搜档网
当前位置:搜档网 › 平面向量的概念、运算及平面向量基本定理

平面向量的概念、运算及平面向量基本定理

平面向量的概念、运算及平面向量基本定理
平面向量的概念、运算及平面向量基本定理

05—平面向量的概念、运算及平面向量基本定理

突破点(一)平面向量的有关概念

知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量

考点

平面向量的有关概念

[典例]⑴设a , b 都是非零向量,下列四个条件中,使

向=而成立的充分条件是(

)

A . a =- b

B . a // b

C . a = 2b

D . a // b 且 |a|= |b| ⑵设a o 为单位向量,下列命题中:①若 a 为平面内的某个向量,贝U a = |a| a o ;②若a 与a o 平行,则 a = |a|a o ;③若a 与a o 平行且|a|= 1,则a = a o .假命题的个数是(

)

A . o

B . 1

C . 2

D . 3

[解析]⑴因为向量合的方向与向量a 相同,向量£的方向与向量b 相同,且£,所以向量a 与

|a| |b| |a| |b|

向量b 方向相同,故可排除选项 A , B , D.当a = 2b 时,a =警=b

,故a = 2b 是耳=g 成立的充分条件.

|a| |2b| |b| |a| |b|

(2)向量是既有大小又有方向的量,

a 与|a|a o 的模相同,但方向不一定相同,故①是假命题;若 a 与a o

平行,则a 与a o 的方向有两种情况:一是同向,二是反向,反向时 a =- |a|a o ,故②③也是假命题.综上

所述,假命题的个数是 3.

[答案](1)C

(2)D

_ _[易错提醒」_____________ _____________ 厂7i)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小

[…(2)大小与方向是向量的两个要素?j 分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上.

突破点(二)平面向量的线性运算

1.

向量的线性运算: 加法、减法、数乘 2.

平面向量共线定理: 向量b 与a(a ^ o )共线的充

要条件是有且只有一个实数

人使得b =

1

[答案](1)D

⑵1

—…_[方法技巧丄—――――_—_ _―_—_ _―_……_ _―_…_ _―_…_ _―_…_ _―_…「

i 1.平面向量的线性运算技巧: ⑴不含图形的情况:可直接运用相应运算法则求解.

⑵含图形的情况:将它们转化到 ]

三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示岀来求解.

2?利用平面向量的线性运算求参数的一般思路: (1)没有图形的准确作出图形,确定每一个点的位置. (2)利用平行四 边形法则或三角形法贝U 进行转化丄转化为要求的向量形式._ _ (3) 比较,观察可知所求.__________

考点二

平面向量共线定理的应用

[例2Lu 设两个非零向J a 和b 不共鈿

平面向量的线性运算

…uuur …"uLu r 考点一

~~uuur ----- u uur

[例 1] (1)在厶 ABC 中,AB = c , AC = b.若点 D 满足 BD = 2 DC

12

5 2 A.3b + 3C

B.gC — 3b 2 1 2 1

C.gb — 3c

D.gb + 3C uuuu 1 uuur

⑵在△ ABC 中,N 是AC 边上一点且 AN = NC , P 是BN 上一点, 数m 的值是 ______________ .

uuur umr [解析](1)由题可知BC = AC -

uuur

+ BD = c +

2 1 —c)= 3b + §c,故选 D. uuuu 1 uuur

(2)如图,因为AN = 2 NC ,所以

uuur 2 uuuu

m AB + 3 AN ?因为B ,P ,N 三点共线,

―uuur ,贝U AD =( )

UULT

uuur 2 uuur

若 AP = m AB + 9 AC ,则实

2 uuir 2 uuir uur

uuur uuur uuur UULT AB = b — c , '^BD = 2 DC ,「.BD = 3 BC = 3(b — c),则 AD = AB uuuu 1 uuur AN = 3 AC ,所以 2 所以m +3= 1,则 UULT uuur 2 uuur AP = m AB + 9 AC =

1 m =

3.

(1)若AB = a+ b, BC = 2a + 8b, CD = 3(a—b).求证:A, B, D 三点共线.

⑵试确定实数k ,使k a +b 和a + kjb U 共线.

uuiu

[解] ⑴证明:因为 AB = a + b , BC = 2a + 8b , CD = 3(a — b),

uuir uuir uuu uuur uuir UULT

所以 BD = BC + CD = 2a + 8b + 3(a — b) = 5(a + b)= 5 AB ,所以 AB , BD 共线. uuur uuir

又AB 与BD 有公共点B ,所以A , B , D 三点共线.

(2)因为ka + b 与a + kb 共线,所以存在实数 人 使ka + b = "a + kb),

k =人 即

解得k = ±1.即卩k = 1或一1时,ka + b 与a + kb 共线.

1 = "k

_

[方法技巧」_____________

_____________

-…-…----…""平面向量共线定理的三个应用…—-…—-…—]

! u UU 证明[向量共线:对于非U 向量 a

, b ,若存在实数 入使a = "b 则a 与b 共线.⑵证明三点共线:若存在实数

入j

使AB =入AC , AB 与AC 有公共点A ,则A , B , C 三点共线.⑶求参数的值:利用向量共线定理及向量相等的条件 列方程(组)求参数的值.

[提醒]证明三点共线时,需说明共线的两向量有公共点.

突破点(三)平面向量基本定理

如果e i , e 2是同一平面内的两个不共线向量, 那么对于这一平面内的任意向量

a , 乃,尼,使a =力e i +尼e 2.其中,不共线的向量 e i , e ?叫做表示这一平面内所有向量的一 基底的概念

是共线向量,

___ [易错提醒丄_—___―_—___―_—___―_—___―_ 葆平面内所有向量的一组基底必须是两个不共线的向量,不能含有零向量

平面向量基本定理的实质及解题思路

平面向量基本定理:

有且只有一对实数 组基底.

