搜档网
当前位置:搜档网 › 二阶椭圆型偏微分方程

二阶椭圆型偏微分方程

二阶椭圆型偏微分方程
二阶椭圆型偏微分方程

五点差分法(matlab)解椭圆型偏微分方程教学文稿

用差分法解椭圆型偏微分方程 -(Uxx+Uyy)=(pi*pi-1)e^xsin(pi*y) 0kmax) break; end if(max(max(t))

山路引理在二阶椭圆型方程组中的应用

4 在二阶椭圆型方程组中的应用 接下来我们应用山路引理来证明变系数二阶椭圆型方程组边值问题的非平凡解的存在性。 问题 考虑变系数二阶椭圆型方程组 ?? ? ??Ω?∈==Ω∈-=+?-Ω∈-=+?-x v u x v u x h v x g v x b v a div x v u x h u x f u x b u a div ,0),,,(),()())x ((),,,(),()())x ((222111λλ )6( 的非平凡解的存在性。 其中Ω是)3(≥N R N 中的有界区域,且具有光滑的边界Ω?。0)(),(21>x a x a ; 0)(),(21≥x b x b ;11:,R R g f →?Ω,1121:,R R h h ??Ω是Caratheodory 方程,并且存 在方程11:R R H ??Ω满足 )),,(),,,(()),,(),,,((),,(21v u x h v u x h v u x H v v u x H u v u x H =?? ??=? 不失一般性,我们设 ? +=) ,() 0,0(21)),,(),,((),,(v u dv v u x h du v u x h v u x H 现在我们考虑问题(6)的非平凡解的存在性,亦即考虑求泛函 ?????Ω ΩΩ ΩΩ +-+?+ -+?= dx v u x H dx v x G dx v x b v x a dx u x F dx u x b u x a v u ),,(),(|)(||)(|21 ),(|)(||)(|21 ),(22222121λ?λ 在)()(1 010Ω?ΩH H 的临界点。 其中 ??==v u ds s x g v x G ds s x f u x F 0 0),(),(),(),( 和 ? +=) ,() 0,0(21),,(),,(),,(v u dw w s x h ds w s x h v u x H

用五点有限差分格式求解椭圆型方程(偏微分方程) 程序2

用五点有限差分格式求解椭圆型方程(偏微分方程)程序2 2010-04-29 10:33 function varargout=liu(varargin) a=0;b=2;c=0;d=1;h1=1/16;h2=1/16; f=inline('(pi^2-1)*exp(x)*sin(pi*y)','x','y'); g1x=inline('0'); g2x=inline('0'); g1y=inline('sin(pi*y)'); g2y=inline('exp(2)*sin(pi*y)'); [X,Y,Z]=chfenmethed(f,g1x,g2x,g1y,g2y,a,b,c,d,h1,h2); mesh(X,Y,Z); shading flat; xlabel('X','FontSize',14); ylabel('Y','FontSize',14); zlabel('error','FontSize',14); title('误差图'); function [X,T,Z]=chfenmethed(f,g1x,g2x,g1y,g2y,a,b,c,d,h1,h2) %求解下问题 %-(u_xx+u_yy)=f(x,y) x,y 在区域内x in a

%h2离散y方向的步长 N=10000; x=a:h1:b; y=c:h2:d; m=length(x); n=length(y); ee=0.00001; [X,T]=meshgrid(x,y); Z=zeros(n,m); U=zeros(n,m); for i=2:m-1 U(1,i)=feval(g1x,x(i)); U(n,i)=feval(g2x,x(i)); end for j=1:n U(j,1)=feval(g1y,y(j)); U(j,m)=feval(g2y,y(j)); end %while true %下为高斯赛德尔迭代法 %---------------------------------------------------------------------- for k=1:N

