搜档网
当前位置:搜档网 › 人工神经网络综述

人工神经网络综述

人工神经网络综述
人工神经网络综述

目录

1 人工神经网络算法的工作原理 (3)

2 人工神经网络研究内容 (4)

3 人工神经网络的特点 (5)

4 典型的神经网络结构 (6)

4.1 前馈神经网络模型 (6)

4.1.1 自适应线性神经网络(Adaline) (6)

4.1.1.1网络结构 (7)

4.1.1.2学习算法步骤 (7)

4.1.1.3优缺点 (7)

4.1.2单层感知器 (8)

4.1.2.1网络结构 (8)

4.1.2.2学习算法步骤 (9)

4.1.2.3优缺点 (9)

4.1.3多层感知器和BP算法 (10)

4.1.3.1网络结构: (10)

4.1.3.2 BP算法 (10)

4.1.3.3算法学习规则 (11)

4.1.3.4算法步骤 (11)

4.1.3.5优缺点 (12)

4.2反馈神经网络模型 (13)

4.2.1 Hopfield神经网络 (13)

4.2.1.1网络结构 (13)

4.2.1.2 学习算法 (15)

4.2.1.3 Hopfield网络工作方式 (15)

4.2.1.4 Hopfield网络运行步骤 (15)

4.2.1.5优缺点 (16)

4.2.2海明神经网络(Hamming) (16)

4.2.2.1网络结构 (16)

4.2.2.2学习算法 (16)

4.2.2.3特点 (18)

4.2.3双向联想存储器(BAM) (18)

4.2.3.1 网络结构 (19)

4.2.3.2学习算法 (19)

4.2.3.4优缺点 (21)

5.人工神经网络发展趋势以及待解决的关键问题 (21)

5.1 与小波分析的结合 (22)

5.1.1小波神经网络的应用 (22)

5.1.2待解决的关键技术问题 (23)

5.2混沌神经网络 (23)

5.2.1混沌神经网络的应用 (23)

5.2.2待解决的关键技术问题 (24)

5.3基于粗集理论 (24)

5.3.1粗集与神经网络结合的应用 (24)

5.3.2待解决的关键技术问题 (24)

5.4分形神经网络 (25)

5.4.1分形神经网络的应用 (25)

5.4.2待解决的关键技术问题 (25)

参考文献 (25)

人工神经网络综述

人工神经网络(Artificial Neural Networks,ANN)系统是20 世纪40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。BP(Back Propagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。BP 神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。

1 人工神经网络算法的工作原理

人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。

神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。

树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。每个神经元的突触数目正常,最高可达10个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。

人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应

非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。

人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。

与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

2 人工神经网络研究内容

神经网络的研究内容相当广泛,反映了多学科交叉技术领域的特点。目前,主要的研究工作集中在以下几个方面:

(1)生物原型研究

从生理学,心理学、剖析学、脑科学、病理学等生物科学方面研究神经细胞、神经网络、神经系统的生物原型结构及其功能基理。

(2)建立理论模型

根据生物原型的研究,建立神经元、神经网络的理论模型,包括概念模型、知识模型、物理化学模型、数学模型等。

(3)网络模型与算法研究

在理论模型研究的基础上构建具体的神经网络模型,以实现计算机模拟或准备制作硬件,包括网络学习算法的研究。这方面的工作也被称为技术模型研究。

神经网络用到的算法就是向量乘法,并且广泛应用符号函数及其各种逼近。并行、容错、可以硬件实现以及自我学习特征,是神经网络的几个基本优点,也是神经网络计算方法与传统方法的区别所在。

(4)人工神经网络应用系统

在网络模型与算法研究的基础上,利用人工神经网络组成实际的应用系统,例如,完成某种信号处理活模式识别的功能、构建专家系统、制成机器人等。

3 人工神经网络的特点

人工神经网络主要具有以下几个特点:

(1)自适应能力。

人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。

普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。

人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学

习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。

(2)泛化能力

泛化能力指对没有训练过的样本,有很好的预测能力和控制能力。特别是,当存在一些有噪声的样本,网络具备很好的预测能力。

(3)非线性映射能力

当对系统对于设计人员来说,很透彻或者很清楚时,则一般利用数值分析,偏微分方程等数学工具建立精确的数学模型,但当对系统很复杂,或者系统未知,系统信息量很少时,建立精确的数学模型很困难时,神经网络的非线性映射能力则表现出优势,因为它不需要对系统进行透彻的了解,但是同时能达到输入与输出的映射关系,这就大大简化设计的难度。

(4)高度并行性

并行性具有一定的争议性。承认具有并行性理由:神经网络是根据人的大脑而抽象出来的数学模型,由于人可以同时做一些事,所以从功能的模拟角度上看,神经网络也应具备很强的并行性。

4 典型的神经网络结构

网络的拓扑结构是神经网络的重要特性,神经网络的各种模型层出不穷,但最常见的结构是前馈神经网络和反馈神经网络两大类。

4.1 前馈神经网络模型

4.1.1 自适应线性神经网络(Adaline)

自适应线性神经网络(Adaptive Linear,简称Adaline) 是由威德罗(Widrow)和霍夫(Hoff)首先提出的。它与感知器的主要不同之处在于其神经元有一个线性激活函数,这允许输出可以是任意值,而不仅仅只是像感知器中那样只能取0或1。它采用的是W—H学习法则,也称最小均方差(LMS)规则对权值进行训练。自适应线性元件的主要用途是线性逼近一个函数式而进行模式联想。

4.1.1.1网络结构

图4-1为其网络结构:

图4-1

4.1.1.2学习算法步骤

(1)设置变量和参量: 12()[1,(),(),

,()]m X n x n x n x n =为输入向量,或称训练样本。12()[(),(),(),,()]m W n b n w n w n w n =为权值向量。()b n 为偏差,()y n 为实际输出,()d n 为期望输出,η为学习速率,n 为迭代次数。

(2)初始化,赋给(0)j W 各一个较小的随机非零值,0n =。

(3)对于一组输入样本12()[1,(),(),

,()]m X n x n x n x n =和对应的期望输出d ,

计算: ()()()()

(1)()()()T e n d n X n W n W n W n X n e n η=-+=+

(4)判断是否满足条件,若满足算法条件,则结束。若不满足,将n 值加1,

转第三步重新执行。

4.1.1.3优缺点

优点:

(1)Adaline 网络可以学习输入输出矢量之间的线性关系,并产生一个具有误

差平方和最小的线性逼近;

(2)对于一些实际问题,常常并不需要求出其完美的零误差时的解。也就是

说允许存在一定的误差。这时,采用Adaline 网络求解,可以很快地训练出满足一定要求的网络权值。

缺点:

(1)输入和输出之间的非线性关系不能用Adaline 网络精确地设计出。

(2)对于特别简单的问题,采用自适应线性网络的训练不一定能够得到足够

精确的解。因为当训练误差达到期望误差值后,训练即被终止。

4.1.2单层感知器

单层感知器(Perceptron )是由美国计算机科学家罗森布拉特(F.Roseblatt )