考点一

[例1]如果 一组基底的是(

A . e i 与 e i + e 2 e i , e 2是平面内一组不共线的向量, )

B . e i — 2e 2 与 e i + 2e 2

那么下列四组向量中, C . e i + e 2 与 e i — e 2

不能作为平面内所有向量的 D . e i + 3e 2 与 6e 2+ 2e i

[解析]

1 =入 选项A 中,设e i + e 2=入e 则

1 = 0

无解;选项B 中,设 1 =入 e i

— 2e 2 = "e i + 2e 2),则

—2 = 2"

无解;选项 1=" C 中,设 e i + e 2= "e i — e 2),贝U

1 =—

无解;选项D 中,

1

e i + 3e 2 = 2(6e 2+ 2e i ),所以两向量

不能作为平面内所有向量的一组基底. [答案]D

考点二

[例2] (2016江西南昌二模 中点为Q , BQ 的中点为R , CR i 亠 A. ?a + [解析]如图, uur AP = 平面向量基本定理的应用 "宀 uur … uur

AC )如图,在厶ABC 中uF AB = a , 的中点恰为P ,则AP =(

2 4 4 = C.?a + 7b D.?a + 7b uuur uuiu uuu AC + CP = b + PR ,① i 2

B.3a + 3b 连接BP ,则 uuur uur BP = a + RP uuur uur 1 I AP =, uuur '—RB uuur

①+②,得 2 AP = a + b — RB ,③ uur 1 uuu 1 uur uur 1

1 uur 又 RB = ?QB = 2( AB — AQ ) = ? a — ? AP ,④

uuur 1 1 uur

将④代入③,得2 AP = a + b — 2 a — 2 AP , uur 2 4

解得AP =尹+尹.[答案]C [方法技巧]

uuir AB +

71

=b ,

(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基

本定理解决问题的一般思路是先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.

」一一一一一一-—一突破点7四亍…平面向量的

1 .平面向量的坐标运算:(1)向量加法、减法、数乘的坐标运算及向量的模;(2)向量坐标的求法

2.平面向量共线的坐标表示

考点一平面向量的坐标运算

----------------------------- ------- u utr ------ uttr ------- uuu uuuu uuu [例1]已知A(—2,4), B(3 , —1), C(—3, —4).设AB = a, BC = b, CA = c,且CM

= 3c, CN

uuuu

=—2b, (1)求3a+ b—3c; (2)求满足a= mb + nc的实数m , n ; (3)求M , N的坐标及向量MN的坐标.

[解]由已知得a= (5, —5), b= (—6, —3), c= (1,8).

(1)3a+ b—3c= 3(5,—5) + (—6,—3) —3(1,8) = (15—6—3, —15—3—24) = (6, —42).

—6m + n = 5, m=—1,

⑵,.mb+ nc = (—6m + n,—3m+ 8n) ,「. 解得

—3m + 8n=—5, n = 一 1.

即所求实数m的值为一1, n的值为一1.

uuuu uuuu uuir uuuu UJIT

⑶设O 为坐标原点,T CM = OM —OC = 3c,—OM = 3c+ OC = (3,24) + (—3, —4) = (0,20),即

uuir uuur uttr uuur uuir

M (0,20).又?/ CN = ON —OC =—2b,—ON =—2b + OC = (12,6) + (—3,—4) = (9,2),

uuuu

即N(9,2). —MN = (9, —18).

[方法技巧]

厂-一—…--一---耳面向量坐标运算的技巧—…—- ! (1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求

向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解.

\ _____ __________________ _ _ ______________ _____

考点二平面向量共线的坐标表示

[例2]已知a= (1,0), b= (2,1).

(1) 当k为何值时,ka —b与a+ 2b共线;

uuir utir

⑵若AB = 2a+ 3b, BC = a + mb,且A, B, C三点共线,求m的值.

[解](1) --a= (1,0), b = (2,1), —

1

a + 2b= (1,0) + 2(2,1) = (5,2), vka—

b 与a+ 2b 共线,—2(k —2) —(—1) x 5 = 0 ,?*= —

uuir uuir

(2) AB = 2a+ 3b= 2(1,0) + 3(2,1) = (8,3) , BC = a+ mb= (1,0) + m(2,1)= (2m + 1, m).

uutr uuir 3

'?A , B , C 三点共线,—AB //BC , ^8m—3(2m+ 1)= 0, —m =

[方法技巧]

i 向量共线的坐标表示中的乘积式和比例式

i

: :

i ⑴若a = (x i , y i ), b =(X 2,

y 2),则all b? x i y ?-X 2y i = 0,这是代数运算,用它解决平面向量共线问题的优点在于不需 \

|要引入参数“乂,从而减少了未知数的个数,而且它使问题的解决具有代数化的特点和程序化的特征. (2)当X 2y 2工0时,

j

:a // b?弓=弓,即两个向量的相应坐标成比例,这种形式不易出现搭配错误.

(3)公式x i y 2-X 2y i = 0无条件X 2y 2工0的限制,

X 2 y 2 ! !

I

I

X i y i

'便于记忆;公式X 2= y 有条件X 2y 2工0的限制,但不易出错?所以我们可以记比例式,但在解题时改写成乘积的形式. |

________________________________________ ___________________________________________________ ___________ _______ _______ | [检验咼考能

力] 、选择题

i .设 UUUU 3 UUUU 3 ULUU M 是厶ABC 所在平面上的一点,且 MB + 2 MA + - MC = 0, 为() A *2 解析: Bl 选 A --D

MAEC 为平行四边形, 是AC 的中点,如图,延长

UUUU ???MD 3 uuuu 3 uuuu + 2 MA + 2 MC = 0, uuuu | MD | i =1

UUUu 1 =-,故选 A. |3 MD | 3 2 .在△ ABC i

A 忆 uuur ???M B

UULT 中,BD B 3 B.i6

解析:选B i UUUU i UUUU

=2 ME = 2( MA +

3 UUUU uuuu

=—2( MA

UULT =3 DC 由题意

得,

uui r AD

MD um w MC

至E ,使得 UUUU ),?MA + DE = Ml

uuuu MC = 2 uuuu + MC )=-3 MD ,^BM ,若 C

2

C.

2

UULT

=AB uuu u 的值 UULT 尼AC ,则力尼的值为(

UULT UULT AD =力 AB + I0

D .6

UULT UULT BD = AB + 4 BC = AB + :( AC —

3 UULT uuur 3 uuuT i uuur 3UU U T

UULT AB )=4 AB + 4 AC ,

i 3

?俞=4, ^= 4,

3 .设 D ,E , uur uuUr 2FB ,则 AD + A .反向平行 C .互相垂直

解析:选A

uuu uuur uuu CB + BF = CB +; BA UULT BC ,故AD + BE + CF 与BC 反向平行. 4 .已知点 A . 30 °

解析:选 ?g= F 分别是△ UULT UUL T ABC 的三边 uuur

BE + CF 与 BC ( BC ,CA ,AB 上的点,且 ) UULT

UUL T DC =2 BD ,

UUL uuur

CE = 2 EA

UU LT AF

由题意得 i UUU 3 UULT UULT UULT UULT

UULT AD = AB

UULT ,因此AD UULT uuir BD UU LT BE B .同向平行

D .既不平行也不垂直

UULT AB UULT CF 1 UULT UULT + 3BC ,BE UUU i =CB + -( BC UUU

UULT umr uuu

=BA + AE = UULT UULT + AC — AB )= uui r UUU i UULT BA + AC

UUU 2 Uuu i CB + 3BC =— 3

UULT CF = 2 UUL T UUU OA + OB + CO = 0, O ABC 外接圆的圆心,且 B . 45 °

C . 60 °

D . 90

uuu uuu uuu uuu uuU UUIT A 由 OA + OB + CO = 0,得 OA + OB = OC , uuu uuu uuur 则厶ABC 的内角 由O 为△ABC 外接

