过大量的研究,提出过一系列的计算桩基沉降的方法,但由于地下桩基础的复杂性和地基土的非均匀性,桩基础沉降的计算理论还有待成熟。

1.单桩沉降计算方法

单桩的沉降与桩的长度、桩周及桩底土的性质、荷载大小及

持续时间等因素有关。计算单桩单桩的沉降则应采用长期施加的荷载。

1.1剪切变形传递法

Cooke(1974)提出了摩擦桩荷载传递的物理模型,该模型为了简化计算,作了一系列假定并认为:当荷载较小时,桩的沉降较小,桩土之间不产生相对位移,上下土层之间无相互作用,桩的沉降由剪切变形的积累而产生的,剪应力从桩侧表面沿径向向四周扩散到周围土体中;摩擦桩一般在工作荷载作用时,桩端承担的荷载比例较小,沉降主要是由桩侧传递的荷载所引起,在单桩周围形成漏斗状位移分布。

宰金铭(1993,1996)将剪切变形传递法推广到塑性阶段,从而得到桩周土非线性位移场解析表达式。在该基础上,与层状介质的有限层法和结构的有限元法联合应用,给出群桩与土和承台非线性共同作用分析的半解析半数值方法。

1.2荷载传递分析法

荷载传递分析法亦称传递函数法,由Seed及Reese于1957年提出,它是目前应用最为广泛的简化方法,这种方法是从规定的荷载变

形传递方式来计算桩对荷载的反应。其基本思想是:将桩划分为一系列等长的桩段(弹性单元),每一桩段与土体之间的联系用非线性弹簧来联系,桩端处土体也用非线性弹簧与桩端联系,以模拟桩-土之间的荷载传递关系。

Guo(2001)提出了一种弹脆塑性模型,以考虑桩周土体的软化性状,这也是三折线模型中的一种。

将桩与土之间的接触简化为弹簧连接,易推得

()s z E A U dz

s d P P ,22τ= 式中的 ),(s z τ即桩侧阻力的传递函数,只要该函数能够确定,解上述方程即可得到桩的位移。

1.3弹性理论法

弹性理论法于20世纪60年代被提出,它将土体视为弹性半无限体,依靠Mindlin 解,建立桩、土之间的变形协调方程,最终求得桩的轴力、侧阻、端阻及沉降等。。以弹性理论法为根据发展出一些计算单桩沉降的方法,这些解法虽略有不同,但一般都基于桩的位移与临近土位移的协调条件,为此,

借助于轴向荷载下桩身的压缩求得桩

的位移,又应用荷载作用于半无限体内某一点所产生的Mindlin位移解求得桩周土体的位移。由于弹性理论假定桩土界面普遍满足弹性即界面不发生滑移这一条件,沿界面诸相邻点的桩位移应与土位移相等,桩侧完全粗糙,桩侧阻力沿每个单元周围的分布是均匀的;忽略桩、土之间在法向的变形协调。由此依靠即可求得桩身摩阻力和桩端阻力的分布,并进而求得桩的位移分布。吕凡任(2004)提出了考虑桩土相对位移的“广义弹性理论法”从而可以考虑桩周土的塑性,并将其应用于斜桩分析。

2.群桩沉降计算方法

桩基础的应用大都是以群桩的形式出现,群桩效应在群桩沉降问题中表现的非常明显。端承桩通常不需要考虑群桩效应,故可将单桩的沉降作为整个桩基础的沉降,但对于摩擦桩来说,计算桩基沉降时,应考虑桩与桩之间的相互影响、承台的影响等因素。

2.1整体分析法

整体分析法,目前应用较广泛和成熟的整体分析方法主要包括有限元法、边界元法和弹性理论法。有限单元法是适应计算机应用而发展起来的一比较新颖和有效地数值计算方法,随着计算机的发展,有限元越来越广泛。常用的桩基有限元分析软件有ABAQUS ,ANSYS ,MARC,和ADINA等其它的还有Plaxis和FLAC/FLAC3D等等。研究表明,有限单元法的计算结果与现场观测结果非常相似。由于受计算参数较多,三维计算要求内存大,计算时间长,其使用范围受到影响。不过,作为探索和校核实用简化方法的工具,有限单元法仍有着重要的实际意义。从长远地来看,它仍然是计算群桩沉降的一种趋势和正确方向。由于桩土作用的复杂性和单桩沉降理论仍在进一步完善中,为了方便和辅助桩基设计,产生了一些简化方法,如神经网络法,大

直径桩、嵌岩桩沉降计算法等。这些方法现在尚处于讨论验证阶段,其精确性受到较大限制。因此,这些方法存在较大局限性。

边界元法也叫积分方程法,是把区域问题转化为边界问题求解的一种方法,即将筏板地基中的桩进行离散化分析。单纯的边界元法假设桩土界面位移协调,没有考虑桩土界面土的屈服滑移,与实际工程有一定差距。Sinha (1996)提出了一种完整的边界元法,把桩离散用边界元法分析,用薄板有限元法分析筏板,土被假定为均质弹性体,引入了土的滑移现象,以分析土体的膨胀或固结效应。有限条分法首先用于分析上部结构,并取得成功。Cheung(1976)首先提出将有限条分法用于单桩分析,以分析层状地基中的单桩的特性。

用弹性理论法算群桩的沉降与计算单桩沉降的方法完全相似,其土的位移方程可写为

}{[]

}{τ21S S S

I I E d s +=' 与单桩[]S I 不同的是,[]S S I I 21+既有因本桩所引起的桩轴土体位移,又包含另一根桩所引起的桩周土体位移。

群桩要考虑土桩与桩之间的相互影响,定义相互作用系数 桩在自身荷载下的沉降

邻近桩引起的附加沉降=α 采用弹性理论法和有限元法分析群桩时,发现群桩将大部分荷载传到了地基的深部,水平方向扩散的应力很小,桩端附加应力受桩数、桩长径比、桩的距径比和吃力层刚度的影响较大,而受承台长度比和桩土相对刚度比影响较小。

2.2等代墩基法 (实体深基础法)

等代墩基法是现在工程界应用最广泛的一种计算群桩沉降的方

法,该计算模式是将承台下的桩基础及桩间土看作一个实体基础,并

忽略其变形;在此等代墩基范围内,桩间土不产生压缩如同实体墩基

一样工作,然后按照浅基础的沉降计算方法来计算群桩的沉降。等代

墩基法适用于桩距不大于6倍桩径的群桩。该方法计算简单,但由于

高估了墩基底面的压力,导致了压缩层深度增加。由于计算时考虑的

前提条件不同,研究者提出和使用着计算的不同模式,其主要差别在

于选用的假想实体基础底面的位置不同,以及对地基土中附加应力的

考虑和计算不同根据桩距地基土的性质不同,桩间土实际上是会产生

不同程度的压缩变形,另一方面假想的实体基础外围存在着侧面剪应

力的扩散作用,为了消除这些差别对群桩沉降计算的影响,人们采取

了一些措施,集中表现在所采用的模式上。这些措施是:

1.变动假想实体基础底面的位置,以考虑桩间土存在压缩变形的

可能,这是Peck和Terzaghi等人建议的模式Peck等建议将假想实

体基础底面置于桩端平面以上高度处,取为桩长的1/3处(桩位于

均匀并土中时)或进入持力层深度的1/3(桩穿过软弱土层并进入坚硬

土层时〕这种建议涉及的影响因素过于单一,因为假想基底位置上升

的因素很多,采用此法不能全面反映这些情况。

2.考虑墩基侧向摩阻力的扩散作用,从群桩桩顶外围按扩散角

向下扩散增大假想实体基础底面积,以考虑桩群外围总剪应力对4/

沉降分析的影响,这是Tomlinson等人的模式。

3.为了改善地基土附加应力估计的精度,近年来国内外根据半无

限弹性体内集中力的Mindlin公式发展了一些估计桩基荷载作用下

地基土附加应力的方法,还有一种将Mindlin解与Boussinesq解对

比来估计等代墩基的等效基底附加应力。

由于群桩沉降涉及的因素很多,至今还没有一种既能反映土的非线性、、固结和流变性质,又能在漫长的沉降过程中反映出桩与土的界面上相互作用力不断变化性状的计算模式。

3.计算方法评述

剪切变形法对深长桩的沉降计算较准确。但由于该方法忽略了竖向应力、径向位移对剪应力的影响、土参数随深度的变化及桩端沉降因素等诸多因素,会得到不合理的沉降,因而在桩基设计的实践中应用较少。