于1957年提出的。它是一个具有单层神经元的网络,由线性阈值逻辑单元所组成。它的输入可以是非离散量,而且可以通过学习而得到,这使单层感知器在神经网络研究中有着重要的意义和地位:它提出了自组织、自学习的思想,对能够解决的问题,有一个收敛的算法,并从数学上给出了严格的证明。

4.1.2.1网络结构

当给定一个输入向量X ,在阈值θ和权值W 的作用下,单层感知器的输出

为:

11111 0() 1 0n i i n i i i n i i i i W x Y f W x W x θ+===??≥????=-=????-

∑∑∑ (4-1) 如果输入向量X 有k 个样本,即,1,2,...,p X p k =,把样本p X 看作是n 维空

间的一个向量,那么k 个样本就是输入空间的k 个向量。由于单层感知器神经元的输出只有两种可能,即1或-1。这样方程(4-1)就把这n 维输入空间分为两个子空间,其分界线为1n -维的超平面。通过调节权值i W 和阈值θ可以改变这个1n -维超平面的位置以达到对样本的正确划分。图4-2为其网络结构:

图4-2

4.1.2.2学习算法步骤

单层感知器的具体学习步骤如下:

(1) 给定初始值:各赋给(0)i W 和θ一个较小的随机非零值,这里()i W t 为t 时

刻第i 个输入上的权(1)i n ≤≤。

(2) 输入一样本12(,,...,)n X x x x =和它的希望输出d ,如果X A ∈类,1d =;

如果X B ∈类,1d =-。

(3)计算实际输出:

1

1()(())n i i i Y t f W t x θ+==-∑

(4) 修正权W :

(1)()[()]i i i W t W t d Y t x η+=+-, 1,2,...,i n =+

式中01η<≤为比例系数,用于控制权值的修正速度,也称为学习速度。通

常η要适中,不能太大也不能太小,太大会影响()i W t 的稳定,太小会使()i W t 的收敛速度太慢。当实际输出与已知的输出值相同时,()i W t 不变。

(5) 转到步骤(2)直到W 对k 个样本均稳定不变为止。

4.1.2.3优缺点

优点:

单层感知器适用于线性分类,在多维样本空间中起到一个将两类模式样本分

开的超平面作用。

缺点:

(1)由于单层感知器的激活函数采用的是阀值函数,输出矢量只能取0或

1,所以只能用它来解决简单的分类问题;

(2)单层感知器仅能够线性地将输入矢量进行分类,并且不能对非线性可

分的输入模式进行分类。如:异或问题;

(3)当输入矢量中有一个数比其他数都大或小得很多时,可能导致较慢的

收敛速度。

4.1.3多层感知器和BP 算法

单层感知器由于只有一个神经元,功能单一,只能完成线性决策或实现“与”、“或”、“非”等单一逻辑函数。多层感知器(Multilayer Perceptron )是在单层感知器的基础上发展起来的,它是一种在输入层与输出层之间含有一层或多层隐含结点的具有正向传播机制的神经网络模型。多层感知器克服了单层感知器的许多局限,它的性能主要来源于它的每层结点的非线性特性(节点输出函数的非线性特性)。如果每个结点是线性的,那么多层感知器的功能就和单层感知器一样。

在人工神经网络中,应用最普遍的是多层前馈网络模型。在1986年,

Rumelhant 和McClelland 提出了多层前馈网络的误差反向传播(Error Back

Propagation )学习算法,简称BP 算法,这是一种多层网络的逆推学习算法。由此采用BP 算法的多层前馈网络也广泛被称为BP 网络。

4.1.3.1网络结构:

图4-3为其网络结构,它由输入层、输出层和中间层(隐层)组成。

图4-3

4.1.3.2 BP 算法

BP 算法由信号的正向传播和误差的反向传播两个过程组成。

(1) 正向传播,输入样本从输入层进入网络,经隐层逐层传递至输入层,如

果输入层的实际输出与期望输出(导师信号)不同,则转至误差反向传播;如果输出层的实际输出与期望输出(导师信号)相同,结束学习算法。

(2) 反向传播,将输出误差(期望输出与实际输出之差)按原通路反传计算,通过隐层反向,直至输入层,在反传过程中将误差分摊给各层的各个神经元,获得各层各神经元的误差信号,并将其作为修正各单元权值的根据。这一计算过程… … … … … … … … … X1 X2 Xn Om O2 O1 输出层 隐藏层 输入层

使用梯度下降法完成,在不停地调整各层神经元的权值和阈值后,使误差信号减小到最低限度。

4.1.3.3算法学习规则

对于输入输出对(,)X Y ,网络的实际输出为O ,ij w 为前一层第i 个神经元输

入到后一层第j 个神经元的权重,当神经元为输入层单元时,O X =。 激发函数为半线性函数。BP 算法的学习规则为:

i j ji ji x w w ηδ+=

j j j ηδθθ-=

()(1) ()(1) j j j j j m mj j j m y o o o w o o δδ--????=??-????

∑当神经元为输出神经元时当神经元为隐层神经元时,, 推理过程:(注意:I 表示上一层到下一层的输入,不同函数的j δ不同)

I

E I O O E I I O O E I I O O E E x W W I I O O E W W I I O O E W W E W W W W j j j j j j j j j j i j ji ji

ji ji ji ji ji ji ji ji ??-=????--=-+=??????-+=??????-=??-=?+=+=??????-+=??????-=??-=?+=*)1(*)*(***)*(**δηδθθηθθηθθη

θθθθηδηηη其中 带"势态项"的BP 算法学习规则:

)()()1(t w a o t w t w ji i j ji ji ?++=+ηδ

)()()1(t a t t j j j j θηδθθ?+-=+

其中a 为常数,它决定过去权重的变化对目前权值变化的影响程度。)

(t w ji ?为上一次权值的变化量。

4.1.3.4算法步骤 以激活函数全部取x

e x

f -+=11)(为例,则BP 算法步骤详细描述如下: (1) 置各权值或阈值的初始值:)0(ji w , )0(j θ为小的随机数。

(2) 提供训练样本:输入矢量k X ,1,2,,k p = ,期望输出k y ,1,2,,k p =, 对

每个输入样本进行下面(3)到(5)的迭代。

(3) 计算网络的实际输出及隐层单元的状态:

()kj ji ki j i

o f w o θ=-∑

(4) 计算训练误差:

()(1), ()(1) kj kj kj kj kj m mj kj kj m y o o o w o o δδ--????=??-????

∑输出层隐含层, (5) 修正权值和阈值:

)()()1(t w a o t w t w ji ki j ji ji ?++=+ηδ

(1)()()j j j j t t a t θθηδθ+=-+?