uuu uur UULT

圆的圆心,可得|OA |= |OB |= |OC |.设OC 与AB 交于点D ,如图,由OA + OB = OC uuU

uuu uuu uuu

可知D 为AB 的中点,所以OC = 2OD ,D 为OC 的中点.又由|OA |= |OB |可知OD

1AB ,即OC 1AB ,所以四边形 OACB 为菱形,所以△ OAC 为等边三角形,即/ CAO = 60 °,故 A = 30 °

A 等于(

uuuu

5 .已知点G 是厶ABC 的重心,过点 G 作一条直线与 AB ,AC 两边分别交于 M ,N 两点,且AM

UULT x AB , uuur UULT xy

AN = y AC ,则一—的值为(

)

x + y

1 C .

2 D.2

UULT UULUT

UUUU 由已知得 M , G , N 三点共线,所以 AG = XAM + (1 — R AN = Xx

3, 1 3

BP 解析:选B

LUU T 入xAB UULT 2 1 UULT UULT 1 UULT ???点G 是△ABC 的重心,A AG = 3X 2( AB + AC ) = 3( AB + uuir AC ), ???

1 1—入 y = 3, UULT + (1 — ?)y

AC .

-3x , 1 1—入=3y , 1 1 1 1 x + y 得如3y =1,即1 +

1=3,通分得帀=3,

.xy 1 x + y 且满足 3'

uuu u 5 AM

LUL T uuir

=AB + 3 AC ,则△ ABM 6 .若点M 是厶ABC 所在平面内的一点, 的比值为( A 1 5 解析: UUUT _ _ _ ___ ,一一 3 3 得 5 AM = 2 AD + 3 AC ①,即 AM = 2 AD + 3 AC ,即丄+ 3= 1,故 C , M , D uuuu B.2 C.5 D*4

设AB 的中点为 UULT "5 - 选C uuu r D ,如图, UUULT 连接MD , MC , 2 UUUT 3 UUUT 5 5 UUUT uuuur uuur 由 5 AM = AB + 3 AC , 2,3 一

二 5 5

UULT

uui r UUT UUUT 点共线,又 AM = AD + DM ②,①②联立,得 5 DM = 3 DC ,即在△ ABM 与厶 3 3 ABC 中,边AB 上的高的比值为5,所以△ ABM 与厶ABC 的面积的比值为5.

二、填空题

uuu UULT 7.在△ ABC 中,点P 在BC 上,且BP = 2 PC ,点Q 是AC 的中点,若 UULT 则 BC = _________ . uuu uuu uuu 与厶ABC 的面积 r Al

u PA = (4,3), UUU PQ = (1,5), UUU UU LT UULT 解析:AQ = PQ — PA = (1,5) — (4,3) = (— 3,2), A AC = 2 AQ = 2( — 3,2) = (— 6,4). PC = PA

+ AC uuir uuu uuir uuur =(4,3)+ (— 6,4)= (— 2,7), A BC = 3 PC = 3( — 2,7) = (— 6,21). 答案:(—6,21)

UULT UULT uuir

8?已知向量 AC , AD 和AB 在正方形网格中的位置如图所示,若 uuir [1 AD ,贝V 入=

________ . uuir

解析:建立如图所示的平面直角坐标系 xAy ,则AC = (2, =(1,0),由题意可知(2,— 2)=心, 以入百一3.答案:一3 9. P = {a|a = (— 1,1) + m(1,2), 个向量集合,则P n Q 等于

_________ -2), 入=—1,

2 = + 1,

—1 + m = 1 + 2n ,

解析:P 中,a = (— 1 + m,1+ 2m) ,Q 中,b = (1 + 2n ,— 2 + 3n).则 m =— 12, 得

1+ 2m = — 2 +

3n.

n = — 7.

此时 a = b = (—13,— 23).答案:{( — 13,— 23)}

41平面向量的概念及线性运算

6. (2010浙江杭州调研)设a 、b 是两个不共线向量, AB = 2a + pb , BC = a + b , CD = a — 2b , 第四单元 平面向量 4.1 平面向量的概念及线性运算 、选择题 1.在厶 ABC 中,AB = c , AC = b ,若点 D 满足 BD = 2DC ,则 AD =( ) 2 1 A ?3b + 3c 5 2 B ?3c — 3b C.2b -3c 3 3 1 2 D ?1b + 3c …AD = AB + BD = c + 3( b — c) = §b + 3c 答案:A 2. (2010广东中山调研)已知a 、b 是两个不共线的向量,AB =入a b, AC = a +讥入 此R ), 那么 A 、B 、C 三点共线的充要条, 件是 ( ) A . ?+尸 2 B .入一 (i= 1 C . 入=—1 D . 入=1 解析 由 AB =入 a b, AC = a + 3 b 人 卩€ R )及 A 、B 、 C 三点共线得AB = tAC (t € R), 入=t 所以 入 t+ b^ t(a + ub ta +1 3, 「所以 1 ,即入 =1. 1 = t 3 答案 :D 3. (2009 ?东)设P 是厶ABC 所在平面内的一点, BC + BA = 2BP ,则( ) A . PA + PB = 0 C . PB + PC =0 B . P C + PA = 0 D . PA + PB + PC = 0 V ----------- 」 解析:如上图,根据向量加法的几何意义 Be + B A = 2B P ? P 是AC 的中点, 故 PA + PC = 0. 答案:B 4.已知平面内有一点 P 及一个△ ABC ,若PA + PB + PC = AB ,则( ) A .点P 在厶ABC 外部 B .点P 在线段 AB 上 C .点P 在线段BC 上 D .点P 在线段AC 上 解析:?/ PA + PB + PC = AB , ??? PA + PB + PC = PB — PA ??? PC = — 2PA.A 2PA = CP ,?点 P 在线段 AC 上. 答案:D 、填空题 5. (2009宁夏银川模拟)若AB = 3% CD = — 5e i ,且AD 与CB 的模相等,则四边形 ABCD 是 解析:?/ AB = — 3CD , ??? AB // CD ,且 |AB|M |CD|. 5 答案:等腰梯形 解析: D C =AC — AB = b- c , B D = 2BC = 2(b — c),