荷载传递法较弹性理论法,其计算要简单些。由于工程中的土大多数是分层的,应力土体的参数都随深度变化,因此荷载传递法沿深度将桩身分段的方法能准确反映桩承载特性。但是缺点是任意点桩的位移只与该点的摩阻力有关,忽略了其它方向的力及其它点的影响,没有考虑土体连续性,不能用于群桩的计算。

弹性理论法已经比较成熟,考虑土的连续性,可用于群桩分析,计算结果较准确。但其缺陷在于把地基看作均匀的、各向同性的理想弹性体,桩土之间无切向相对位移,忽略了实际中存在的应力及时间效应,需要进一步改进和完善。

整体分析法优点在于:有限单元可方便地反映岩土材料的复杂结构关系;有限元法对复杂的边界条件的反映比其他数值方法有较大的优势;开发了不同类型的单元,可以适合不同情况的模拟(如板壳单元模拟板壳的作用、界面单元模拟各种界面的特性);可以考虑各种复杂因素对桩基础沉降的影响。不足之处是实际计算中要考虑桩对土的影响范围,需要对土体划分大量的单元。此外,为了保证精度,必须将单元划小,使得单元数目急剧增加。这些都增加了计算时间。边

界元法能够较准确计算群桩的沉降,边界元法可方便地反映岩土材料的复杂结构关系,单纯的边界元法假设桩土界面位移协调,没有考虑桩土界面土的屈服滑移,与实际工程有一定差距。

等代墩基法是一个科学、实用的计算方法,能反映群桩基础的各因素对沉降的影响,如桩的距径比、长径比、桩数等。其存在的问题是对于长桩,特别是桩侧土较好的长桩基础,计算沉降量与实测值误差较大,统计结果发现,实测值往往比计算值小很多。造成这种现象的原因是高估墩基地面的应力,这样造成了压缩层深度的增加,虽然用沉降修正系数或等效作用系数进行修正,但是计算值仍保守,较实测值大。

4.结语

本文对目前国内外桩基础的沉降计算理论进行了分析,包括单桩和群桩的沉降分析,并对它们的优缺点和适用范围进行了论述,在实际应用中,应用何种方法要视当时的地质条件等因素而定。

参考文献:

[1] 赖琼华. 桩的P-S曲线计算方法[J]. 岩石力学与工程学报,2003,22(3):509~513

[2].滕延京,宫剑飞. 李建民基础工程技术发展综述[J].土木工程学报.2012(05).

[3].毛泽华摘译自《Geotechnique),1999(4)国外公路,2000Vol.20No.4.

[4].《桩基工程手册》编写委员会.桩基工程手册.北京.中国建筑工业出版社,1995.

[5].何颐华,王铁宏.大直径扩底桩承载力及沉降变形的计算.建筑结构学报.Vol. 14.No.2 1993.4

[6]黄强.桩基工程若干热点技术问题[M].北京:中国建材工业出版社,1996.

[7]陈龙珠,梁国钱,朱金颖.桩轴向荷载--沉降曲线的一种解析方法[J].岩土工程学报,1994(16)

[8] ( GB50007 - 2002)建筑地基基础设计规范[S].北京:中国建筑工业出版社,2005.

[9]韦登,徐远前,陈福江.浅析群桩沉降计算方法,四川建筑,2008(11)

[10]李朝晖.关于桩基沉降研究现状,工程建筑,2009(6)

[11]王宏凯.试论建筑桩基在施工中沉降问题及解决办法,赤子,2009(8)

[12].宰金IN,宰金璋.《高层建筑基础分析与设计》.北京:中国建筑工业出版社,1993.

[13] 赖琼华. 桩的沉降计算在工程中的应用,广东水利水电,2002

[14] 陈国兴. 高层建筑基础设计[M]. 北京:中国建筑工业出版社,2000

[15] 复习教程编写组. 注册岩土工程师专业考试复习教程[M]. 北京:中国建筑工业出版社,2002

[16] 赖琼华. 岩土变形模量取值研究[J]. 岩石力学与工程学报,2001(增)

[17] 李素华,吴世明,刘忠孝. 工程桩质量检测技术中的若干问题探讨[J]. 岩石力学与工程学报,2002,21(1)

[18] 蒋企,古晋雄,戴永相等. 桩基施工质量监督的新途径[J]. 岩石力学与工程学报,1998,17(3):341~344

[19] 徐礼华,刘祖德,茜平一. 上部结构-桩基础-地基相互作用体系地震反应分析[J]. 岩石力学与工程学报,2002,21(11)

[20] 陆培炎,徐振华. 地基的强度及变形计算[M]. 西宁:青海人民出版社,1978

[21] 吴永红,郑刚,闰澎旺.多支盘钻孔灌注桩基础沉降计算理论与方法,岩土

工程学报,2000,22(5):528-531.

最全面的桩基计算总结

最全面的桩基计算总结 桩基础计算 一.桩基竖向承载力《建筑桩基技术规范》 5.2.2 单桩竖向承载力特征值Ra应按下式确定: Ra=Quk/K 式中 Quk——单桩竖向极限承载力标准值; K——安全系数,取K=2。 5.2.3对于端承型桩基、桩数少于4根的摩擦型柱下独立桩基、或由于地层土性、使用条件等因素不宜考虑承台效应时,基桩竖向承载力特征值应取单桩竖向承载力特征值。5.2.4对于符合下列条件之一的摩擦型桩基,宜考虑承台效应确定其复合基桩的竖向承载力特征值: 1 上部结构整体刚度较好、体型简单的建(构)筑物; 2 对差异沉降适应性较强的排架结构和柔性构筑物; 3 按变刚度调平原则设计的桩基刚度相对弱化区; 4 软土地基的减沉复合疏桩基础。 当承台底为可液化土、湿陷性土、高灵敏度软土、欠固结土、新填土时,沉桩引起超孔隙水压力和土体隆起时,不考虑承台效应,取η=0。

单桩竖向承载力标准值的确定: 方法一:原位测试 1.单桥探头静力触探(仅能测量探头的端阻力,再换算成探头的侧阻力)计算公式见《建筑桩基技术规范》5.3.3 2.双桥探头静力触探(能测量探头的端阻力和侧阻力)计算公式见《建筑桩基技术规 范》5.3.4 方法二:经验参数法 1.根据土的物理指标与承载力参数之间的关系确定单桩承载力标准值《建筑桩基技术规范》5.3.5 2.当确定大直径桩(d>800mm)时,应考虑侧阻、端阻效应系数,参见5. 3.6 钢桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.7 混凝土空心桩承载力标准值的确定: 1.侧阻、端阻同混凝土桩阻力,需考虑桩端土塞效应系数;参见5.3.8 嵌岩桩桩承载力标准值的确定: 1.桩端置于完整、较完整基岩的嵌岩桩单桩竖向极限承载力,由桩周土总极限侧阻力和嵌岩段总极限阻力组成。 后注浆灌注桩承载力标准值的确定: 1.承载力由后注浆非竖向增强段的总极限侧阻力标准值、后注浆竖向增强段的总极限侧阻力标准值,后注浆总极限端阻力标准值; 特殊条件下的考虑 液化效应: 对于桩身周围有液化土层的低承台桩基,当承台底面上下分别有厚度不小于1.5m、1.0m 的非液化土或非软弱土层时,可将液化土层极限侧阻力乘以土层液化折减系数计算单桩