(6) 当k 每经历1至p 后, 计算

s p d y

E p k s j kj kj ?-=∑∑==112

)(

kj d 为网络实际输出。如果ε≤E ,则到(7),否则到(3)。

(7) 结束。

4.1.3.5优缺点

优点:

(1)具有强泛化性能:使网络平滑地学习函数,使网络能够合理地响应被

训练以外的输入;

(2)应用广泛,如:函数逼近、模式识别和分类、数据压缩等。

缺点:

(1)需要较长的训练时间;

(2)BP 算法可以使网络权值收敛到一个解,但它并不能保证所求为误差超

平面的全局最小解,很可能是一个局部极小解;

(3)泛化性能只对被训练的输入/输出对最大值范围内的数据有效,即网

络具有内插值特性,不具有外插值性。超出最大训练值的输入必将产生大的输出误差。

4.2反馈神经网络模型

反馈神经网络模型可用一完备的无向图表示。从系统的观点看,反馈神经网络模型是一反馈动力学系统,它具有极复杂的动力学特性。在反馈神经网络模型中,我们关心的是其稳定性,稳定性是神经网络相联存储性质的体现,可以说稳定就意味着完成回忆。从计算的角度讲,反馈神经网络模型具有比前馈神经网络模型更强的计算能力,它包括Hopfield神经网络、海明神经网络和双向联想存储器。

4.2.1 Hopfield神经网络

1982年,美国神经网络学者霍普菲尔德(J.J.Hopfield)提出了反馈型的全连接神经网络,是一种对记忆功能的较好模拟。Hopfield神经网络的结构特点是:每一个神经元的输出信号通过其它神经元后,反馈到自己的输入端。这种反馈方式有利于通过联想记忆实现最优化,经过分析比较与判断确定最优解决问题的方法。网络状态的演变是一种非线性动力学系统的行为描述过程,作为一种非线性动力学系统,系统从初始化出发后,系统状态经过演变可能发生如下结果:

(1)渐进稳定形成稳定点,又称为吸引子。

(2) 极限环状态。

(3) 混沌状态。

(4) 发散状态。

发散状态是不希望看到的。对于人工神经网络而言,由于选取网络的变换函数为一个有界函数,因此系统状态不会演变成发散。

在Hopfield网络中,如果其传输函数()

f?是一个二值型的硬函数,则称此网络为离散型Hopfield网络;如果传输函数()

f?是一个连续单调上升的有界函数,则称此网络为连续型Hopfield网络。

4.2.1.1网络结构

(1)离散Hopfield神经网络结构

离散Hopfield网络是单层全互连的,共有n个神经元。每个神经元都通过连接权接收所有其他神经元输出反馈来的信息,其目的是为了让任一神经元的输

出能接受所有神经元输出的控制,从而使各神经元能相互制约。j T 为神经元j 的阈值;ij w 为神经元i 与j 的连接权值。图4-4为其网络结构:

图4-4

(2)连续Hopfield 神经网络结构

模仿生物神经元及其网络的主要特性,连续型Hopfield 网络利用模拟电路

构造了反馈人工神经网络的电路模型,图4-5为其网络结构:

4-5

i v 1

v j v N v N

c j c i c 1c j u i u 1u N u 10R 0i R 0j R 0N R 1I i I j I N I 11w 1N w 1i w 1j w

4.2.1.2 学习算法

Hopfield 网络按动力学方式运行,其工作过程为状态的演化过程,即从初始状态按“能量”减小的方向进行演化,直到达到稳定状态,稳定状态即为网络的输出状态。

4.2.1.3 Hopfield 网络工作方式

Hopfield 网络的工作方式主要有两种形式:

(1)串行(异步)工作方式:在任一时刻t ,只有某一神经元i (随机或确定的选择)变化,而其他神经元的状态不变。

(2)并行(同步)工作方式:在任一时刻t ,部分神经元或全部神经元的状态同时改变。

4.2.1.4 Hopfield 网络运行步骤

下面以串行方式为例说明Hopfield 网络的运行步骤:

(1)对网络进行初始化;

(2) 从网络中随机选取一个神经元i ;

(3)求出神经元i 的输入()i u t : 1()()n

i i j j i j j i u t w v t b =≠=+

∑ (4) 求出神经元i 的输出(1)i v t +,此时网络中的其他神经元的输出保持不变;

说明:(1)(())i i v t f u t +=,f 为激励函数,可取阶跃函数或符号函数。如取符号函数,则Hopfield 网络的神经元输出(1)i v t +取离散值1或-1,即:

111,()0

(1)1,()0n

ij j i j j i i n ij j i j j i w v t b v t w v t b =≠=≠?+≥???+=??-+

∑∑ (5)判断网络是否达到稳定状态,若达到稳定状态或满足给定条件,则结束;否则转至第二步继续运行。

这里网络的稳定状态定义为:若网络从某一时刻以后,状态不再发生变化。即:()(),0v t t v t t +?=?>。

4.2.1.5优缺点

优点:

Hopfield网络主要用于从片段中进行图像和数据的完全恢复。

缺点:

处理单元间连接权值需预先设置,并且单元之间的连接是要对称的,它没有学习能力。

4.2.2海明神经网络(Hamming)

海明(Hamming)网络由匹配子网和竞争子网组成。匹配子网在学习阶段将若干类别的样本记忆存储在网络的连接权值中;在工作阶段(回忆阶段),该子网计算输入模式和各个样本模式的匹配程度,并将结果送入竞争子网中,由竞争子网选择出匹配子网中最大的输出。从而,实现了对离散输入模式进行在海明距离最小意义下的识别和分类。

4.2.2.1网络结构

图4-6为其网络结构:

图4-6

4.2.2.2学习算法

(1)Hamming距离

如果将模式用向量来表示,Hamming距离是指两个模式不同元素的个数。

如:

A =(0 0 1 1 0) ,B=(1 0 1 0 1)则:H(A, B)=3。

(2)Hamming 网络的学习之权值设置

竞争子网的连接权值设置方法: 1 kl k l k l ωε=??=??-≠??

匹配子网的连接权值设置方法:2j ij i x ω=

(3)Hamming 网络的学习之阈值设置:

竞争子网神经元的阈值设置为0; 匹配子网神经元阈值的设置为:2j N θ=-

;N 为匹配子网中神经元的个数。 (4)Hamming 网络学习算法描述

网络的学习过程采用竞争学习算法,而竞争学习包含以下主要过程:网络对刺激做出响应,具有最大响应的神经元被激活,该神经元成为获胜神经元并获得学习的机会,更改获胜神经元的权值。其中,只有最大响应的神经元被激活的这一特征被称为“胜者为王”机制。其具体学习算法描述如下:

①设置变量和参量:12()[(),(),

,()]T N X n x n x n x n =为输入向量,其元素均为二进制元素。12()[(),(),,()]I I I I T i i i iN W n w n w n w n =,1,2,,i M =为前向子网络的权

值向量;II kl w 为竞争子网络的权值。12()[(),(),

,()]T M Y n y n y n y n =为实际输出。η为学习速率,n 代表Hamming 网络的第n 次训练,1n 为竞争子网络迭代过程中的迭代步数,而N 为预设的总的训练次数。

②初始化:对于前向子网络权值I ij w ,用小的随机值进行初始化并满足约束

条件

1

1, 1,2,,N I ij j w

i M ===∑ 对于II kl w (,1,2,,k l M =),1,,II kl k l w k l

ε+=?=?-≠?当当,而神经元的输出函数12(.),(.)f f

选取线性函数并且给定总的迭代次数N 。

③选取训练样本X 。

④计算竞争子网络神经元的初始输入即前向子网络的输出:

11(0), 1,2,,N I I k i ij j j y V f w x i M =??=== ???∑

⑤ 计算竞争子网络的迭代过程:

121(1)(), 1,2,

,k k l l l y n f y n y k M ε≠??+=-= ???∑

⑥观察竞争子网络的输出,当输出达到要求时(只有一个输出为正,其余为零)转第七步,否则1n 等于11n +,转到第五步继续迭代。

⑦将输出最大的神经元c 定为获胜神经元,并将其输出()c y n 置为1,其他神经元的输出置为0,实现“胜者为王”。

⑧更新获胜神经元的权值向量:

(1)()()I I I c c c X W n W n W n p η??+=+- ???