椭圆型偏微分方程边值问题的一种数值解

椭圆型偏微分方程边值问题的一种数值解 为了解不规则区域上的椭圆型偏微分方程边值问题, 首先要对区域进行剖分,这样做使得在整个解题过程中进行了两次边值问题的求解。在学习中得到启发看到了一个方法,它将区域剖分的问题及求解的问题结合起来进行, 使整个求解过程得到简化这个方法求得的是未知函数的一组等值线,这在某些物理问题中是方便的。 (1) 其中Ω是区域;Γ 1、 Γ 2、 Γ 3、 Γ4Ω的边界。且Γ 1、 Γ3相对,Γ 2、 Γ4相对。 公式的系数分别是Ω上的连续函数。φ1φ2是单调函数但可以不连续。u 0,u n 是常数。又设d>0,c<=0,u n >u 0.特殊的,Γ1、Γ2、Γ3、Γ4中至多有两个可以退化为一点。为了求解上式,引入辅助问题 (2) 00:;m m v v v v <其中、是常数且 34??、是单调函数, 也可以不连续, 034m v v ??、、、可按解题方便来选取作变换 (3) 变换(3)区域Ω变为Ω`由椭圆型方程的性质可见(3)是可逆的。 设(3)的逆变换是 (4) 变换(3)将(1)(2)中的方程变为

(5) (6) 其中: ,易见仍有即式(3)和(6)是一个拟线性椭圆型方程组。设曲线的几何方程分别是 解下面四组联立方程 并分别记它们的解为 于是(3)将(1)(2)、中的边界条件变为 (7)现将方程(5)(6)加上边界条件(7)称为问题(1`)向题(1`), 虽然方程复杂, 但定解区域是矩形,用差分法离散, 迭代法求解是很方便的。(1`) 的解形如(4).将u 视为常数, v是参数, (4)就是u的等值线的参数方程。 参考文献 1、刘家琦。应用求解拉普拉斯方程的边值问题建立有限元网格。计算数学1988,5(1):1~9 2、李子才。具有奇点的Laplace方程边值问题的原始能量有限元结合法。计算数学,1980,2(4):319~328

大连理工大学 高等数值分析 椭圆方程差分法

椭圆方程差分法 1 矩形网上差分方程 考虑二阶椭圆型偏微分方程的第一边值问题 (1.1) ()()()?????=∈=+++--Γy x y x u y x F Eu Du Cu u u y x yy xx ,,,αG 其中C ,E D ,是常数;0≥E ;()()G C 0,∈=y x F F ;(,)x y α是给定的光滑函数。假设(5.1)存在光滑的唯一解。 为简单起见,假设G 是矩形区域,其四个边与相应坐标轴平行。考虑矩形网格:1h 和2h 分别为x 和y 方向的步长,h G 为网格内点节点集合,h Γ为网格边界点集合,=h G h G h Γ。 对于内点()j i y x ,h G ∈用如下的差分方程逼近(1.1) (1.2) 21 ,1,12h u u u j i ij j i -++---221,1,2h u u u j i ij j i -++-+1,1,12h u u C j i j i -+-+21,1,2h u u D j i j i -+-+ij Eu =ij F 其中),(j i ij y x F F =。(1.2)通常称为五点差分格式。 用(1.1)的真解(,)u x y 在网点上的值(,)i j u x y 、1(,)i j u x y -等等分别替换(1.2)中的ij u 、1,i j u -等等,然后在(,)i j x y 点处作Tailor 展开,便知(1.2)逼近(1.1) 的截断误差阶为() 2221h h O +。 方程(1.2)可以改写为 (1.3) j i a ,1-j i u ,1-+j i a ,1+j i u ,1++1,-j i a 1,-j i u +1,+j i a 1,+j i u +j i a ,j i u ,ij F = 对每一内点都可以列出这样一个方程。遇到边界点时,因为边界点u 的函数值已知,将相应的项挪到右端去。最后,得到一个以u 的内点近似值为未知数的线性方程组。这个方程组是稀疏的,并且当1h 和2h 足够小时是对角占优的。 可以证明,五点差分格式关于右端和初值都是稳定的,收敛阶为2212()O h h +。

椭圆型偏微分方程的求解及其应用[文献综述]