桩基础沉降计算方法研究现状的综述

桩基础沉降计算方法研究现状的综述 (西南交通大学土木工程学院岩土工程系四川成都) 摘要:桩基础是一种常用的深基础形式,它由桩和桩顶的承台组成。按桩的受力情况,桩分为摩擦桩和端承桩两类。桩的沉降分为单桩和群桩两种沉降。单桩受到荷载后,其沉降量由下述两部分组成:桩自身的压缩变形和桩底以下土层的压缩。目前,计算单桩沉降量的计算方法主要有分层总合法、弹性理论法、荷载传递分析法、剪切变形传递法、有限元法及其他简化算法,这些方法都是在一定的简化基础上考虑一种或几种因素对桩基沉降量的影响。而对于群桩的沉降计算;当桩都为端承桩时,由于不需要考虑群桩效应,故可将单桩的沉降作为整个桩基础的沉降;当桩都为摩擦桩时,由于要考虑桩与桩之间的相互影响、承台的影响等。其沉降计算方法有整体分析法、等代墩基法经验法。 关键词:桩基础计算方法沉降 桩基础的承载力与沉降是桩基设计中的重要内容,沉降常常是设计中需控制的一个重要因素,与承载力相比,沉降的计算更为复杂。在过去漫长的时间内,从事岩土工程的研究者和工程师们,为了精确计算和预测桩基的沉降,曾进行过大量的研究,提出过一系列的计算桩基沉降的方法,但由于地下桩基础的复杂性和地基土的非均匀性,桩基础沉降的计算理论还有待成熟。 1.单桩沉降计算方法 单桩的沉降与桩的长度、桩周及桩底土的性质、荷载大小及

持续时间等因素有关。计算单桩单桩的沉降则应采用长期施加的荷载。 1.1剪切变形传递法 Cooke(1974)提出了摩擦桩荷载传递的物理模型,该模型为了简化计算,作了一系列假定并认为:当荷载较小时,桩的沉降较小,桩土之间不产生相对位移,上下土层之间无相互作用,桩的沉降由剪切变形的积累而产生的,剪应力从桩侧表面沿径向向四周扩散到周围土体中;摩擦桩一般在工作荷载作用时,桩端承担的荷载比例较小,沉降主要是由桩侧传递的荷载所引起,在单桩周围形成漏斗状位移分布。 宰金铭(1993,1996)将剪切变形传递法推广到塑性阶段,从而得到桩周土非线性位移场解析表达式。在该基础上,与层状介质的有限层法和结构的有限元法联合应用,给出群桩与土和承台非线性共同作用分析的半解析半数值方法。 1.2荷载传递分析法 荷载传递分析法亦称传递函数法,由Seed及Reese于1957年提出,它是目前应用最为广泛的简化方法,这种方法是从规定的荷载变

地基沉降量计算

在今年史佩栋教授赠寄给我的,他主编的《浙江隧道与地下工程》刊物上,我看到一篇高大钊先生谈差异沉降的文章,觉得非常好。里面的内容很实用,对我们正确认识和理解差异沉降问题有很高的指导性,故将其推荐给大家。但采用照片或扫描版,不便于大家阅读和下载,而我的工作又很忙,没有时间,只好请一位技术人员将其打成word文档,发在下面。需要说明的是,由于同样原因,我没时间对打成的文章做仔细的校核,如有个别错漏,还请大家谅解。 同时在此向史佩栋教授、高大钊先生和《浙江隧道与地下工程》杂志社表示诚挚的感谢! 土力学若干问题的讨论 (网络讨论笔记整理)之四怎样计算差异沉降? ——沉降计算中的是是非非 本刊特邀顾问同济大学教授 全国注册土木工程师(岩土)高大钊 执业之格考试专家组副组长 进20年来,地基基础设计的变形控制问题日益引起人们的重视。最近5年来,由于地基基础设计规范所规定的必须计算沉降的建筑物范围扩大了,除了丙级建筑物中的一小部分之外,几乎所有的建筑物都要求计算建筑物地基的变形,沉降计算就成为普遍关注的问题。特别在岩土工程勘察阶段,提出了对建筑物的沉降和不均匀沉降进行评价的要求,再加上审图要求在勘察阶段计算和不均匀沉降,沉降计算的一些是是非非就浮出水面,在网络讨论中也成为一个十分活跃的课题。这些问题反应了对土力学中的一些基本概念的漠视,也反映了工程勘察中的一些最基本方法的失落,看来是人们在关注更高的精度,而实际上却在总体上失去了对建筑物沉降的总体控制。 1、在我工作地区,对于多层建筑(层数低于6层),由于相连建筑物的层数差而出现过墙体裂缝的现象,因此当地审图中心要求在正常沉积土的区域,对有层数错的建筑应进行变行验算。 我想问的问题是:在假定地基土为正常沉积土,其层位、特征指标等的变化均不是很大的情况下,差异沉降最大的两个点应该是两建筑物的接触部位点角点及较低建筑物的另一边的角点,也就是说,应该验算这两个点之间的差异沉降而按规范要求,则应该验算基宽方向两个角点下的差异沉降(或者倾斜)。考虑计算沉降量最大的两个点,则应验算相连两建筑物接触部位的两个角点县的差异沉降(或者倾斜),而按上述条件,这两个点之间的差异沉降应该不大,那么这种验算还有什么意义呢? 不知道我的理解偏差在那里望给予指教! 答复:你对这种情况的沉降计算和差异沉降的计算,在理解上存在一定的偏差,主要表现为下列两个问题。 1)对于如土所示的有层数的建筑物,根据规范的规定,应当计算存在高差处的角点b和与其相距1~2个开间处点d之间的沉降差,用以计算b~d之间的局部倾斜。而不是如你所说的计算存在高差处的角点b与高度较低的建筑物的另一端点c之间的沉降差。 2)第2个理解偏差是从你说的“应验算相连两建筑物接触部位的两个角点(a~b)下的差异沉降(或者倾斜)”这句话中看出的。为什么只能计算宽度方向两个点的差异沉降呢?规范从来没有规定只能计算建筑物横向两个角点的沉降差,而不能计算纵向两个角点的沉降差,横向和纵向的倾斜都可能进行计算。

基础沉降计算6页word

基础沉降算例 基础资料和地质资料如上图。 计算依据规范为《公路桥涵地基与基础设计规范》JTG D63——2007(以下简称规范)。 TB100002.5—2005 h p p γ-=0 《规范》4.3.4 (3.2.2) =157-17*1.87=125.21kPa 第一层土:13 .29613.980 10=-==z z 第二层土:13 .79113.9813 .221=-==z z 第三层土:13 .128613.9813 .732=-==z z 第四层土:13 .158313.9813 .1243=-==z z 第五层土:13.207813.9813 .1514=-==z z 以上n α根据b l /及b z /可查询《规范》附录M 桥涵基底附加系数α、平均附加系数α,(附录B )也可按本算例提供的Excel 表查询。 按《规范》4.3.7估算n z 54.8)5.4ln 4.05.2(5.4=-?=m 所以计算时取至基底下第三层土。 按《规范》4.3.4 (3.2.2) =125.21*[(2.13*0.938-0*1)/10+(7.13*0.600-2.13*0.938)/12+(12.13*0.412