其中,p 为在输入向量12(,,,)M X X X X 中元素为1的个数。

⑨ 判断网络的当前训练次数n 是否大于N ,如果小于,则n 等于1n +,回到第三步进行新的一次训练,否则结束网络训练过程。

4.2.2.3特点

Hamming 网络与Hopfield 网络不同,它分别计算未知输入模式与每个已知标准样本模式的Hamming 距离,对应距离最小的那个标准样本模式即是可以和输入模式匹配的模式。而对Hopfield 网络而言,作为一识别器,要么精确地找到一个可以匹配的标准样本模式,要么找不到,即得到“不能匹配”的结果。

4.2.3双向联想存储器(BAM )

双向联想存储器(BAM )是由日本的Kosko 提出的一种神经网络模型,它是ART 网络模型的一种简化形式, 是一种异联想存储器。它能存储成对的模式11(,)A B ,22(,),,(,)N N A B A B 。i A 和i B 是不同向量空间中的向量。如果模式A 输

入到BAM ,输出是模式B ,且若A 与i A 最为接近,B 就是在BAM 所存储的向量i B 。

BAM 网络模型中的神经元为非线性单元,每个神经元的作用相当于一个非线性函数,这个函数一般取为S 型函数:11exp x y -=

+。 4.2.3.1 网络结构

在A F 中有n 个处理单元12{,,

,}A n F a a a =,在B F 中有p 个处理单元12{,,,}B p F b b b =。每一个域中的神经元均与另一个域中所有神经元相连。图4-7为其网络结构:

图4-7

4.2.3.2学习算法

(1)BAM 模型神经元的输出

一般情况下,每个处理单元的输出取[0,1]之间的值,但在应用中通常取输出值为二值:0或1,这样按处理单元门限规定,每个处理单元要么为开状态,要么为关状态。若输入大于阈值,则输出为1;若输入小于阈值,则输出为0;当输入与阈值相等时,处理单元输出保持原来状态不变。

(2)BAM 模型的信息存储 F B F A

B A a 1 a 2 a n b 1 b 2 b p

在双向联想存储模型中,所有的信息都是包含在一个n p ?的矩阵M 中的。这个矩阵M 实际上是一个权值矩阵,信息就是由这个权值矩阵来表达。如果M 产生一个稳定的双向联想存储器,则所有的输入都可以很快地映射到稳定的输出模式。

由于要将不同的联想模式对(,)i i A B 收敛到局部能量极小点上,所以所要学习的模式对或联想个数m 必须小于域A F 和域B F 中处理单元的个数,即:

min(,)m n p <

(3)BAM 模型学习基础:

双极矩阵(向量):双极矩阵(或向量)是在二元矩阵(或向量)的基础上,将0代之以-1而得到的。如: 二元向量1(1 0 1 0 1 0)A =和1(1 1 0 0)B =,其相应的双极向量为1(1 -1 1 -1 1 -1)X =和1(1 1 -1 -1)Y =。

双向联想存储器在学习时,先将二元向量对(,)i i A B 转换成双极向量对

(,)i i X Y ,然后计算双极伴随矩阵T i i X Y ,最后将所有的双极伴随矩阵相加起来便得到权值矩阵M ,即:1122....T T T m m M X Y X Y X Y =+++

(4)BAM 模型记忆模式擦除

要从双向联想存储器中擦去某个记忆模式,例如要去掉模式对(,)i i A B ,只要在权值矩阵M 中减去该联想对的双极伴随矩阵,即:'T i i M M X Y =-

(5) BAM 模型的联想过程

联想过程是一个自适应调整过程,目的是使最后的输出能够更加逼近理论上的输出值。

(6) BAM 模型的学习过程:

①将输入模式A 送入双向联想存储器域A F 中。

②域B F 中的各神经元计算其接收值,对于域B F 中的处理单元(1,2,,)

i b i p =

Hopfield神经网络综述

题目:Hopfield神经网络综述 一、概述: 1.什么是人工神经网络(Artificial Neural Network,ANN) 人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。 人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。 根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。 1)反馈神经网络(Recurrent Network) 反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; (2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。该网络主要用于联想记忆和优化计算。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。 2.Hopfiel d神经网络 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield 教授于1982年提出,是一种单层反馈神经网络。Hopfiel d神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。 Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。在输入的激励下,会产生不断的状态变化。 反馈网络有稳定的,也有不稳定的,如何判别其稳定性也是需要确定的。对于一个Hopfield 网络来说,关键是在于确定它在稳定条件下的权系数。 下图中,第0层是输入,不是神经元;第二层是神经元。

基于人工神经网络预测探究文献综述

基于人工神经网络的预测研究文献综述专业:电子信息工程班级:08级2班作者:刘铭指导老师:熊朝松 引言 随着多媒体和网络技术的飞速发展及广泛应用,人工神经网络已被广泛运用于各种领域,而它的预测功能也在不断被人挖掘着。人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。现代计算机构成单元的速度是人脑中神经元速度的几百万倍,对于那些特征明确,推理或运算规则清楚地可编程问题,可以高速有效地求解,在数值运算和逻辑运算方面的精确与高速极大地拓展了人脑的能力,从而在信息处理和控制决策等方面为人们提供了实现智能化和自动化的先进手段。但由于现有计算机是按照冯·诺依曼原理,基于程序存取进行工作的,历经半个多世纪的发展,其结构模式与运行机制仍然没有跳出传统的逻辑运算规则,因而在很多方面的功能还远不能达到认得智能水平。随着现代信息科学与技术的飞速发展,这方面的问题日趋尖锐,促使科学和技术专家们寻找解决问题的新出路。当人们的思想转向研究大自然造就的精妙的人脑结构模式和信息处理机制时,推动了脑科学的深入发展以及人工神经网络和闹模型的研究。随着对生物闹的深入了解,人工神经网络获得长足发展。在经历了漫长的初创期和低潮期后,人工神经网络终于以其不容忽视的潜力与活力进入了发展高潮。这么多年来,它的结构与功能逐步改善,运行机制渐趋成熟,应用领域日益扩大,在解决各行各业的难题中显示出巨大的潜力,取得了丰硕的成果。通过运用人工神经网络建模,可以进行预测事物的发展,节省了实际要求证结果所需的研究时间。 正是由于人工神经网络是一门新兴的学科,它在理论、模型、算法、应用和时限等方面都还有很多空白点需要努力探索、研究、开拓和开发。因此,许多国家的政府和企业都投入了大量的资金,组织大量的科学和技术专家对人工神经网络的广泛问题立项研究。从人工神经网络的模拟程序和专用芯片的不断推出、论文的大量发表以及各种应用的报道可以看到,在这个领域里一个百家争鸣的局面已经形成。 为了能深入认识人工神经网络的预测功能,大量收集和阅读相关资料是非常必要的。搜集的资料范围主要是大量介绍人工神经网路,以及认识和熟悉了其中重要的BP网络。参考的著作有:马锐的《人工神经网络原理》,胡守仁、余少波的《神经网络导论》以及一些相关论文,董军和胡上序的《混沌神经网络研究进展和展望》,朱大奇的《人工神经网络研究现状及其展望》和宋桂荣的《改进BP算法在故障诊断中的应用》,这些