毕业论文文献综述 信息与计算科学 椭圆型偏微分方程的求解及其应用 一、 前言部分 微积分产生以后,人们就开始把力学中的一些问题,归结为偏微分方程进行研究。早在18世纪初,人们已经将弦线振动的问题归结为弦振动方程,并开始探讨了它的解法。随后,人们又陆续了解了流体的运动、弹性体的平衡和振动、热传导、电磁相互作用、原子核和电子的相互作用、化学反应过程等等自然现象的基本规律,把它们写成偏微分方程的形式,并且求出了典型问题的解答,从而能通过实践,验证这些基本规律的正确性,显示了数学物理方程对于认识自然界基本规律的重要性。 有了基本规律,人们还要利用这些基本规律来研究复杂的自然现象和解决复杂的工程技术问题,这就需要求出数学物理方程中的许多特定问题的解答。随着电子计算机的出现及计算技术的发展,即使是相当复杂的问题,也有可能计算出解得足够精确的数值来,这对于预测自然现象的变化(如天气预报)和进行各种工程设计(如机械强度的计算)都有着很重要的作用[1]。 许多复杂的自然现象,其运动规律、过程和状态都是通过微分方程这种数学形式来描述的。当我们研究只有一个自变量的运动过程时出现的微分方程称为常微分方程。当一个微分方程除了含有几个自变量和未知数外,还含有未知数的偏导数时,称为偏微分方程[2]-[6]。在偏微分方程中,偏导数自然是不可缺少的。例如: ()(),,u u a x y f x y x y ??+=?? (1.1.1) 拉普拉斯方程 22232220u u u u x y z ????=++=??? (1.1.2) 热传导方程 ()222 ,,u u a f x t u t x ??=+??

二阶椭圆方程(10)

二阶椭圆方程考试试题(2010) (考试时间120分钟) 一、(25分)设Ω是n R 中的有界区域, 2 >n ,ij a 在Ω上满足一致椭圆条件,)(Ω∈n L f 若)(1 Ω∈H u 是f u D a D i ij j =-)(的弱解, 则有常数C 使 得 n L n f C u u ess 1 ) (sup sup Ω +≤Ω+ Ω ?Ω . 二、(25分)设)(t ?是],[10T T 上的有界非负函数, 其中100T T <≤。对于 任意的t s ,,10 T s t T ≤<≤,满足 D t s B t s A s t +-+ -+ ≤β α θ??) () ()()( 其中A,B,D 与α,β是非负常数,10 <<θ. 则 ,) () ()(?? ? ? ?? +-+ -≤D R B R A C β α ρρρ? 10T R T ≤<≤?ρ。 这里C 只依赖于βα,与θ。 三、(25分)对)(0n R C f ∞ ∈,Nf D Tf ij = ,其中Nf 为f 的牛顿位势, 则0>?α ,由) (1 )(n R L Tf f C ≤ααλ 证明T 可扩充为)(1n R L 上的线性算子, 且T 是弱(1,1)型的。 四、(25分)设)(1Ω∈H u 是0)(=++-=cu u D b u D a D Lu i i i ij j 的有界非负弱 下解,满足Λ ≤++≥∞ ∞ ∞ L L i L ij j i ij c b a a ,2 ? λ??,0≥c 。 Λ <<λ0为常数, 对2≥p ,取检验函数1 2-=p u ξ? 证明dx u D C dx u D p B B p R R ?? +≤)(()(2 2 2 2ξξ ξ, 从而局部极值原理成立。

二阶椭圆型方程

附件5: 《二阶椭圆型方程》课程纲要 Course Outline of Seconder Order Elliptic Equations 一、课程概况 课程编号:课程类型:专业选修课 学分: 2 学时:32 考核方式考试 课程负责人沈自飞课程团队沈自飞、杨敏波 二、课程简介 本课程主要讲授线性椭圆型方程的2L理论,线性椭圆型方程的Schauder估计,线性椭圆型 方程古典解的存在性理论,线性椭圆型方程解的p L估计和强解的存在性理论,不动点方法,拓扑度方法以及散度型拟线性椭圆方程、完全非线性一致椭圆方程的初步结果等基本理论和方法。 This course introduces the 2L theory of linear elliptic equations, Schauder estimates, the existence of classical solutions, p L estimates and the existence of strong solution, Fixed point method, topological degree methods, elliptic equations divergence form, fully nonlinear elliptic equations. 三、课程内容与教学安排