-7.13*0.600)/28] =52.02(mm) 查《规范》表4.3.6 Δz值(表3.2.2—1) Δz=0.8m 故以上取基底以下三层计算满足规范要求。 根据《规范》表4.3.5注2 (表3.2.2—2) =12.03MPa 0.75[fa0]=0.75*170=127.5>125.21=p 查《规范》表4.3.5 (表3.2.2—2) 根据《规范》4.3.4 (3.2.2) 所以基础最终总沉降量为26.58mm。 基础沉降计算应注意的问题 1.土的压缩性指标有压缩模量Es、变形模量E 和弹性模量E,我们在使用沉降计算公式时采用的是压缩模量Es,请不要混淆。 ⑴土的压缩模量Es是土样在室内有侧限条件(即不允许产生侧向变 形)试验中竖向压应力σ s 与相应的竖向应变λ s 之比值,即 s s s E λ σ = ⑵土的变形模量E 是土在室外荷载板试验中无侧限条件(即允许产生侧向变形)下,P—s曲线上竖向压力P与竖向沉降s呈线性关系或接近线性关系区段内,竖向压力应力与相应应变之比值,又称总变形模量。 Es与E 有如下关系:

地基沉降量计算

地基沉降量计算 地基变形在其表面形成的垂直变形量称为建筑物的沉降量。 在外荷载作用下地基土层被压缩达到稳定时基础底面的沉降量称为地基最终沉降量。 一、分层总和法计算地基最终沉降量 计算地基的最终沉降量,目前最常用的就是分层总和法。 (一)基本原理 该方法只考虑地基的垂向变形,没有考虑侧向变形,地基的变形同室内侧限压缩试验中的情况基本一致,属一维压缩问题。地基的最终沉降量可用室内压缩试验确定的参数(e i、E s、a)进行计算,有: 变换后得: 或 式中:S--地基最终沉降量(mm); e --地基受荷前(自重应力作用下)的孔隙比; 1 e --地基受荷(自重与附加应力作用下)沉降稳定后的孔隙比; 2 H--土层的厚度。 计算沉降量时,在地基可能受荷变形的压缩层范围内,根据土的特性、应力状态以及地下水位进行分层。然后按式(4-9)或(4-10)计算各分层的沉降量S 。最后将各分层的沉降量总和起来即为地基的最终沉降量: i

(二)计算步骤 1)划分土层 如图4-7所示,各天然土层界面和地下水位必须作为分层界面;各分层厚度必须满足H i≤0.4B(B为基底宽度)。 2)计算基底附加压力p0 3)计算各分层界面的自重应力σsz和附加应力σz;并绘制应力分布曲线。 4)确定压缩层厚度 满足σz=0.2σsz的深度点可作为压缩层的下限; 对于软土则应满足σz=0.1σsz; 对一般建筑物可按下式计算z n=B(2.5-0.4ln B)。 5)计算各分层加载前后的平均垂直应力 p =σsz; p2=σsz+σz 1 6)按各分层的p1和p2在e-p曲线上查取相应的孔隙比或确定a、E s等其它压缩性指标 7)根据不同的压缩性指标,选用公式(4-9)、(4-10)计算各分层的沉降量 S i 8)按公式(4-11)计算总沉降量S。

桩基沉降量计算

桩基沉降量计算 (一)荷载传递法 1、荷载传递法的原理 荷载传递分析法是指,承受竖向压力的单桩通过桩侧摩阻力和端摩阻力将荷载传递扩散到地基土中,根据桩侧摩阻力和端阻力分布函数求解单桩沉降。因此,确定荷载传递函数就成为此法的关键步骤,即确定桩侧摩阻力q与桩侧λ移S的函数,称作荷载传递函数。根据确定的桩侧和桩底荷载的传递函数,得出荷载传递法的函数方程: 其中:U——单桩截面周长;Ap、Ep——单桩截面面积和弹性模量;——桩侧摩阻力。 2、分析评价及改进 荷载传递法概念清晰,适用范Χ广,计算简单方便,担它不能计算土体由桩侧荷载在桩端平面以下产生的压缩量,因而无法确定由于土体压缩而产生的桩端沉降S1 ,阳吉宝在[文献1]中提出了一种改进方法,按照该方法,即可弥补现有荷载传递法δ考虑桩侧摩阻力对桩端沉降的贡献的不足。该法计算简单方便,相互之间有可比性,降低了因土体参数选取不同所产生的人为误差。 (二)弹性理论法 1、弹性理论法基本原理 弹性理论法假设地基土是均匀、连续、各向同性的线弹性半空间体,根据弹性理论方法来研究单桩在竖向荷载作用下桩土之间的作用力与

λ移之间的关系,进而得到桩对土,土对桩的共同作用模式。 2、分析评价及改进 弹性理论法认为桩身λ移等于毗邻土体λ移,桩--土之间不存在相对λ移。但大量工程实践表明,单桩在外荷载作用下,由于桩侧摩阻力和桩端摩阻力对半无限空间土体的作用使土体产生了弹性压缩,从而使桩伴随着周Χ土体产生了共同的弹性压缩变形,当荷载达到使桩侧土体处于塑性变形的临界值时,桩端阻力发挥作用并产生桩端刺入沉降。此时桩-土沿桩长产生相对滑移,又增加一项桩土相对滑移沉降。所以弹性理论法认为桩-土之间?有滑移,是不符合实际的。刘绪普在[文献2]中,由弹塑性理论建立了桩端阻力与桩端刺入沉降的关系公式,使单桩P—S曲线的全过程得以完整地描述。 (三)剪切λ移法 1、基本原理 图1为Cooke(1947)提出的剪切λ移法计算单桩沉降的物理模型,他认为,在工作载荷作用下,桩和桩侧土的λ移相等,桩沉降时周Χ土体亦随之发生剪切变形,剪应力从桩侧表面沿径向向四周扩散到周Χ土体中,剪应力随离开桩侧距离的增大逐渐减小,剪切λ移相对减少,在单桩周Χ形成?斗状λ移分布。 2、分析评价及改进 Cooke提出的基于剪应力传递概念的单桩沉降计算公式,由于忽略了桩端处的荷载传递作用,对短桩误差较大。后来Randolph等(1978)对

桩基沉降计算

桩基沉降计算 一、目前桩基沉降计算方法及存在的问题 1、目前桩基的计算方法 对于群桩基础(桩距小于和等于6倍桩径),在正常使用状态下的沉降计算方法,目前有两大类。一类是按实体深基础计算模型,采用弹性半空间表面荷载下Boussinesq应力解计算附加应力,用分层总和法计算沉降;另一类是以半无限弹性体内部集中作用下的Mindlin解为基础计算沉降。后者主要分为两种:一是Poulos提出的相互作用因子法;第二种是Gedes对Mindlin公式积分而导出集中力作用于弹性半空间内部的应力解,按叠加原理,求得群桩桩端平面下各单桩附加应力和,按分层总和法计算群桩沉降(如《上海地基基础设计规范》DGJ08-11-1999,《建筑地基基础设计规范》GB50007-2002)。 上述方法存在如下一些些问题: (1)实体深基础法,其附加应力按Boussinesq解计算与实际不符(计算应力偏大),且实体深基础模型不能反映桩的距径比、长径比等的影响; (2)相互作用因子法不能反映压缩层范围土的成层性; (3)Geddes应力叠加-分层总和法要求假定侧阻力分布,并给出桩端荷载分担比; (4)-所有的计算方法都依赖经验参数,以上计算方法均是以弹性力学的基本原理为基础,计算的可靠性与经验系数关系密切;