人工神经网络的发展及应用

人工神经网络的发展与应用 神经网络发展 启蒙时期 启蒙时期开始于1980年美国著名心理学家W.James关于人脑结构与功能的研究,结束于1969年Minsky和Pape~发表的《感知器》(Perceptron)一书。早在1943年,心理学家McCulloch和数学家Pitts合作提出了形式神经元的数学模型(即M—P模型),该模型把神经细胞的动作描述为:1神经元的活动表现为兴奋或抑制的二值变化;2任何兴奋性突触有输入激励后,使神经元兴奋与神经元先前的动作状态无关;3任何抑制性突触有输入激励后,使神经元抑制;4突触的值不随时间改变;5突触从感知输入到传送出一个输出脉冲的延迟时问是0.5ms。可见,M—P模型是用逻辑的数学工具研究客观世界的事件在形式神经网络中的表述。现在来看M—P 模型尽管过于简单,而且其观点也并非完全正确,但是其理论有一定的贡献。因此,M—P模型被认为开创了神经科学理论研究的新时代。1949年,心理学家D.0.Hebb 提出了神经元之间突触联系强度可变的假设,并据此提出神经元的学习规则——Hebb规则,为神经网络的学习算法奠定了基础。1957年,计算机学家FrankRosenblatt提出了一种具有三层网络特性的神经网络结构,称为“感知器”(Perceptron),它是由阈值性神经元组成,试图模拟动物和人脑的感知学习能力,Rosenblatt认为信息被包含在相互连接或联合之中,而不是反映在拓扑结构的表示法中;另外,对于如何存储影响认知和行为的信息问题,他认为,存储的信息在神经网络系统内开始形成新的连接或传递链路后,新 的刺激将会通过这些新建立的链路自动地激活适当的响应部分,而不是要求任何识别或坚定他们的过程。1962年Widrow提出了自适应线性元件(Ada—line),它是连续取值的线性网络,主要用于自适应信号处理和自适应控制。 低潮期 人工智能的创始人之一Minkey和pape~经过数年研究,对以感知器为代表的网络系统的功能及其局限性从数学上做了深入的研究,于1969年出版了很有影响的《Perceptron)一书,该书提出了感知器不可能实现复杂的逻辑函数,这对当时的人工神经网络研究产生了极大的负面影响,从而使神经网络研究处于低潮时期。引起低潮的更重要的原因是:20世纪7O年代以来集成电路和微电子技术的迅猛发展,使传统的冯·诺伊曼型计算机进入发展的全盛时期,因此暂时掩盖了发展新型计算机和寻求新的神经网络的必要性和迫切性。但是在此时期,波士顿大学的S.Grossberg教授和赫尔辛基大学的Koho—nen教授,仍致力于神经网络的研究,分别提出了自适应共振理论(Adaptive Resonance Theory)和自组织特征映射模型(SOM)。以上开创性的研究成果和工作虽然未能引起当时人们的普遍重视,但其科学价值却不可磨灭,它们为神经网络的进一步发展奠定了基础。 复兴时期 20世纪80年代以来,由于以逻辑推理为基础的人工智能理论和冯·诺伊曼型计算机在处理诸如视觉、听觉、联想记忆等智能信息处理问题上受到挫折,促使人们

人工神经网络大作业

X X X X大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010年12月22日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1.1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1)神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。(3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型。②神经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后再与真实对象作比较(仿真处理方法)。 1.3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能,是一门新兴的前沿交叉学科,其概念以T.Kohonen.Pr的论述最具代表性:人工神经网络就是由简单的处理单元(通常为适应性)组成的并行互联网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1.4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题:模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1.5理论局限性 (1)受限于脑科学的已有研究成果由于生理试验的困难性,目前对于人脑思维与记忆机制的认识尚很肤浅,对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2)尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网,节点间互连强度构成的矩阵可通过某种学

人工神经网络综述

目录 1 人工神经网络算法的工作原理 (3) 2 人工神经网络研究内容 (4) 3 人工神经网络的特点 (5) 4 典型的神经网络结构 (6) 4.1 前馈神经网络模型 (6) 4.1.1 自适应线性神经网络(Adaline) (6) 4.1.1.1网络结构 (6) 4.1.1.2学习算法步骤 (7) 4.1.1.3优缺点 (7) 4.1.2单层感知器 (8) 4.1.2.1网络结构 (8) 4.1.2.2学习算法步骤 (9) 4.1.2.3优缺点 (9) 4.1.3多层感知器和BP算法 (10) 4.1.3.1网络结构: (10) 4.1.3.2 BP算法 (10) 4.1.3.3算法学习规则 (11) 4.1.3.4算法步骤 (11) 4.1.3.5优缺点 (12) 4.2反馈神经网络模型 (13) 4.2.1 Hopfield神经网络 (13) 4.2.1.1网络结构 (13) 4.2.1.2 学习算法 (15) 4.2.1.3 Hopfield网络工作方式 (15) 4.2.1.4 Hopfield网络运行步骤 (15) 4.2.1.5优缺点 (16) 4.2.2海明神经网络(Hamming) (16) 4.2.2.1网络结构 (16) 4.2.2.2学习算法 (17) 4.2.2.3特点 (18) 4.2.3双向联想存储器(BAM) (19) 4.2.3.1 网络结构 (19) 4.2.3.2学习算法 (19) 4.2.3.4优缺点 (21) 5.人工神经网络发展趋势以及待解决的关键问题 (22) 5.1 与小波分析的结合 (22) 5.1.1小波神经网络的应用 (23) 5.1.2待解决的关键技术问题 (23) 5.2混沌神经网络 (23) 5.2.1混沌神经网络的应用 (24) 5.2.2待解决的关键技术问题 (24)