第一节平面向量的概念及运算性质

第一节平面向量的概念及其线性运算 [知识能否忆起] 一、向量的有关概念 1.向量:既有大小又有方向的量叫向量;向量的大小叫做向量的模. 2.零向量:长度等于0的向量,其方向是任意的. 3.单位向量:长度等于1个单位的向量. 4.平行向量:方向相同或相反的非零向量,又叫共线向量,规定:0与任一向量共线. 5.相等向量:长度相等且方向相同的向量. 6.相反向量:长度相等且方向相反的向量. 二、向量的线性运算 平行四边形法则 1.定义:实数λ与向量a的积是一个向量,这种运算叫向量的数乘,记作λa,它的长度与方向规定如下: ①|λa|=|λ||a|; ②当λ>0时,λa的方向与a的方向相同;当λ<0时,λa的方向与a的方向相反;当λ=0时,λa=0. 2.运算律:设λ,μ是两个实数,则: ①λ(μa)=(λμ)a;②(λ+μ)a=λ a+μ a;③λ(a+b)=λa+λb. 四、共线向量定理 向量a(a≠0)与b共线,当且仅当有唯一一个实数λ,使得b=λa.

[小题能否全取] 1.下列命题正确的是( ) A .不平行的向量一定不相等 B .平面内的单位向量有且仅有一个 C .a 与b 是共线向量,b 与c 是平行向量,则a 与c 是方向相同的向量 D .若a 与b 平行,则b 与a 方向相同或相反 解析:选A 对于B ,单位向量不是仅有一个,故B 错;对于C ,a 与c 的方向也可能相反,故C 错;对于D ,若b =0,则b 的方向是任意的,故D 错,综上可知选A. 2.如右图所示,向量a -b 等于( ) A .-4e 1-2e 2 B .-2e 1-4e 2 C .e 1-3e 2 D .3e 1-e 2 解析:选C 由题图可得a -b =BA =e 1-3e 2. 3.(教材习题改编)设a ,b 为不共线向量,AB =a +2b ,BC =-4a -b ,CD =-5a -3b ,则下列关系式中正确的是( ) A .AD =BC B .AD =2B C C .A D =-BC D .AD =-2BC 解析:选B AD =AB +BC +CD =a +2b +(-4a -b )+(-5a -3b )=-8a -2b =2(-4a -b )=2BC . 4.若菱形ABCD 的边长为2,则|AB -CB +CD |=________. 解析:|AB -CB +CD |=|AB +BC +CD |=|AD |=2. 答案:2 5.已知a 与b 是两个不共线向量,且向量a +λb 与-(b -3a )共线,则λ=________. 解析:由题意知a +λb =k [-(b -3a )], 所以????? λ=-k , 1=3k ,解得??? k =1 3 ,λ=-13. 答案:-1 3 共线向量定理应用时的注意点 (1)向量共线的充要条件中要注意“a ≠0”,否则λ可能不存在,也可能有无数个. (2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两 向量共线且有公共点时,才能得出三点共线;另外,利用向量平行证明向量所

平面向量的基本概念及线性运算知识点

平面向量 一、向量的相关概念 1、向量的概念:既有大小又有方向的量,注意向量和数量的区别。向量常用有向线段来表示,注意不能说向量就是有向线段(向量可以平移)。如已知A (1,2),B (4,2),则把向量AB u u u r 按向量a r =(-1,3)平移后得到的向量是_____(3,0) 2、向量的表示方法:用有向线段来表示向量. 起点在前,终点在后。有向线段的长度表示向量的大小,用_____箭头所指的方向____表示向量的方向.用字母a ,b ,…或用AB ,BC ,…表示 (1) 模:向量的长度叫向量的模,记作|a |或|AB |. (2)零向量:长度为0的向量叫零向量,记作:0,注意零向量的方向是任意的; (3)单位向量:长度为一个单位长度的向量叫做单位向量(与AB u u u r 共线的单位向量是|| AB AB ±u u u r u u u r ); (4)相等向量:长度相等且方向相同的两个向量叫相等向量,相等向量有传递性。 (5)平行向量(也叫共线向量):方向相同或相反的非零向量a 、b 叫做平行向量,记作:a ∥b ,规定零向量和任何向量平行。提醒:①相等向量一定是共线向量,但共线向量不一定相等;②两个向量平行与与两条直线平行是不同的两个概念:两个向量平行包含两个向量共线, 但两条直线平行不包含两条直线重合;③平行向量无传递性!(因为有0r );④三点A B C 、、共线? AB AC u u u r u u u r 、共线; (6)相反向量:长度相等方向相反的向量叫做相反向量。a 的相反向量是-a 。零向量的相反向量时零向量。 二、向量的线性运算 1.向量的加法: (1)定义:求两个向量和的运算,叫做向量的加法. 如图,已知向量a ,b ,在平面内任取一点A ,作AB =u u u r a ,BC =u u u r b ,则向量AC 叫做a 与b 的和,记作a+b ,即 a+b AB BC AC =+=u u u r u u u r u u u r 。AB BC CD DE AE +++=u u u r u u u r u u u r u u u r u u u r 特殊情况:a b a b a+b b a a+ b (1)平行四边形法则三角形法则 C B D C B A 对于零向量与任一向量a ,有 a 00+=+ a = a (2)法则:____三角形法则_______,_____平行四边形法则______ (3)运算律:____ a +b =b +a ;_______,____(a +b )+c =a +(b +c )._______ 当a 、b 不共线时,