(5)不能考虑上部结构刚度对变形的影响。 2、旧规范沉降计算方法存在的问题 旧规范的沉降计算方法——等效作用分层总和法的一个科学、实用的计算方法,能反映群桩基础的各因素对沉降的影响,如桩的距径比、长径比、桩数等。其存在的问题是对于长桩,特别是桩侧土较好的长桩基础,计算沉降量与实测值误差较大,统计结果发现计算值大,而实测值小。造成这种现象的原因是上部结构的荷载借助于侧摩阻力传至承台投影面积以外,使桩端平面的计算附加应力远小于实际受力。而旧规范的经验系数依据局限于上海地区的资料,当时的超高层建筑很少,对应的长桩基础很少,经验系数存在一定的局限性。 二、调整的内容 新规范维持了旧规范的基本计算方法,针对旧规范沉降计算中存在的问题进行了调整。 1、对于桩中心距不大于6倍桩径的桩基,调整了沉降经验系数。 2、桩的沉降计算考虑施工工艺的影响,原因是群桩基础的变形是桩基影响范围内土的变形,而不同的施工工艺对土的影响不同。 3、增加了单桩、单排桩、疏桩基础基础沉降计算。 三、规范推荐的计算方法 对于桩中心距不大于6倍桩径的桩基础计算,新规范维持了旧规范的基本计算方法,规范共涉及8条,即规范5.5.6至5.5.13条,具体详见规范。

桩基规范沉降经验系数及修正

3桩基沉降经验系数取值的讨论 由上文计算结果及以往的工程实践中发现,桩基规范法为桩基沉降计算时下常规的选择,计算结果往往偏大,计算精度不能很好的满足本地区的工程需要。这主要是由于桩基规范法以便于计算为目的的各种假设,所造成的与实际不符的计算偏差希望通过沉降经验系数来调整。而94桩基规范规定软土地区以外沉降经验系数取1.0,即对等效的明德林解不作修正。08桩基规范通过计算深度范围内压缩模量的当量值查表1.2所得,这主要是由于08版中沉降经验系数的取值方法是基于全国范围内(软土地区上海、天津,一般第四纪土等地区北京、沈阳,黄土地区西安)共计150份已建桩基的沉降观测资料,由实测沉降与计算沉降之比与计算深度范围内压缩模量的当量值的关系给出的表1.2。这使得08规范法的计算结果在全国范围内的适用性得到提高。而在本地区要得到更为精确的计算结果,则需要本地区的沉降经验系数的经验值。本章通过收集的一些本地区的沉降观测资料,分析沉降经验系数取值的影响因素,并通过简单的回归分析得到沉降经验系数的建议取值公式。 3.1 沉降经验系数取值影响因素分析 包括桩基规范、地基规范及《上海市规范—地基基础设计规范(DBJ08-11-1999)》(以下简称“上海规范”)在内都提出了沉降经验系数的取值方法。主要的取值参数有桩端入土深度L和计算深度范围内压缩模量当量值 E, s 94桩基规范软土地区及上海规范的沉降经验系数取值通过桩端入土深度L确定,08桩基规范的沉降经验系数的取值则是通过计算深度范围内压缩模量当量值 E s 确定。下面通过收集的一些本地区的沉降观测资料讨论在西安黄土地区桩端入土深度L对沉降经验系数?有无影响及通常认为的主要影响因素 E对?的影响规 s 律。 表3.1列出了本地区部分工程由沉降观测最终沉降量及理论计算值反算得的沉降经验系数?、L及 E。 s

桩基设计计算

5.5 桩基沉降计算 5.5.1建筑桩基沉降变形计算值不应大于桩基沉降变形允许值。 5.5.2桩基沉降变形可用下列指标表示: 1 沉降量; 2 沉降差; 3 整体倾斜:建筑物桩基础倾斜方向两端点的沉降差与其距离之比值; 4局部倾斜:墙下条形承台沿纵向某一长度范围内桩基础两点的沉降差与其距离之比值。 5.5.3计算桩基沉降变形时,桩基变形指标应按下列规定选用: 1 由于土层厚度与性质不均匀、荷载差异、体型复杂、相互影响等因素引起的地基沉 降变形,对于砌体承重结构应由局部倾斜控制; 2 对于多层或高层建筑和高耸结构应由整体倾斜值控制; 3 当其结构为框架、框架-剪力墙、框架-核心筒结构时,尚应控制柱(墙)之间的 差异沉降。 5.5.4建筑桩基沉降变形允许值,应按表5.5.4规定采用。 表5.5.4建筑桩基沉降变形允许值 H为自室外地面算起的建筑物高度 注:0l为相邻柱(墙)二测点间距离g 5.5.5对于本规范表5.5.4中未包括的建筑桩基沉降沉降变形允许值,应根据上部结构对桩基沉降变形的适应能力和使用要求确定。 Ⅰ桩中心距不大于6倍桩径的桩基 5.5.6对于桩中心距不大于6倍桩径的桩基,其最终沉降量计算可采用等效作用分层总和法。

等效作用面位于桩端平面,等效作用面积为桩承台投影面积,等效作用附加压力近似取承台底平均附加压力。等效作用面以下的应力分布采用各向同性均质直线变形体理论。计算模式如图5.5.6所示,桩基任一点最终沉降量可用角点法按下式计算: ()()∑-∑??=??==--=n i si j i j i ij ij m j e e E z z p s s j 1 111 '0ααψψψψ(5.5.6) 式中s ——桩基最终沉降量(mm); s '——采用布辛奈斯克解,按实体深基础分层总和法计算出的桩基沉降量(mm); ψ——桩基沉降计算经验系数,当无当地可靠经验时可按本规范第5.5.11条确定; e ψ——桩基等效沉降系数,可按本规范第5.5.9条确定; m ——角点法计算点对应的矩形荷载分块数; j p 0——第j 块矩形底面在荷载效应准永久组合下的附加压力(kPa); n ——桩基沉降计算深度范围内所划分的土层数; si E ——等效作用面以下第i 层土的压缩模量(MPa),采用地基土在自重压力至自重压力 加附加压力作用时的压缩模量; ij z 、()j i z 1-——桩端平面第j 块荷载作用面至第i 层土、第i -1层土底面的距离(m); ij α、()j i 1-α——桩端平面第j 块荷载计算点至第i 层土、第i -1层土底面深度范围内平 均附加应力系数,可按本规范附录D 选用。 5.5.7计算矩形桩基中点沉降时,桩基沉降量可按下式简化计算: ∑ -???='??==--n i si i i i i e e E z z p s s 1 1 104ααψψψψ(5.5.7) 式中0p ——在荷载效应准永久组合下承台底的平均附加压力; i a 、1-i a ——平均附加应力系数,根据矩形长宽比b a /及深宽比 c i i B z b z 2= ,c i i B z b z 1 12--=,可按本规范附录D 选用。 5.5.8桩基沉降计算深度n z 应按应力比法确定,即计算深度处的附加应力z σ与土的自重应力c σ应符合下列公式要求: c z σσ2.0≤(5.5.8-1) j m j j z p a 01∑==σ(5.5.8-2) 式中j a ——附加应力系数,可根据角点法划分的矩形长宽比及深宽比按本规范附录D 选用。 5.5.9桩基等效沉降系数ψ可按下列公式简化计算:

桩基沉降计算

桩基沉降计算 5.5.6~5.5.9 桩距小于和等于6 倍桩径的群桩基础,在工作荷载下的沉降计算方法,目前有两大类。一类是按实体深基础计算模型,采用弹性半空间表面荷载下Boussinesq 应力解计算附加应力,用分层总和法计算沉降;另一类是以半无限弹性体内部集中力作用下的Mindlin 解为基础计算沉降。后者主要分为两种,一种是Poulos 提出的相互作用因子法;第二种是Geddes 对Mindlin 公式积分而导出集中力作用于弹性半空间内部的应力解,按叠加原理,求得群桩桩端平面下各单桩附加应力和,按分层总和法计算群桩沉降。 上述方法存在如下缺陷:(1)实体深基础法,其附加应力按Boussinesq 解计算与实际不符(计算应力偏大),且实体深基础模型不能反映桩的长径比、距径比等的影响;(2)相互作用因子法不能反映压缩层范围内土的成层性;(3)Geddes 应力叠加―分层总和法对于大桩群不能手算,且要求假定侧阻力分布,并给出桩端荷载分担比。针对以上问题,本规范给出等效作用分层总和法。 1 运用弹性半无限体内作用力的Mindlin 位移解,基于桩、土位移协调条件,略去桩身弹性压缩,给出匀质土中不同距径比、长径比、桩数、基础长宽比条件下刚性承台群桩的沉降数值解: 3 两种沉降解之比: 相同基础平面尺寸条件下,对于按不同几何参数刚性承台群桩Mindlin 位移解沉降计算值W 与不考虑群桩侧面剪应力和应力不 M 二者之比为等效沉降系数ψe 。按实体深基础Boussinesq 解分层总和法计算沉扩散实体深基础Boussinesq 解沉降计算值W B 降W ,乘以等 B 效沉降系数ψe,实质上纳入了按Mindlin 位移解计算桩基础沉降时,附加应力及桩群几何参数的影响,称此为等效作用分层总和法。