人工神经网络概论

人工神经网络概论 梁飞 (中国矿业大学计算机科学与技术学院信科09-1班,江苏,徐州,221116) 摘要:进入21世纪以来,神经网络近来越来越受到人们的关注,因为神经网络可以很容易的解决具有上百个参数的问题,它为大复杂度问题提供了解决一种相对来说比较有效的简单方法。人工神经网络是涉及神经科学、思维科学、人工智能、计算机科学等多个领域的交叉学科。本文简要介绍了人工神经网络的工作原理、属性、特点和优缺点、网络模型、发展历史及它的应用和发展前景等。 关键词:人工神经网络;人工智能;神经网络;神经系统 1.人工神经网络的简介 人工神经网络(Artificial Neural Networks,简写为 ANN),一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络具有自学习和自适应的能力,可以通过预先提供的一批相互对应的输入-输出数据,分析掌握两者之间潜在的规律,最终根据这些规律,用新的输入数据来推算输出结果,这种学习分析的过程被称为“训练”。 2.人工神经网络的工作原理 人脑的处理机制极其复杂,从结构上看它是包含有140亿神经细胞的大规模网络。单个神经细胞的工作速度并不高,但它通过超并行处理使得整个系统实现处理的高速性和表现的多样性。 因此,从处理的角度对人脑进行研究,并由此研制出一种象人脑一样能够“思维”的智能计算机和智能处理方法,一直是人工智能追求的目标。 人脑神经系统的基本构造单元是神经细胞,也称神经元。它和人体中其他细胞的关键区别在于具有产生、处理和传递信号的功能。每个神经元都包括三个主要部分:细胞体、树突和轴突。树突的作用是向四方收集由其他神经细胞传来的信息,轴突的功能是传出从细胞体送来的信息。每个神经细胞所产生和传递的基本信息是兴奋或抑制。在两个神经细胞之间的相互接触点称为突触。从信息的传递过程来看,一个神经细胞的树突,在突触处从其他神经细胞接受信号。这些信号可能是兴奋性的,也可能是抑制性的。所有树突接受到的信号都传到细胞体进行综合处理,如果在一个时间间隔内,某一细胞接受到的兴奋性信号量足够大,以致于使该细胞被激活,而产生一个脉冲信号。这个信号将沿着该细胞的轴突传送出去,并通过突触传给其他神经细胞.神经细胞通过突触的联接形成神经网络。

最新神经网络最新发展综述汇编

神经网络最新发展综述 学校:上海海事大学 专业:物流工程 姓名:周巧珍 学号:201530210155

神经网络最新发展综述 摘要:作为联接主义智能实现的典范,神经网络采用广泛互联的结构与有效的学习机制来模拟人脑信息处理的过程,是人工智能发展中的重要方法,也是当前类脑智能研究中的有效工具。目前,模拟人脑复杂的层次化认知特点的深度学习成为类脑智能中的一个重要研究方向。通过增加网络层数所构造的“深层神经网络”使机器能够获得“抽象概念”能力,在诸多领域都取得了巨大的成功,又掀起了神经网络研究的一个新高潮。本文分8个方面综述了其当前研究进展以及存在的问题,展望了未来神经网络的发展方向。 关键词: 类脑智能;神经网络;深度学习;大数据 Abstract: As a typical realization of connectionism intelligence, neural network, which tries to mimic the information processing patterns in the human brain by adopting broadly interconnected structures and effective learning mechanisms, is an important branch of artificial intelligence and also a useful tool in the research on brain-like intelligence at present. Currently, as a way to imitate the complex hierarchical cognition characteristic of human brain, deep learning brings an important trend for brain-like intelligence. With the increasing number of layers, deep neural network entitles machines the capability to capture “abstract concepts” and it has achieved great success in various fields, leading a new and advanced trend in neural network research. This paper summarizes the latest progress in eight applications and existing problems considering neural network and points out its possible future directions. Key words : artificial intelligence; neural network; deep learning; big data 1 引言 实现人工智能是人类长期以来一直追求的梦想。虽然计算机技术在过去几十年里取得了长足的发展,但是实现真正意义上的机器智能至今仍然困难重重。伴随着神经解剖学的发展,观测大脑微观结构的技术手段日益丰富,人类对大脑组织的形态、结构与活动的认识越来越深入,人脑信息处理的奥秘也正在被逐步揭示。如何借助神经科学、脑科学与认知科学的研究成果,研究大脑信息表征、转换机理和学习规则,建立模拟大脑信息处理过程的智能计算模型,最终使机器掌握人类的认知规律,是“类脑智能”的研究目标。 类脑智能是涉及计算科学、认知科学、神经科学与脑科学的交叉前沿方向。类脑智能的

人工神经网络发展前景111

人工神经网络发展前景 姓名 单位 摘要 在分析人工神经网络的发展过程、基本功能、应用范围的基础上,着重论述了神经网络与专家系统、模糊技术、遗传算法、灰色系统及小波分析的融合。 关键词 英文摘要 英文关键词 1前言 人工神经网络的发展起源于何时,说法不一。一般认为,其起源可追溯到Warren WcCulloch和Walter Pitts提出的MP模型。从此拉开了神经网络的序幕。20世纪50年代后期,Frank Rosenblatt定义了一种以后常用的神经网络结构,称为感知器。这是人工神经网络第一个实际应用;20世纪60年代,Bernard Widrow和Ted Hoff提出了一个新的学习算法用于训练自适应线性神经网络;20世纪70年代,Grossberg 提出了自适应共振理论。他研究了两种记忆机制(短期记忆和长期记忆),提出了一种可视系统的自组织神经网络,这是一种连续时间竞争网络,是构成自适应谐振理论网络基础;20世纪80年代,Hopfield 及一些学者提出了Hopfield网络模型,这是一种全连接的反馈网络。此外,Hinton等提出了Boltzman机。Kumellhart等人提出误差反向

传播神经网络,简称BP网络。目前BP神经网络已成为广泛使用的网络。 2应用现状 神经网络以及独特的结构和处理信息的方法,在许多实际应用领域中取得了显著的成效,主要应用如下: 1)信号处理。神经网络广泛应用于自适应信号处理和非线性信号处理中。前者如信号的自适应滤波、时间序列预测、谱估计、噪声消除等;后者如非线性滤波、非线性预测、非线性编码、调制/解调等。2)模式识别。神经网络不仅可以处理静态模式如固定图像、固定能谱等,还可以处理动态模式如视频图像、连续语音等。 3)系统识别。基于神经网络的系统辨识是以神经网络作为被识对象的模型,利用其非线性特性,可建立非线性系统的静态或动态模型。 4)智能检测。在对综合指标的检测(例如对环境舒适度这类综合指标检测)中,以神经网络作为智能检测中的信息处理联想等数据融合处理,从而实现单一传感器不具备的功能。 5)汽车工程。神经网络在汽车刹车自动控制系统中也有成功的应用,该系统能在给定刹车距离、车速和最大减速度的情况下,以人体能感受到的最小冲击实现平稳刹车,而不受路面坡度和车重影响。 6)化学工程。神经网络在光谱分析、判定化学反应的生成物、判定离子浓度及研究生命体中某些化合物的含量与生物活性的对应关系都有广泛应用并取得了一定成果。 7)卫生保健、医疗。比如通过训练自主组合的多层感知器可以区分