平面向量的概念、运算及平面向量基本定理

05—平面向量的概念、运算及平面向量基本定理 突破点(一)平面向量的有关概念 知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量 考点 平面向量的有关概念 [典例]⑴设a , b 都是非零向量,下列四个条件中,使 向=而成立的充分条件是( ) A . a =- b B . a // b C . a = 2b D . a // b 且 |a|= |b| ⑵设a o 为单位向量,下列命题中:①若 a 为平面内的某个向量,贝U a = |a| a o ;②若a 与a o 平行,则 a = |a|a o ;③若a 与a o 平行且|a|= 1,则a = a o .假命题的个数是( ) A . o B . 1 C . 2 D . 3 [解析]⑴因为向量合的方向与向量a 相同,向量£的方向与向量b 相同,且£,所以向量a 与 |a| |b| |a| |b| 向量b 方向相同,故可排除选项 A , B , D.当a = 2b 时,a =警=b ,故a = 2b 是耳=g 成立的充分条件. |a| |2b| |b| |a| |b| (2)向量是既有大小又有方向的量, a 与|a|a o 的模相同,但方向不一定相同,故①是假命题;若 a 与a o 平行,则a 与a o 的方向有两种情况:一是同向,二是反向,反向时 a =- |a|a o ,故②③也是假命题.综上 所述,假命题的个数是 3. [答案](1)C (2)D _ _[易错提醒」_____________ _____________ 厂7i)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小 […(2)大小与方向是向量的两个要素?j 分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上. 突破点(二)平面向量的线性运算 1. 向量的线性运算: 加法、减法、数乘 2. 平面向量共线定理: 向量b 与a(a ^ o )共线的充 要条件是有且只有一个实数 人使得b = 1 [答案](1)D ⑵1 —…_[方法技巧丄—――――_—_ _―_—_ _―_……_ _―_…_ _―_…_ _―_…_ _―_…「 i 1.平面向量的线性运算技巧: ⑴不含图形的情况:可直接运用相应运算法则求解. ⑵含图形的情况:将它们转化到 ] 三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示岀来求解. 2?利用平面向量的线性运算求参数的一般思路: (1)没有图形的准确作出图形,确定每一个点的位置. (2)利用平行四 边形法则或三角形法贝U 进行转化丄转化为要求的向量形式._ _ (3) 比较,观察可知所求.__________ 考点二 平面向量共线定理的应用 [例2Lu 设两个非零向J a 和b 不共鈿 平面向量的线性运算 …uuur …"uLu r 考点一 ~~uuur ----- u uur [例 1] (1)在厶 ABC 中,AB = c , AC = b.若点 D 满足 BD = 2 DC 12 5 2 A.3b + 3C B.gC — 3b 2 1 2 1 C.gb — 3c D.gb + 3C uuuu 1 uuur ⑵在△ ABC 中,N 是AC 边上一点且 AN = NC , P 是BN 上一点, 数m 的值是 ______________ . uuur umr [解析](1)由题可知BC = AC - uuur + BD = c + 2 1 —c)= 3b + §c,故选 D. uuuu 1 uuur (2)如图,因为AN = 2 NC ,所以 uuur 2 uuuu m AB + 3 AN ?因为B ,P ,N 三点共线, ―uuur ,贝U AD =( ) UULT uuur 2 uuur 若 AP = m AB + 9 AC ,则实 2 uuir 2 uuir uur uuur uuur uuur UULT AB = b — c , '^BD = 2 DC ,「.BD = 3 BC = 3(b — c),则 AD = AB uuuu 1 uuur AN = 3 AC ,所以 2 所以m +3= 1,则 UULT uuur 2 uuur AP = m AB + 9 AC = 1 m = 3.

第1讲 平面向量的概念及线性表示

第1讲平面向量的概念及线性表示◆高考导航·顺风启程◆ [知识梳理] 1.向量的有关概念 2.向量的线性运算

求两个向量和的 交换律:结合律:的相反向 |λa |= |λ||a | ,当λ>0时,λa 与a 3.平行向量基本定理 如果a =λb ,则a ∥b ;反之,如果a ∥b ,且b ≠0,则一定存在唯一一个实数λ,使a =λb . [知识感悟] 1.三点共线的等价转化 A ,P , B 三点共线?AP →=λAB →(λ≠0)?OP →=(1-t )·OA →+tOB → (O 为平面内异于A ,P ,B 的任一点,t ∈R )?OP →=xOA →+yOB → (O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1). 2.向量的中线公式 若P 为线段AB 的中点,O 为平面内一点,则OP →=12(OA →+OB → ). 3.三角形的重心 已知平面内不共线的三点A ,B ,C ,PG →=13(P A →+PB →+PC → )?G 是△ABC 的重心.特别 地,P A →+PB →+PC → =0?P 为△ABC 的重心. [知识自测] 1.(思考辨析)判断下列结论是否正确(请在括号中打“√”或“×”) (1)若向量a ,b 共线,则向量a ,b 的方向相同.( ) (2)若a ∥b ,b ∥c ,则a ∥c .( ) (3)向量与有向线段是一样的,因此可以用有向线段来表示向量.( )

(4)|a |与|b |是否相等与a ,b 的方向无关.( ) (5)已知两向量a ,b ,若|a |=1,|b |=1,则|a +b |=2.( ) (6)向量AB →与向量CD → 是共线向量,则A ,B ,C ,D 四点在一条直线上.( ) (7)当两个非零向量a ,b 共线时,一定有b =λa ,反之成立.( ) [答案] (1)× (2)× (3)× (4)√ (5)× (6)× (7)√ 2.已知a ,b 是不共线的向量,AB →=λa +b ,AC → =a +μb (λ,μ∈R ),那么A ,B ,C 三点共线的充要条件是( ) A .λ+μ=2 B .λ-μ=1 C .λμ=-1 D .λμ=1 [解析] 由AB →=λa +b ,AC →=a +μb (λ,μ∈R )及A ,B ,C 三点共线得AB →=tAC → ,所以λa +b =t (a +μb )=t a +tμb ,即可得? ???? λ=t , 1=tμ,所以λμ=1,故选D. [答案] D 3.已知a ,b 是非零向量,命题p :a =b ,命题q :|a +b |=|a |+|b |,则p 是q 的______条件. [解析] 若a =b ,则|a +b |=|2a |=2|a |,|a |+|b |=|a |+|a |=2|a |,即p ?q . 若|a +b |=|a |+|b |,由加法的运算知a 与b 同向共线, 即a =λb ,且λ>0,故q ?/ p . ∴p 是q 的充分不必要条件. [答案] 充分不必要 题型一 平面向量的概念(基础保分题,自主练透) (1)给出下列命题: ①若|a |=|b |,则a =b ; ②若A ,B ,C ,D 是不共线的四点, 则AB →=DC → 是四边形ABCD 为平行四边形的充要条件; ③若a =b ,b =c ,则a =c ; ④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是( ) A .②③ B .①② C .③④ D .①④ [解析] ①不正确.两个向量的长度相等,但它们的方向不一定相同.