(整理)常用的地基沉降计算方法

6.3 常用的地基沉降计算方法 这里所讲的地基沉降量是指地基最终沉降量,目前常用的计算方法有:弹性力学法、分层总和法、应力面积法和考虑应力历史影响的沉降计算法。所谓最终沉降量是地基在荷载作用下沉降完全稳定后的沉降量,要达到这一沉降量的时间取决于地基排水条件。对于砂土,施工结束后就可以完成;对于粘性土,少则几年,多则十几年、几十年乃至更长时间。 6.3.1 计算地基最终沉降量的弹性力学方法 地基最终沉降量的弹性力学计算方法是以Boussinesq 课题的位移解为依据的。在弹性半空间表面作用着一个竖向集中力P 时,见图6-5,表面位移w (x, y, o )就是地基表面的沉降量s : E r P s 2 1 μπ-? = (6-8) 式中 μ—地基土的泊松比; E —地基土的弹性模量(或变形模量E 0); r —为地基表面任意点到集中力P 作用点的距离,22y x r += 。 对于局部荷载下的地基沉降,则可利用上式,根据叠加原理求得。如图6-6所示,设荷载面积A 内N (ξ,η)点处的分布荷载为p 0(ξ,η),则该点微面积上的分布荷载可为 集中力P= p 0(ξ,η)d ξd η代替。于是,地面上与N 点距离r =2 2)()(ηξ-+-y x 的 M (x, y )点的沉降s (x, y ),可由式(6-8)积分求得: ?? -+--= A y x d d p E y x s 2200 2 )()(),(1),(ηξη ξηξμ (6-9) 从式(6-9)可以看出,如果知道了应力分布就可以求得沉降;反过来,若沉降已知又 图6-5 集中力作用下地基表面的沉降曲线 图6-6 局部荷载下的地面沉降 (a )任意荷载面;(b )矩形荷载面

桩基沉降计算方法及存在的问题

桩基沉降计算方法及存在的问题 桩基沉降计算方法及存在的问题 一、目前桩基沉降计算方法及存在的问题- 1、目前桩基的计算方法- Poulos 《建筑 比;- (4)-所有的计算方法都依赖经验参数,以上计算方法均是以弹性力学的基本原理为基础,计算的可靠性与经验系数关系密切; (5)不能考虑上部结构刚度对变形的影响。 2、旧规范沉降计算方法存在的问题

旧规范的沉降计算方法——等效作用分层总和法的一个科学、实用的计算方法,能反映群桩基础的各因素对沉降的影响,如桩的距径比、长径比、桩数等。其存在的问题是对于长桩,特别是桩侧土较好的长桩基础,计算沉降量与实测值误差较大,统计结果发现计算值大,而实测值小。造成这种现象的原因是上部结构的荷载借助于侧摩阻力传至承台投影面积以外,使桩端平面的计算附加应力远小于实际受力。 1 2 3 1、计算方法假设的理解 地基基础工程的计算方法基本都有假设条件,规范推荐的沉降计算方法主要假设如下: (1)将作用在承台底的附加压力,借助于群桩等效传递到桩端平面。此假设存在的问题是承台底的附加压力明显大于桩端平面的附加压力,桩越长、桩侧土的性

质越好,附加荷载传至承台投影面积外的比例越高,桩端的附加应力较承台底越低。 (2)等效作用面积为承台的投影面积。实际上,由于桩侧摩阻力向群桩外包线外传递,桩端等效作用平面大于承台投影面积,桩侧土越好,误差越大。 (3)不考虑桩身压缩。群桩在荷载作用一定产生压缩,但其占总沉降的比例很小。 2 3 ωM 与按等代墩基Boussinesq解计算沉降量ωB之比,用以反映Mindlin解应力分布对计算沉降的影响。 1)ωM和ωB (1)运用弹性半无限体内作用力的Mindlin位移解,基于桩、土位移协调条件,略去桩身弹性压缩,给出匀质土中不同距径比、长径比、桩数、基础长宽比条件下

桩基规范

《桩基规范》 对于桩中心距不大于6倍桩径的桩基见5. 5. 6 ~5. 5. 7条,桩基任意一点(中点)最终沉降量可用角点法按下式计算: (拼。为桩基等效沉降系数见5. 5. 9~5. 5. 10条。5. 5. 11条中,无当地可靠经验时,桩基沉降计算经验系数按表5. 5. 11选用) E、为沉降计算深度范围内压缩模量的当量值,可按下式计算(与《地基规范》相同): E、一yA/y生 一·一式j 单桩、单排桩、疏桩基础及见5.5.145.5.15条(最终沉降量要加上桩身压缩量s。) 具体分为承台底地基土不分担荷载的桩基和承台地基土分担荷载的复合桩基,前者考虑由基桩引起的附加应力,后者需考虑承台底土压力对地基中某点的附加应力和基桩产生的附加应力叠加。 软土地基减沉复合地基见5.6.2条(考虑桩土共同作用)。 《地基规范》 5.3.5计算地基变形时,地基内的应力分布,可采用各项同性均质线性变形体理论。其最终变形量可按下式进行: 一沉降计算经验系数,根据地区沉降观测资料经验确定,无地区经验时可根据变形计算深度范围内压缩模量的当量值E、按表5. 3. 5取值。 5.3.6变形计算深度范围内压缩模量的当量值E、应按下式计算 5.3.75.3.8条有关计算深度的规定 复合地基最终变形量按下式计算: —复合地基沉降计算经验系数,根据地区沉降观测资料经验确定,无地区经验时可根 据变形计算深度范围内压缩模量的当量值E、按表7.2.10取值。 7.2.11变形计算深度范围内压缩模量的当量值E.s,应按下式计算: 复合地基变形计算时,复合土层的压缩模量可按下式计算: 《地基处理规范》中的规定与《地基设计规范》相同 《复合地基技术规范》 5.3沉降计算 5.3.1复合地基的沉降由垫层压缩变形量、加固区复合土层压缩变形量(s,)和加固区下卧土层压缩变形量(s2)组成。当垫层压缩变形量小,且在施工期已基本完成时,可忽略不计。复合地基沉降可按下式计算: 5.3.2复合地基加固区复合土层压缩变形量(( s})宜根据复合地基类型分别按下列公式计算: 散体材料桩复合地基和柔性桩复合地基,可按下列公式计算: 2刚性桩复合地基可按下式计算: 5.3.3复合地基加固区下卧土层压缩变形量(S2,可按下式计算: 《地基设计规范》采用分层总和法计算地基变形最终沉降量的步骤 1.求基底附加应力 2. 2.估算地基变形计算深度。 3. 3.计算地基沉降量并复核地基变形计算深度 4. 4.确定最终沉降量 5.根据E、查表得出拼,最终沉降量为s=qr}s