人工神经网络研究背景目的意义与现状

人工神经网络研究背景目的意义与现状 1研究背景 2国内外研究状况及趋势 3研究的目的及意义 1研究背景 现代计算机构成单元的速度是人脑中神经元速度的几百万倍,对于那些特征明确,推理或运算规则清楚的可编程问题,可以高速有效地求解,在数值运算和逻辑运算方面的精确与高速极大地拓展了人脑的能力,从而在信息处理和控制决策等各方面为人们提供了实现智能化和自动化的先进手段。但由于现有计算机是按照冯·诺依曼原理,基于程序存取进行工作的,历经半个多世纪的发展,其结构模式与运行机制仍然没有跳出传统的逻辑运算规则,因而在很多方面的功能还远不能达到人的智能水平。随着现代信息科学与技术的飞速发展,这方面的问题日趋尖锐,促使科学和技术专家们寻找解决问题的新出路。当人们的思路转向研究大自然造就的精妙的人脑结构模式和信息处理机制时,推动了脑科学的深入发展以及人工神经网络和脑模型的研究。随着对生物脑的深入了解,人工神经网络获得长足发展。在经历了漫长的初创期和低潮期后,人工神经网络终于以其不容忽视的潜力与活力进入了发展高潮。60多年来,它的结构与功能逐步改善,运行机制渐趋成熟,应用领域日益扩大,在解决各行各业的难题中显示出巨大的潜力,取得了丰硕的成果。 正是由于人工神经网络是一门新兴的学科,它在理论、模型、算法、应用和时限等方面都还有很多空白点需要努力探索、研究、开拓和开发。因此,许多国家的政府和企业都投入了大量的资金,组织大量的科学和技术专家对人工神经网络的广泛问题立项研究。从人工神经网络的模拟程序和专用芯片的不断推出、论文的大量发表以及各种应用的报道可以看到,在这个领域里一个百花气放、百家争鸣的局面已经形成。 在进行神经网络的理论研究时,人们可以将自己的神经网络模型或算法在通用的串行或并行计算机上编程实现,但这只是研究的手段而绝非目的,在构造实际的神经网络应用系统时,必然要考虑到硬件实现问题,特定应用下的高性能专

Hopfield神经网络综述

题目: Hopfield神经网络综述 一、概述: 1.什么是人工神经网络(Artificial Neural Network,ANN) 人工神经网络是一个并行和分布式的信息处理网络结构,该网络结构一般由许多个神经元组成,每个神经元有一个单一的输出,它可以连接到很多其他的神经元,其输入有多个连接通路,每个连接通路对应一个连接权系数。 人工神经网络系统是以工程技术手段来模拟人脑神经元(包括细胞体,树突,轴突)网络的结构与特征的系统。利用人工神经元可以构成各种不同拓扑结构的神经网络,它是生物神经网络的一种模拟和近似。主要从两个方面进行模拟:一是结构和实现机理;二是从功能上加以模拟。 根据神经网络的主要连接型式而言,目前已有数十种不同的神经网络模型,其中前馈型网络和反馈型网络是两种典型的结构模型。 1)反馈神经网络(Recurrent Network) 反馈神经网络,又称自联想记忆网络,其目的是为了设计一个网络,储存一组平衡点,使得当给网络一组初始值时,网络通过自行运行而最终收敛到这个设计的平衡点上。反馈神经网络是一种将输出经过一步时移再接入到输入层的神经网络系统。 反馈网络能够表现出非线性动力学系统的动态特性。它所具有的主要特性为以下两点:(1).网络系统具有若干个稳定状态。当网络从某一初始状态开始运动,网络系统总可以收敛到某一个稳定的平衡状态; (2).系统稳定的平衡状态可以通过设计网络的权值而被存储到网络中。 反馈网络是一种动态网络,它需要工作一段时间才能达到稳定。该网络主要用于联想记忆和优化计算。在这种网络中,每个神经元同时将自身的输出信号作为输入信号反馈给其他神经元,它需要工作一段时间才能达到稳定。 2.Hopfield神经网络 Hopfield网络是神经网络发展历史上的一个重要的里程碑。由美国加州理工学院物理学家J.J.Hopfield 教授于1982年提出,是一种单层反馈神经网络。Hopfield神经网络是反馈网络中最简单且应用广泛的模型,它具有联想记忆的功能。 Hopfield神经网络模型是一种循环神经网络,从输出到输入有反馈连接。在输入的激励下,会产生不断的状态变化。 反馈网络有稳定的,也有不稳定的,如何判别其稳定性也是需要确定的。对于一个Hopfield 网络来说,关键是在于确定它在稳定条件下的权系数。 下图中,第0层是输入,不是神经元;第二层是神经元。

人工神经网络综述

人工神经网络综述 摘要:人工神经网络是属于人工智能的一个组成部分,它的提出是基于现代神经科学的相关研究,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。首先论述了人工神经网络的发展历程,并介绍了几种常见的模型及应用现状,最后总结了当前存在的问题及发展方向。 关键词:神经网络、分类、应用 0引言 多年以来,科学家们不断从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度探索人脑工作的秘密,希望能制作模拟人脑的人工神经元。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。在研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“人工神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。 1人工神经网络概述 1.1人工神经网络的发展 人工神经网络是20世纪80年代以来人工智能领域中兴起的研究热点,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。 1.1.1人工神经网络发展初期 1943年美国科学家家Pitts和MeCulloch从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP模型,这是人类最早对于人脑功能的模仿。他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究。1958年Frank Rosenblatt提出了感知模型(Pereeptron),用来进行分类,并首次把神经网络的研究付诸于工程实践。1960年Bernard Widrow等提出自适应线形元件ADACINE网络模型,用于信号处理中的自适应滤波、预测和模型识别。 1.1.2人工神经网络低谷时期

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究 摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。 关键词:BP神经网络、算法分析、应用 1 引言 人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。 人工神经网络最有吸引力的特点就是它的学习能力。因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。 人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。现在分别介绍人工神经元模型及人工神经网络模型。 1.1 人工神经元模型 仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts 在分析总结神经元基本特性的基础上首先提出的MP模型。该模型经过不断改进后,形成现在广泛应用的BP神经元模型。人工神经元模型是由人量处理单元厂泛互连而成的网络,是人脑的抽象、简化、模拟,反映人脑的基本特性。一般来说,作为人工神经元模型应具备三个要素: (1)具有一组突触或连接,常用表示神经元i和神经元j之间的连接强度。 w ij (2)具有反映生物神经元时空整合功能的输入信号累加器。

人工神经网络文献综述.

WIND 一、人工神经网络理论概述 (一人工神经网络基本原理 神经网络 (Artificialneuralnet work , ANN 是由大量的简单神经元组成的非线性系统,每个神经元的结构和功能都比较简单,而大量神经元组合产生的系统行为却非常复杂。人工神经元以不同的方式,通过改变连接方式、神经元的数量和层数,组成不同的人工神经网络模型 (神经网络模型。 人工神经元模型的基本结构如图 1所示。图中X=(x 1, x 2, … x n T ∈ R n 表示神经元的输入信号 (也是其他神经元的输出信号 ; w ij 表示 神经元 i 和神经元 j 之间的连接强度,或称之为权值; θj 为神经元 j 的阀值 (即输入信号强度必须达到的最小值才能产生输出响应 ; y i 是神经元 i 的输出。其表达式为 y i =f( n j =i Σw ij x j +θi 式中, f (