[高二数学]平面向量的概念及运算知识总结

平面向量的概念及运算 一.【课标要求】 (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示; (2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义; ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义; ③了解向量的线性运算性质及其几何意义 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义; ②掌握平面向量的正交分解及其坐标表示; ③会用坐标表示平面向量的加、减与数乘运算; ④ 理解用坐标表示的平面向量共线的条件 二.【命题走向】 本讲内容属于平面向量的基础性内容,与平面向量的数量积比较出题量较小。以选择题、填空题考察本章的基本概念和性质,重点考察向量的概念、向量的几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件、向量的坐标运算等。此类题难度不大,分值5~9分。 预测2010年高考: (1)题型可能为1道选择题或1道填空题; (2)出题的知识点可能为以平面图形为载体表达平面向量、借助基向量表达交点位置或借助向量的坐标形式表达共线等问题。 三.【要点精讲】 1.向量的概念 ①向量 既有大小又有方向的量。向量一般用c b a ,,……来表示,或用有向线段的起点与终点 的大写字母表示,如:AB 几何表示法AB ,a ;坐标表示法),(y x j y i x a =+= 。向量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a |。 向量不能比较大小,但向量的模可以比较大小 ②零向量 长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?|a | =0。由于0的方向是任意的,且规定0平行于任何向量,故在有关向量平行(共线)的问题中务必看清楚是否有“非零向量”这个条件。(注意与0的区别) ③单位向量 模为1个单位长度的向量,向量0a 为单位向量?|0a |=1。 ④平行向量(共线向量) 方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上,方向相同或相

(完整版)平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB u u u r =3a, CD u u u r =-5a ,且||||AD BC =u u u r u u u r ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =13CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB u u u r =a +2b ,BC u u u r = -5a +6b ,CD u u u r =7a -2b ,则一定共线的三点是 ( ) A .A 、 B 、D B .A 、B 、 C C .B 、C 、 D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD u u u r =x AB u u u r ,AE u u u r =y AC u u u r ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB u u u r =2AC u u u r ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB u u u r =(sin α,cos β), α,β∈(-2π,2 π),则α+β= *11.已知 a =(1,2) , b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

32总复习:平面向量的概念及线性运算知识梳理

平面向量的概念、线性运算及坐标运算 编稿:李霞 审稿:孙永钊 【考纲要求】 1.了解向量的实际背景;理解平面向量的概念及向量相等的含义;理解向量的几何表示. 2.掌握向量加法、减法的运算,并理解其几何意义;掌握向量数乘的运算及其几何意义,理解两个向量共线的含义;了解向量线性运算的性质及其几何意义. 3.了解平面向量的基本定理及其意义,掌握平面向量的正交分解及其坐标表示,会用坐标表示平面向量的加法、减法与数乘运算,理解用坐标表示的平面向量共线的条件. 【知识网络】 【考点梳理】 【高清课堂:平面向量的概念与线性运算401193知识要点】 考点一、向量的概念 1.向量:既有大小又有方向的量.通常用有向线段AB 表示,其中A 为起点,B 为终点. 向量AB 的长度|AB | 又称为向量的模; 长度为0的向量叫做零向量,长度为1的向量叫做单位向量. 2.方向相同或相反的非零向量叫做平行向量,规定零向量与任一向量平行. 平行向量可通过平移到同一条直线上,因此平行向量也叫共线向量. 3.长度相等且方向相同的向量叫做相等向量.零向量与零向量相等. 4. 与a 长度相等,方向相反的向量叫做a 的相反向量,规定零向量的相反向量是零向量. 要点诠释: 平面向量 平面向量的概念 平面向量的坐标表示 平面向量的基本定理 平面向量的线性运算

①有向线段的起、终点决定向量的方向,AB 与BA 表示不同方向的向量; ②有向线段的长度决定向量的大小,用|AB | 表示,|AB||BA |= . ③任意两个非零的相等向量可经过平移重合在一起,因此可用一个有向线段表示,而与起点无关. 考点二、向量的加法、减法 1.向量加法的平行四边形法则 平行四边形ABCD 中(如图), 向量AD 与AB 的和为AC ,记作:AD AB AC += .(起点相同) 2.向量加法的三角形法则 根据向量相等的定义有:AB DC = ,即在ΔADC 中,AD DC AC += . 首尾相连的两个向量的和是以第一个向量的起点指向第二个向量的终点. 规定:零向量与向量AB 的和等于AB . 3. 向量的减法 向量AB 与向量BA 叫做相反向量.记作:AB BA =- . 则AB CD AB DC -=+ . 要点诠释: ①关于两个向量的和应注意:两个向量的和仍是一个向量;使用三角形法则时要注意“首尾相连”;当两个向量共线时,三角形法则适用,而平行四边形法则不适用. ②向量减法运算应注意:向量的减法实质是加法的逆运算,差仍为一个向量;用三角形法则作向量减法时,记住“连结两个向量的终点,箭头指向被减向量”. 要点三、实数与向量的积 1.定义: 一般地,实数λ与向量 a 的积是一个向量,记作λ a ,它的长与方向规定如下: (1)||||||λ=λ? a a ; (2)当λ>0时,λ a 的方向与 a 的方向相同;当λ<0时,λ a 的方向与 a 的方向相反; 当λ=0时,0λ= a ; 2.运算律 设λ,μ为实数,则 (1)()()λμ=λμ a a ; (2)()λ+μ=λ+μ a a a ;

平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r ()D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=MN ____ 4.已知点(1,5)A -和向量=(2,3),若=3,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为

平面向量的概念练习(学生版)

1、下列说法正确的是( ) A 、数量可以比较大小,向量也可以比较大小. B 、方向不同的向量不能比较大小,但同向的可以比较大小. C 、向量的大小与方向有关. D 、向量的模可以比较大小. 2、给出下列六个命题: ①两个向量相等,则它们的起点相同,终点相同; ②若||||a b =,则a b =; ③若AB DC =,则四边形ABCD 是平行四边形; ④平行四边形ABCD 中,一定有AB DC =; ⑤若m n =,n k =,则m k =; ⑥a b ,b c ,则a c . 其中不正确的命题的个数为( ) A 、2个 B 、3个 C 、4个 D 、5个 3、设O 是正方形ABCD 的中心,则向量,,,AO BO OC OD 是( ) A 、相等的向量 B 、平行的向量 C 、有相同起点的向量 D 、模相等的向量 4、判断下列各命题的真假: (1)向量AB 的长度与向量BA 的长度相等; (2)向量a 与向量b 平行,则a 与b 的方向相同或相反; (3)两个有共同起点的而且相等的向量,其终点必相同; (4)两个有共同终点的向量,一定是共线向量; (5)向量AB 和向量CD 是共线向量,则点A 、B 、C 、D 必在同一条直线上; (6)有向线段就是向量,向量就是有向线段. 其中假命题的个数为( ) A 、2个 B 、3个 C 、4个 D 、5个 5、若a 为任一非零向量,b 为模为1的向量,下列各式:①|a |>|b | ②a ∥b ③|a |>0 ④|b |=±1,其中正确的是( ) A 、①④ B 、③ C 、①②③ D 、②③