三、教学方式与考核评价 1.教学方式与方法 教师讲授为主,学生讨论为辅。 2.考核与评价方式 闭卷考试,百分制。 四、主要参考文献 1.陈亚浙:《二阶椭圆型方程与椭圆型方程组》,科学出版社,1991年版。 2.Gilbarg D, Trudinger N.S., Elliptic partial differential equations of second order, Springer- Verlag, New Youk: Heidelberg, 1977. 3.Ladyzenskaja O.A., Uralceva N.N., Linear and quasilinear elliptic equations, English Transl., New York, Academic Press, 1968. 4.Evans L. C., Partial Differential Equations, 1998. 5.伍卓群、尹景学、王春朋:《椭圆与抛物型方程引论》,科学出版社,2003年版。 撰写人:沈自飞审核人:

椭圆型偏微分方程实验报告

实验报告 实验项目名称椭圆型偏微分方程 实验室数学实验室 所属课程名称微分方程数值方法 实验类型算法设计 实验日期2014年6月6日 班级 学号 姓名 成绩 实验概述: 【实验目的及要求】 实验目的是通过分析Possion问题并用交替迭代法来求解其次边值问题,进一步了解交替迭代法的算法特点——即在矩形区域上的差分格式可以大大降低计算量。实验要求是利用Peaceman-Rachford迭代格式编写出相应的代

码解决Possion问题。 【实验原理】 对于简单的椭圆型偏微分方程 Poission 方程: 采用正方形网格剖分正方形区域Ω ,对 x 和 y 方向采用中心差分并记则对Poission方程离散后差分格式可写成; 改写为 由此得Peaceman-Rachford 迭代格式为 其分量形式为 将以上两步写成矩阵形式,第一步迭代为: 第二步迭代为:

这里的 gij 和 gij 分别为 迭代参数可取为: 实际上每个迭代步相当于解N ?1个系数矩阵为三对角阵的N ?1阶线性代数方程组,可用追赶法求解。 【实验环境】(使用的软硬件) 软件: MATLAB 2012a 硬件: 电脑型号:联想 Lenovo 昭阳E46A笔记本电脑 操作系统:Windows 8 专业版 处理器:Intel(R)Core(TM)i3 CPU M 350 @2.27GHz 2.27GHz 实验内容: 【实验方案设计】 利用Peaceman-Rachford迭代格式求解

求解域Ω : 0 ≤ x, y ≤ 1,其精确解为u = sin πx sin πy。 首先利用上述原理进行分析,从而利用Matlab软件编写出相应程序。 【实验过程】(实验步骤、记录、数据、分析) 我们首先编写一个m文件,包含交替方向迭代法程序如下: function u=alter(a0,b0,f,h) %输入-a0为x,y方向起始端点; %-b0为x,y方向终点; %-f为方程右端函数; %-h为网格步长; %输出-u为解矩阵。 p=200; N=fix((b0-a0)/h); u=zeros(N+1); v=zeros(N+1); g=zeros(N+1); x=a0:h:b0; y=x; tau=h*h/(2*sin(pi*h)); a=-tau*ones(1,N-2); c=a; d=(h*h+2*tau)*ones(1,N-1); for k=1:p err=0; for i=2:N for j=2:N g(i,j)=(h*h-2*tau)*u(i,j)+tau*(u(i,j+1)+u(i,j-1)+h*h*f(x(i),y(j))); end

五点差分法解椭圆型偏微分方程

用差分法解椭圆型偏微分方程 -(Uxx+Uyy)=(pi*pi-1)e^xsin(pi*y) 0kmax) break; end if(max(max(t))

数学物理方法之二阶线性偏微分方程的分类

第十三章二阶线性偏微分方程 的分类 本章将介绍二阶线性偏微分方程的基本概念、分类方法和偏微分方程的标准化. 特别对于常系数的二阶线性偏微分方程的化简方法也进行了详细讨论,这对后面的偏微分方程求解是十分有用的.

13.1 基本概念 (1)偏微分方程含有未知多元函数及其偏导数的方程,如 22222(,,,,,,,,,,)0u u u u u F x y u x y x y x y ??????????????=??????其中(,,)u x y ???是未知多元函数,而,,x y ???是未知变量;,,u u x y ???????为u 的偏导数. 有时为了书

写方便,通常记 2 2,,,,x y xx u u u u u u x y x ???==???=??????(2)方程的阶偏微分方程中未知函数偏导数的最高阶数称为方程的阶.(3)方程的次数偏微分方程中最高阶偏导数的幂次数称为偏微分方程的次数.