·为传递函数 (或称激活函数 ,表示神经元的输入 -输出关系。 图 1 (二人工神经网络的发展 人工神经网络 (ArtificialNeuralNetwork 是一门崭新的信息处理科学,是用来模拟人脑结构和智能的一个前沿研究领域,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。人工神经网络系统理论的发展历史是不平衡的,自 1943年心理学家 McCulloch 与数学家 Pitts 提出神经元生物学模型 (简称MP-模型以来,至今已有 50多年的历史了。在这 50多年的历史中,它的发展大体上可分为以下几个阶段。 60年代末至 70年代,人工神经网络系统理论的发展处于一个低潮时期。造成这一情况的原因是人工神经网络系统理论的发展出现了本质上的困难,即电子线路交叉极限的困难。这在当时条件下,对神经元的数量 n 的大小受到极大的限制,因此它不可能去完成高度智能化的计算任务。 80年代中期人工神经网络得到了飞速的发展。这一时期,多种模型、算法与应用问题被提出,主要进展如:Boltzmann 机理论的研究, 细胞网络的提出,性能指标的分析等。 90年代以后,人工神经网络系统理论进入了稳健发展时期。现在人工神经网络系统理论的应用研究主要是在模式识别、经济管理、优化控制等方面:与数学、统计中的多个学科分支发生联系。 (三人工神经网络分类 人工神经网络模型发展到今天已有百余种模型,建造的方法也是多种多样,有出自热力学的、数学方法的、模糊以及混沌方法的。其中 BP 网络(BackPropagationNN 是当前应用最为广泛的一种人工神经网络。在人工神经网络的实际应用中, 80%~90%的人工神经网络模型是采用 BP 网络或它的变化形式,它也

人工神经网络发展历史与训练算法概述-2019年文档

人工神经网络发展历史与训练算法概述 以一己之力战胜两位世界级围棋高手李世石及柯洁的Alpha Go 的横空出世,不仅仅吸引了相应人才从事此方面的研究,更显示了其的巨大潜力。而Alpha Go 能战胜这两位围棋中顶级选手,与其采用了人工神经网络不无关联。而人工神经网络是一门结合了众多学科的内容而发展起来的一门新的信息处理学科。 1 人工神经网络的发展历史 1) 起源。人工神经网络最初是由科研工作者根据生物神经网络的特点而创造出来的一种可以进行简单信息处理的模型。生物神经网络( Biological Neural Networks )以神经元为骨架,通过神经元彼此之间的连结形成了一个完整的能对所给刺激产生反应的系统。人工神经网络就是类比生物神经网络的这个可以进行信息处理的原理而制造出来的。用节点替代神经元,且每个节点代表一种固定的函数,节点之间彼此联接形成一个庞大的网状系统,可处理一些信息。综合人工神经网络的起源、特点及定义,它可以用这样一句话概括:人工神经网络是一种信息处理系统,目的在于模仿人类大脑的相应结构及其相关功能[ 1 ] 。 2) 摸索阶段。历史上第一个提出人工神经网络设想并藉此制造出了第一个模型的是心理学家W.S.McCulloch 和数理逻辑学家。他们提出的模型就是MP模型,而MP模型的建立不仅证明了单个

神经元执行逻辑功能的可行性,还带来对人工神经网络研究的热潮。因此W.S.McCulloch 和被后来者尊称为人工神经网络研究的先驱。但是当时的人工神经网络只是一个胚胎,甚至只能说是一个大胆的猜想,缺乏相应的理论支持。 50年代末,F?罗森布拉特提出并设计了感知机。60年代初,Windrow 提出了一种自适应线性元件网络,这两项工作第一次将人工神经网络的研究成果应用到实践中[7] 。而他们的成功也激励了其他众多科学家,提高了他们对人工神经网络的研究兴趣。但是当时有学者指出感知机本身存在问题,且该问题的不可解决性,再加上当时正值计算机高速发展、各种研究成果竞相发表的时期,众多科学研究者纷纷转向计算机的研究,因此人工神经网络的研究被搁置。人工神经网络的发展也停滞不前。 3)高速发展阶段。1982年及1984 年,美国加州工学院物理学家J.J.Hopfield 先后提出了Hopfield 神经网格模型与连续时间Hopfield 神经网络模型,这两项研究解决了感知机所存在的不能解决高阶谓词的问题,为人工神经网络的研究提供了一个新思路。随后,一些学者提出了玻尔兹曼模型。这三项研究不仅为人工神经网络的发展做了开拓性的研究,更是使人工神经网络这个备受冷落的研究项目重新回到科研人员的视野中。也正是有这些科学工作人员的一个又一个的研究成果,才能令人工神经网络从原本不被重视的状态扭转为当时备受人们追捧的状态。 1991年,Aihara 等基于之前的推导和实验,提出了一个混沌

人工智能发展综述

人工智能发展综述 摘要:概要的阐述下人工智能的概念、发展历史、当前研究热点和实际应用以及未来的发展趋势。 关键词:人工智能; 前景; 发展综述 人工智能(Artificial Intelligence)自1956 年正式问世以来的五十年间已经取得了长足的进展,由于其应用的极其广泛性及存在的巨大研究开发潜力, 吸引了越来越多的科技工作者投入人工智能的研究中去。尤其是八十年代以来出现了世界范围的开发新技术的高潮,许多发达国家的高科技计划的重要内容是计算机技术,而尤以人工智能为其基本重要组成部分。人工智能成为国际公认的当代高技术的核心部分之一。 1什么是人工智能 美国斯坦福大学人工智能研究中心尼尔逊教授给人工智能下了这样一个定义:人工智能是关于知识的学科, 是怎样表示知识以及怎样获得知识并使用知识的科学。从人工智能所实现的功能来定义是智能机器所执行的通常与人类智能有关的功能,如判断、推理、证明、识别学习和问题求解等思维活动。这些反映了人工智能学科的基本思想和基本内容, 即人工智能是研究人类智能活动的规律。若是从实用观点来看,人工智能是一门知识工程学:以知识为对象,研究知识的获取、知识的表示方法和知识的使用。 从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。如果仅从技术的角度来看,人工智能要解决的问题是如何使电脑表现智能化,使电脑能更灵活方效地为人类服务。只要电脑能够表现出与人类相似的智能行为,就算是达到了目的,而不在乎在这过程中电脑是依靠某种算法还是真正理解了。人工智能就是计算机科学中涉及研究、设计和应用智能机器的—个分支,人工智能的目标就是研究怎样用电脑来模仿和执行人脑的某些智力功能,并开发相关的技术产品,建立有关的理论。 2 人工智能历史 当然,人工智能的发展也并不是一帆风顺的,人工智能的研究经历了以下几

精选-人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。

(4)、人工神经元网络是大量的神经元的集体行为,表现为复杂的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1 ,为稳定平稳状态。 X X

介绍人工神经网络的发展历程和分类.

介绍人工神经网络的发展历程和分类 1943年,心理学家W.S.McCulloch 和数理逻辑学家W.Pitts 建立了神经网络和数学模型,称为MP 模型。他们通过MP 模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky 等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron 》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART 网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield 提出了Hopfield 神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984年,他又提出了连续时间Hopfield 神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC )”项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两种分类方法是,按照网络连接的拓朴结构分类和按照网络内部的信息流向分类。按照网络拓朴结构分类网络的拓朴结构,即神经元之间的连接方式。按此划分,可将神经网络结构分为两大类:层次型结构和互联型结构。层次型结构的神经网络将神经

相关主题