6、下列命中,正确的是( ) A 、|a |=|b |?a =b B 、|a |>|b |?a >b C 、a =b ?a ∥b D 、|a |=0?a =0 7、下列物理量:①质量 ②速度 ③位移 ④力 ⑤加速度 ⑥路程,其中是向量的有( ) A 、2个 B 、3个 C 、4个 D 、5个 8、平行向量是否一定方向相同? 9、不相等的向量是否一定不平行? 10、与零向量相等的向量必定是什么向量? 11、与任意向量都平行的向量是什么向量? 12、若两个向量在同一直线上,则这两个向量一定是什么向量? 14、如图所示,四边形ABCD 为正方形,△BCE 为等腰直角三角形, (1)找出图中与AB 共线的向量; (2)找出图中与AB 相等的向量; (3)找出图中与|AB |相等的向量; (4)找出图中与EC 相等的向量. A B E C D

平面向量基本定理03913

2.3.1平面向量基本定理 学习目标: 1. 了解基底的含义,理解平面向量基本定理,会用基底表示平面内任一向量. 2. 掌握两个向量夹角的定义以及两向量垂直的定义. 3. 两个向量的夹角与两条直线所成的角. 学习重点:平面向量基本定理 学习难点:两个向量的夹角与两条直线所成的角. 课上导学: [基础初探] 教材整理1平面向量基本定理 阅读教材P93至P94第六行以上内容,完成下列问题. 1. ____________ 定理:如果e i, e是同一平面内的两个向量,那么对于这一平面内的____________ 向量a, ______________ 实数入,入2,使a= _________________________ 2. ____________ 基底:___________________________ 的向量e1, e2叫做表示这一平面内______________________________ 向量的一

组基底. 判断(正确的打“,错误的打“X” ) (1) 一个平面内只有一对不共线的向量可作为表示该平面内所 有向量的基底.() (2) 若e i, e是同一平面内两个不共线向量,则入& + 说 k, 入2为实数)可以表示该平面内所有向量.() (3) 若ae i + be2=ce i + de2(a, b, c, d€ R),则a = c, b = d.( ) 教材整理2两向量的夹角与垂直 阅读教材P94第六行以下至例1内容,完成下列问题. 1. __________________ 夹角:已知两个_________________ a 和b,作OA= a, OB= b,则__ = B叫做向量a与b的夹角.

必修四平面向量基本定理

平面向量基本定理 [学习目标] 1.理解平面向量基本定理的内容,了解向量一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题. 知识点一 平面向量基本定理 (1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 思考 如图所示,e 1,e 2是两个不共线的向量,试用e 1,e 2表示向量AB →,CD →,EF →,GH →,HG → , a . 答案 通过观察,可得: AB →=2e 1+3e 2,CD →=-e 1+4e 2,EF → =4e 1-4e 2, GH → =-2e 1+5e 2,HG → =2e 1-5e 2,a =-2e 1. 知识点二 两向量的夹角与垂直 (1)夹角:已知两个非零向量a 和b ,如图,作OA →=a ,OB → =b ,则∠AOB =θ (0°≤θ≤180°),叫做向量a 与b 的夹角. ①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a⊥b .

思考 在等边三角形ABC 中,试写出下面向量的夹角. ①AB →、AC →;②AB →、CA →;③BA →、CA →;④AB →、BA →. 答案 ①AB →与AC → 的夹角为60°; ②AB →与CA → 的夹角为120°; ③BA →与CA → 的夹角为60°; ④AB →与BA → 的夹角为180°. 题型一 对向量的基底认识 例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________. ①λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量; ②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2= λ(λ2e 1+μ2e 2); ④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. 答案 ②③ 解析 由平面向量基本定理可知,①④是正确的. 对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的. 对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个. 跟踪训练1 设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)

第1讲平面向量的概念及线性运算 (1)

第1讲 平面向量的概念及线性运算 一、选择题 1.已知下列各式:①AB →+BC →+CA →;②AB →+MB →+BO →+OM →;③OA →+OB →+BO →+ CO →;④AB →-AC →+BD →-CD →.其中结果为零向量的个数为( ) A.1 B.2 C.3 D.4 解析 由题知结果为零向量的是①④,故选B. 答案 B 2.设a 是非零向量,λ是非零实数,下列结论中正确的是( ) A.a 与λa 的方向相反 B.a 与λ2a 的方向相同 C.|-λa |≥|a | D.|-λa |≥|λ|·a 解析 对于A ,当λ>0时,a 与λa 的方向相同,当λ<0时,a 与λa 的方向相反;B 正确;对于C ,|-λa |=|-λ||a |,由于|-λ|的大小不确定,故|-λa |与|a |的大小关系不确定;对于D ,|λ|a 是向量,而|-λa |表示长度,两者不能比较大小. 答案 B 3.如图,在正六边形ABCDEF 中,BA →+CD →+EF →=( ) A.0 B.BE → C.AD → D.CF → 解析 由题图知BA →+CD →+EF →=BA →+AF →+CB →=CB →+BF →=CF →. 答案 D 4.设a 0为单位向量,下述命题中:①若a 为平面内的某个向量,则a =|a |a 0;②若a 与a 0平行,则a =|a |a 0;③若a 与a 0平行且|a |=1,则a =a 0.假命题的个数是( ) A.0 B.1 C.2 D.3 解析 向量是既有大小又有方向的量,a 与|a |a 0的模相同,但方向不一定相同,故①是假命题;若a 与a 0平行,则a 与a 0的方向有两种情况:一是同向,二

平面向量的概念教案

1 平面向量基本概念 教学目标 1.从生活实例和物理素材中感受向量以及研究向量的必要性. 2.理解平面向量的含义、向量的几何表示,向量的模. 3.理解零向量、单位向量、平行向量、相等向量、共线向量的含义,能在 图形中辨认相等向量和共线向量. 4.从“平行向量→相等向量→共线向量”的逐步认识,充分揭示向量的两 个要素及向量可以平移的特点. 教学重点:向量、相等向量、共线向量的含义及向量的几何表示. 教学难点:向量的含义. 教学过程 (一)情境创设 1.南辕北辙——战国时,有个北方人要到南方的楚国去.他从太行山脚下出发,乘着马车一直往北走去.有人提醒他:“到楚国应该朝南走,你怎能往北呢?”他却说:“不要紧,我有一匹好马!” 结果 原因 2.如图1,在同一时刻,老鼠由A 向西北方向的C 处逃窜,猫由B 向正东方向的D 处追去,猫能否抓到老鼠? 结果 原因 思考:上述情景中,描绘了物理学中的那些量? 咱们还认识类似于上面的量,你能举出来吗? 这些量的共同特征是什么? (二)概念形成 观察:如图2中的三个量有什么区别? 1.向量的概念——既有大小又有方向的量叫向量. 2.向量的表示方法 思考:物理学中如何画物体所受的力? (1) 几何表示法:常用一条有向线段表示向量. 符号表示:以A 为起点、B 为终点的有向线段, 记作AB .(注意起终点顺序). (2) 字母表示法:可表示AB 为a . 练习. 如图4,小船由A 地向西北方向航行15海里到达 B 地,小船的位移如何表示?(用1cm 表示5海里) (三)理性提升 3.向量的模 向量的大小——向量长度称为向量的模. 记作:||. 强调:数量与向量的区别: 数量只有大小,是一个代数量,可以进行代数运算、比较大小;