桩基沉降计算方法探讨

桩基沉降计算方法探讨 摘要:桩基础沉降计算方法很多,国内外众多学者对桩基沉降计算做了大量理论分析和测试研究。本文针对桩基沉降计算中出现的问题进行了分析研究,提出了对策和建议,并给出了桩基沉降计算的两种实用方法,即基于应力路径的实用沉降计算方法和考虑应力应变时间效应的桩基长期沉降计算方法。 关键词:桩基;沉降计算; 应力路径;时间效应 1 引言 桩基沉降计算方法很多,有单桩的分层总和法、明德林—盖得斯法、荷载传递分析法、群桩的等代墩基法、明德林解法、等效作用分层总和法等方法。《建筑桩基技术规范》(JGJ94-2008)将桩基沉降计算分为d s a 6≤的密桩和单桩、单排桩、d s a 6≥疏桩两类,并给出了相应的计算公式。针对密桩桩基、疏桩桩基两类桩型沉降计算方法,分析了沉降压缩层的分层原则、沉降计算点、应力计算点的选取原则;探讨了附加应力、沉降计算深度、压缩层厚度等指标的影响因素、计算指标取值,并给出了压缩层厚度计算公式;对长桩疏桩桩基,分析了沉降量的变化规律,提出了减少桩基沉降的建议和应对措施。土体的应力应变时间效应对桩基长期沉降有重要影响。在长期荷载作用下桩基的沉降主要包括两个部分:桩尖刺入量和桩底土体的蠕变压缩沉降。采用Mesri 蠕变模型描述土体的蠕变行为,用桩的Mindlin 应力公式计算桩端和桩侧荷载在桩端平面以下产生的附加应力,用Boussinesq 应力公式计算承台分担荷载产生的应力。分别给出了桩尖刺入量和桩底土体蠕变压缩量的计算方法,从而提出了一种考虑土体蠕变效应的桩基长期沉降计算方法。为提高对沉降计算的可靠性与方便性,提出了一种基于应力路径的实用沉降计算方法。依据应力路径法原理,采用由Skempton (司开普顿)孔隙水压力方程得出的有效应力路径方程来表达应力路径,得出了沉降计算的实用计算式。所提出的计算式具有形式简洁、参数易确定、方便实用等优点。 2 桩基沉降考虑因素 2.1 附加应力 2.1.1 对于d s a 6≤的密桩 对于d s a 6≤的密桩,其最终沉降量计算可采用等效作用分层总和法。等效作用面位于桩端平面,等效作用面积为桩承台投影面积,等效作用附加压力近似取承台底平均附加压力,等效作用面以下的土体,采用布辛奈斯克解计算附加应力。

桩基础计算

桩基础计算 基础采用桩基础设计.根据桩的承载性状是端承桩考虑,施工方法采用灌注桩.由于端承型桩基持力层坚硬,桩顶沉降较小,桩侧摩阻力不易发挥,桩顶荷载基本上通过桩身直接传到持土层上.而桩端处承压面积很小,各桩端的压力彼此互不影响,因此近似认为端承型群桩基础中各基桩的工作性状与单桩基本一致;同时由于桩的变形很小,桩间土基本不承受荷载,群桩基础的承载力就等于各单桩的承载力之和;群桩的沉降量也与单桩基本相同,即群桩效应系数为1.(一)桩根数为3时,钻孔编号为ZK-1. 单桩竖向承载力设计值: F=F1+F2=(3200*2.5+15*1.5+998)*1.2=10825KN N=F/3=10825/3=3608KN F ----------桩顶上部总荷载,包括设备正常运转时的设备重要及基础自重; F1----------设备正常运转时的设备重要,包装设备自重及物料重量等; F2----------基础自重,包括承台及上部结构自重; N-----------单桩最小竖向承载力设计值. 一、基本资料: 1、工程概述:详见地质报告:《冀东水泥丰润公司2*5000t/d水泥生产线场地岩土工程地质勘察 报告书》(详细勘察阶段) 2、土层参数: qsik ----------- 桩侧极限侧阻力标准值(kPa); qpk ----------- 桩端极限端阻力标准值(kPa); ψs、ψp ------ 大直径桩侧阻力、端阻力尺寸效应系数; (1)、干作业钻孔灌注桩(大直径,d≥0.8m) 土层名称 qsik qpk ψs ψp 填土 0 0 0 0 粘性土 0 0 0 0 粉土 0 0 0 0 中风化花岗岩 0 3800 0 0.810 3、钻孔参数: (1)、ZK-1 孔口标高Hd=69.27m 土层名称层底深度土层层厚 填土 0.30 0.30 粘性土 14.50 14.20 粉土 16.40 1.90 中风化花岗岩 20.20 3.80 4、设计时执行的规范: 《建筑桩基技术规范》(JGJ 94-94)以下简称桩基规范 二、计算结果: γs、γp ------ 分别为桩侧阻抗力分项系数、桩端阻抗力分项系数; Ht ------------ 桩顶面标高(M); d、D ---------- 分别为桩身直径、扩大头直径(mm);

地基沉降量计算

地基沉降量计算 令狐采学 地基变形在其表面形成的垂直变形量称为建筑物的沉降量。 在外荷载作用下地基土层被压缩达到稳定时基础底面的沉降量称为地基最终沉降量。 一、分层总和法计算地基最终沉降量 计算地基的最终沉降量,目前最常用的就是分层总和法。 (一)基本原理 该方法只考虑地基的垂向变形,没有考虑侧向变形,地基的变形同室内侧限压缩试验中的情况基本一致,属一维压缩问

题。地基的最终沉降量可用室内压缩试验确定的参数(ei、Es、a)进行计算,有: 变换后得: 或 式中:S地基最终沉降量(mm); e1地基受荷前(自重应力作用下)的孔隙比; e2地基受荷(自重与附加应力作用下)沉降稳定后的孔隙比; H土层的厚度。 计算沉降量时,在地基可能受荷变形的压缩层范围内,根据土的特性、应力状态以及地下水位进行分层。然后按式(49)或(410)计算各分层的沉降量Si。最后将各分层的沉降量总和起来即为地基的最终沉降量:

(二)计算步骤 1)划分土层 如图47所示,各天然土层界面和地下水位必须作为分层界面;各分层厚度必须满足Hi≤0.4B(B为基底宽度)。 2)计算基底附加压力p0 3)计算各分层界面的自重应力σsz和附加应力σz;并绘制应力分布曲线。 4)确定压缩层厚度 满足σz=0.2σsz的深度点可作为压缩层的下限; 对于软土则应满足σz=0.1σsz; 对一般建筑物可按下式计算zn=B(2.50.4lnB)。

5)计算各分层加载前后的平均垂直应力 p1=σsz;p2=σsz+σz 6)按各分层的p1和p2在ep曲线上查取相应的孔隙比或确定a、Es等其它压缩性指标 7)根据不同的压缩性指标,选用公式(49)、(410)计算各分层的沉降量Si 8)按公式(411)计算总沉降量S。 分层总和法的具体计算过程可参例题41。 例题4-1已知柱下单独方形基础,基础底面尺寸为 2.5×2.5m,埋深2m,作用于基础上(设计地面标高处)的轴向荷载N=1250kN,有关地基勘察资料与基础剖面详见下图。试用单向分层总和法计算基础中点最终沉降量。

独立基础沉降量计算

A 独立基础沉降计算 A.1 计算基础底面的附加压应力0p : 基础自重及其上的土重为: k G G Ad γ=, G γ—回填土和基础加权平均重度(一般取20kN /m 3); A —基础底面积(A a l =?); d —基础埋深。 如地下水面超过基础底面时应扣除水浮力10k G w G Ad Ah γ=-, w h —水位距基础底面距离。 基础底面平均压力为:k k k F G p A += , k F ——上部荷载准永久值组合; 基础底面自重压力为:ch m d σγ=, m γ——基底以上原状土加权平均重度或浮重度;i i m i h h γγ= ∑∑。 基础底面的附加压力为:0k ch p p σ=- A.2 确定分层厚度、沉降计算深度: 由b 查《基规》第29页表5.3.6 得z ?。当①无相邻荷载影响;②1.030.0m b m ≤≤;同时满足时,按《基规》第29页式5.3.7:(2.50.4ln )n z b b =-。基底以下各层土的层底至基础底面距离为i z ,最后一层i z 的取值使得 i n z z ≥∑。 A.3 列表计算分层沉降量: b 始终取矩形基础短边, l 1 = l /2 ,b 1 = b /2 。i z 为层底埋深(各层土的层底至基础底面),表格最底行i n z z =,倒数第二行i n z z z =-?。第4列为4乘以查《基规》第113页表K.0.1-2得到的平均附加应力系数i a 。 上表中l 1 = l /2 = 2.50m ,b 1 = b /2 = 2.00m ;z n = 7.78m 范围内的计算沉降量∑?s = 95.74 mm, z = 7.18m 至