平面向量的基本定理

平面向量的基本定理 各位老师大家好,今天,我说课的内容是:人教B版必修4第二章第二节《平面向量的基本定理》第一课时,我将从教材分析、学生分析、教学方法和手段、教学过程以及教学评价五个方面进行分析 一、说教材 1.关于教材内容的分析 (1)平面向量基本是共线向量基本定理的一个推广,将来还可以推广到空间向量,得到空间向量基本定理,这三个定理可以看成是在一定范围内向量分解的唯一性定理。所以它是进一步研究向量问题的基础;是解决向量或利用向量解决问题的基本手段。 (2)平面向量基本定理揭示了平面向量的基本关系和基本结构,是进行向量运算的基本工具,它、也为平面向量坐标表示的学习打下基础。 (3)平面向量基本定理蕴涵了一种十分重要的数学思想——转化思想,因此,有着十分广阔的应用空间。 2.关于教学目标的确定 根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。 1、①了解平面向量基本定理及其意义,会做出由一组基地所表示的向量

②会把任意向量表示为一组基地的线性组合。掌握线段中点的向量表达式 2、通过对平面向量基本定理的归纳,抽象、概况,体验定理的产生和形成过程,提高学生抽象的能力和概括的能力 3、通过对定理的应用增强向量的应用意识,进一步体会向量是处理几何问题的强有力的工具。 3.重点和难点的分析 掌握了平面向量基本定理,可以使向量的运算完全代数化,将数与形紧密地结合起来,这样许多几何问题就转化为学生熟知的数量运算,这也是中学数学课中学习向量的目的之一,所以我认为对平面向量基本定理的应用是本节课的重点。另外对向量基本定理的理解这一点对于初学者来说有一定难度,所以是本节的难点。突破难点的关键是在充分理解向量的平行四边形法则的和向量共线的充要条件下多方位多角度的设计有关训练题从而加深对定理的理解。 二、说教学方法与教学手段 结合新课标“以学生为本”的课堂教学原则和实际情况,确定新课教学模式为:质疑—合作—探究式。 此模式的流程为激发兴趣--发现问题,提出问题--自主探究,解决问题--自主练习, 采用多媒体辅助教学,增强数学的直观性,实物投影的使用激发学生的求知欲。

平面向量的概念及表示教学设计

“平面向量的概念及表示”的教学设计 一、教学内容解析 向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何问题的有力工具。以位移、力等物理量为背景,抽象出既有大小又有方向的量---向量,然后介绍了向量的几何表示,向量的长度、零向量、单位向量、平行向量、相等向量与共线向量。 二、教学目标设置 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量. 教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量. 教学难点:平行向量、相等向量和共线向量的区别和联系. 三、学生学情分析 这个班的学生是高一的,刚刚学完必修一的第一章的内容。 四、教学策略分析 利用已学的集合知识,构建学习新概念的学习体系。借助原有的位移、力等物理概念来学习向量的概念

五、教学过程 (一)温故而知新,主要从集合的学习体系来认知学习一个新知识的研究体系,即:定义一表示一特殊元素一特殊关系一运算。 (二)问题情镜引入,从位移等物理量引入既有大小又有方向的量并加以抽象。 问题1:在平面上,如何用点A的位置来确定点B的位置关系? 问题2:你能不能举出其他的既有大小又有方向的量? 问题3:你能不能举出只有大小没有方向的量? (三)新课学习 1、向量的定义:既有大小又有方向的量为向量。 2、向量的表示(1)几何表示:用一个很经典的受力分析图,学生很容易想到用有向线段来表示向量。长度表示向量的大小,箭头所指的方向表示向量的方向。 (2)符号表示:①用有向线段字母表示:(A为起点、B为终点); ②用小写字母表示:a、b、c ;(印刷用a,书写时应加上箭头)(此处向学生介绍数学家们有符号表示向量的过程,让学生对数学史有一定的了解,符号化的过程也不是一蹴而就的) 3、向量的有关概念: (1)大小:

平面向量的概念及线性运算

§5.1平面向量的概念及线性运算 1.向量的有关概念

向量a (a ≠0)与b 共线的充要条件是存在唯一一个实数λ,使得______. [难点正本 疑点清源] 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线和重合的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合. 1.化简OP →-QP →+MS →-MQ → 的结果为________. 2.在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE → =____________. 3.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量;④相等向量一定共线.其中不正确命题的序号是________. 4.已知D 为三角形ABC 边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD → ,则实数λ的值为________. 5.已知O 是△ABC 所在平面内一点,D 为BC 边中点,且2OA →+OB →+OC → =0,那么( ) A.AO →=OD → B.AO →=2OD → C.AO →=3OD → D.2AO →=OD →

题型一 平面向量的概念辨析 例1 给出下列命题: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC → 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b . 其中正确命题的序号是________. 探究提高 (1)正确理解向量的相关概念及其含义是解题的关键. (2)相等向量具有传递性,非零向量的平行也具有传递性. (3)共线向量即为平行向量,它们均与起点无关. (4)向量可以平移,平移后的向量与原向量是相等向量.解题时,不要把它与函数图象移动混为一谈. (5)非零向量a 与a |a |的关系是:a |a | 是a 方向上的单位向量. 判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a |>|b |,则a>b ; (2)若|a |=|b |,则a 与b 的长度相等且方向相同或相反; (3)若|a |=|b |,且a 与b 方向相同,则a =b ; (4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反; (6)若向量AB →与向量CD → 是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等. 题型二 向量的线性运算 例2 在△ABC 中,D 、E 分别为BC 、AC 边 上的中点,G 为BE 上一点,且GB =2GE , 设AB →=a ,AC →=b ,试用a ,b 表示AD →,AG →. 探究提高 (1)解题的关键在于搞清构成三角形的三个问题间的相互关系,能熟练地找出图形中的相等向量,并能熟练运用相反向量将加减法相互转化. (2)用几个基本向量表示某个向量问题的基本技巧:①观察各向量的位置;②寻找相应的三角形或多边形;③运用法则找关系;④化简结果.

相关主题