桩基沉降计算方法及存在的问题

桩基沉降计算方法及存在的问题 一、目前桩基沉降计算方法及存在的问题 1、目前桩基的计算方法 对于群桩基础(桩距小于和等于6倍桩径),在正常使用状态下的沉降计算方法,目前有两大类。一类是按实体深基础计算模型,采用弹性半空间表面荷载下Boussine sq应力解计算附加应力,用分层总和法计算沉降;另一类是以半无限弹性体内部集中作用下的Mindlin解为基础计算沉降。后者主要分为两种:一是Poulos提出的相互作用因子法;第二种是Gedes对Mindlin公式积分而导出集中力作用于弹性半空间内部的应力解,按叠加原理,求得群桩桩端平面下各单桩附加应力和,按分层总和法计算群桩沉降(如《上海地基基础设计规范》DGJ08-11-1999,《建筑地基基础设计规范》GB50007-2002)。 上述方法存在如下一些些问题: (1)实体深基础法,其附加应力按Boussinesq解计算与实际不符(计算应力偏大),且实体深基础模型不能反映桩的距径比、长径比等的影响; (2)相互作用因子法不能反映压缩层范围土的成层性; (3)Geddes应力叠加-分层总和法要求假定侧阻力分布,并给出桩端荷载分担比; (4)所有的计算方法都依赖经验参数,以上计算方法均是以弹性力学的基本原理为基础,计算的可靠性与经验系数关系密切; (5)不能考虑上部结构刚度对变形的影响。 2、旧规范沉降计算方法存在的问题 旧规范的沉降计算方法——等效作用分层总和法的一个科学、实用的计算方法,能反映群桩基础的各因素对沉降的影响,如桩的距径比、长径比、桩数等。其存在的问题是对于长桩,特别是桩侧土较好的长桩基础,计算沉降量与实测值误差较大,统计结果发现计算值大,而实测值小。造成这种现象的原因是上部结构的荷载借助于侧摩阻力传至承台投影面积以外,使桩端平面的计算附加应力远小于实际受力。而旧规范的经验系数依据局限于上海地区的资料,当时的超高层建筑很少,对应的长桩基础很少,经验系数存在一定的局限性。 二、调整的内容 新规范维持了旧规范的基本计算方法,针对旧规范沉降计算中存在的问题进行了调整。 1、对于桩中心距不大于6倍桩径的桩基,调整了沉降经验系数。 2、桩的沉降计算考虑施工工艺的影响,原因是群桩基础的变形是桩基影响范围内土的变形,而不同的施工工艺对土的影响不同。 3、增加了单桩、单排桩、疏桩基础基础沉降计算。 三、规范推荐的计算方法 对于桩中心距不大于6倍桩径的桩基础计算,新规范维持了旧规范的基本计算方法,规范共涉及8条,即规范5.5.6至5.5.13条,具体详见规范。 对于规范推荐的计算方法,应重点理解以下几方面内容。 1、计算方法假设的理解 地基基础工程的计算方法基本都有假设条件,规范推荐的沉降计算方法主要假设如下: (1)将作用在承台底的附加压力,借助于群桩等效传递到桩端平面。此假设存在的问题是承台底的附加压力明显大于桩端平面的附加压力,桩越长、桩侧土的性质越好,附加荷载传至承台投影面积外的比例越高,桩端的附加应力较承台底越低。

YJK沉降计算的使用要点及案例

YJK 基础沉降计算的使用要点及案例 1 沉降计算的有关规范规定 (1)沉降验算的规范规定 问题1:哪些需要验算沉降 《建筑地基基础设计规范》第 3.0.2 条规定“设计等级为甲级、乙级的建筑物,均应按地基变形设 计”,并规定六类情形下的丙类建筑物,“仍应作变形验算”。 是否需要进行基础沉降验算,软件不自动判断,由用户根据上述规范条件判断。 问题2:建筑物沉降验算满足要求的判断标准 所谓地基变形验算,即要求地基的变形计算值在允许的范围内: ?≤[?] (1) 式中: [?]—地基的允许变形值,按《建筑地基基础设计规范》5.3.4 条取值。 《地基规范》表5.3.4 给出了建筑物的地基变形允许值,控制指标包括沉降量、沉降差、倾斜、局部倾 斜。 《桩基规范》表5.5.4 给出了建筑桩基沉降变形允许值,控制指标包括沉降量、沉降差、倾斜、局部倾 斜。 YJK 基础软件统一给出所有基础的沉降验算结果,见下图: 沉降量应查看沉降等值线图,软件以等值线加数值的方式给出所有基础的沉降量计算结果。注意两点:1)桩沉降是包括了土沉降及桩身压缩的总值;2)考虑土回弹再压缩情况(一般是基础埋深超过5 米情况),沉降总值要查看【沉降+回弹再压缩变形等值线图】。

E 倾斜指基础倾斜方向两端点的沉降差与其距离的比值;局部倾斜指砌体承重结构沿纵向 6m ~10m 内基础两点的沉降差与其距离的比值。所以对于沉降差、倾斜、局部倾斜结果,用户可以通过软件的【两点沉降差】来自行检查。 (2)沉降计算方法的规范规定 《地基规范》第 5.3.5 条 计算地基变形时,地基内的应力分布,可采用各向同性均质线性变形体理论。其最终变形量可按下式进行计算: n p - - s = ψ s , = ψ ∑ (z αi - z αi -1 ) s s i i -1 i =1 E si 式中: s ——地基最终变形量(mm); s′——按分层总和法计算出的地基变形量(mm); ψs ——沉降计算经验系数,根据地区沉降观测资料及经验确定,无地区经验时可根据变形计算深度范 围内压缩模量的当量值(E s )、基底附加压力按表 5.3.5 取值; n ——地基变形计算深度范围内所划分的土层数(图 5.3.5); p 0——相应于作用的准永久组合时基础底面处的附加压力(kPa); E si ——基础底面下第 i 层土的压缩模量(MPa),应取土的自重压力至土的自重压力与附加压力之和的压力段计算; z i 、z i-1——基础底面至第 i 层土、第 i-1 层土底面的距离(m); a i 、a i-1——基础底面计算点至第 i 层土、第 i-1 层土底面范围内平均附加应力系数,可按本规范附录 K 采用。 从《地基规范》第 5.3.5 条总结沉降计算的基本要点: 1) 地基内的应力分布,可采用各向同性均质线性变形体理论。即“弹性半无限体地基模型”的 Boussinesq 解计 算表面力(地梁、独基、筏板单元)引起的应力分布和 Mindlin 解计算空间任意力(桩侧阻力和桩端阻力)引起的应力分布; 2) 按分层总和法计算出地基变形量,并引入沉降计算经验系数,对分层总和法的结果进行修正; 3) 地质资料参数中影响沉降结果的最重要指标是土的压缩模量(MPa),应取土的自重压力至土的自重 压力与附加压力之和的压力段计算。 《地基规范》附录 R 桩基础最终沉降量计算 R.0.1 桩基础最终沉降量的计算采用单向压缩分层总和法: m n j σ ?h s = ψp ∑∑ j ,i j ,i j =1 i =1 sj ,i

相关主题