(4)线性方程一个偏微分方程对未知函数和未知函数的所有偏导数的幂次数都是一次的,就称为线性方程,高于一次以上的方程称为非线性方程. (5)准线性方程一个偏微分方程,如果仅对方程中所有最 高阶偏导数是线性的,则称方程为准线性方程. (6)自由项在偏微分方程中,不含有未知函数及其偏导数的项称为自由项.

例13.1.2:方程的通解和特解概念 二阶线性非齐次偏微分方程2xy u y x =?的通解为 2 21(,)()()2u x y xy x y F x G y =?++其中(),()F x G y 是两个独立的任意函数.因为方程为 例13.1.1:偏微分方程的分类(具体见课本P268)

二阶椭圆偏微分方程实例求解(附matlab代码)

《微分方程数值解法》期中作业实验报告 二阶椭圆偏微分方程第一边值问题 姓名: 学号: 班级: 2013年11月19日

二阶椭圆偏微分方程第一边值问题 摘要 对于解二阶椭圆偏微分方程第一边值问题.课本上已经给出了相应的差分方程。而留给我的难题就是把差分方程组表示成系数矩阵的形式.以及对系数进行赋值。解决完这个问题之后.我在利用matlab 解线性方程组时.又出现“out of memory ”的问题。因为99*99阶的矩阵太大.超出了分配给matlab 的使用内存。退而求其次.当n=10.h=1/10或n=70.h=1/70时.我都得出了很好的计算结果。然而在解线性方程组时.无论是LU 分解法或高斯消去法.还是gauseidel 迭代法.都能达到很高的精度。 关键字:二阶椭圆偏微分方程 差分方程 out of memory LU 分解 高斯消去法 gauseidel 迭代法 一、题目重述 解微分方程: ()()222 2 ((,))((,))()(,)()(,)(,)1y x x x y y x y y x xy xy e u x y e u x y x y u x y x y u x y u x y y e x e e y x e --+++-+=-++++ 已知边界:(0,)1,(1,),(,0)1,(,1)y x u y u y e u x u x e ==== 求数值解, 把区域[0,1][0,1]G =?分成121/100,1/100h h ==.n =100 注:老师你给的题F 好像写错了.应该把22x y y e x e +改成22y x y e x e +。 二、问题分析与模型建立 2.1微分方程上的符号说明 ()()22221y x xy xy y e x e e y x e -++++ 2.2课本上差分方程的缺陷 课本上的差分方程为:

椭圆型偏微分方程的求解及其应用开题报告

开题报告 信息与计算科学 椭圆型偏微分方程的求解及其应用 一、选题的背景、意义 早期建立的数学物理方程有根据牛顿引力理论而推导出的描述引力势的拉普拉斯方程和泊松方程。在连续介质力学中,从质量、动量、能量守恒定律出发,建立了流体力学中的纳维-斯托克斯方程组(有黏性)和欧拉方程组(无黏性)以及弹性力学中的圣维南方程组等。另外,像描述波的传播的波动方程;描述传热和扩散现象的热传导方程都是古典的数学物理方程。 随着现代科学和技术的进步,将会不断涌现新的数学物理方程,而其产生和应用的范围已经并且更多地超出了传统的物理学、力学、天文学等领域。例如,在化学、生命科学、经济学等自然科学和社会科学各个领域,以及在资源勘探与开发、大型建筑与水利工程、金属冶炼工程、通信工程、新能源开发、大气物理、气象预报、航天工程、医疗诊断与材料无损探伤、遗传工程等广泛的工程技术各个领域都涉及到数学物理方程的理论及其重要应用。 许多复杂的自然现象,其运动规律、过程和状态都是通过微分方程这种数学形式来描述的。当我们研究只有一个自变量的运动过程时出现的微分方程称为常微分方程。当一个微分方程除了含有几个自变量和未知数外,还含有未知数的偏导数时,称为偏微分方程[1]-[6]。 众所周知,偏微分方程可根据它的数学特征分为三大类型,即抛物型、双曲型、椭圆型。这三类偏微分方程描述了不同本质的物理现象,其应用是极其广泛的。对于理论研究和实际应用问题中提出的许多偏微分方程,由于其边界和边界条件复杂等原因,寻求解的解析表达式相当困难,有时甚至是不可能的,所以必须利用计算机研究偏微分方程的数值解。简而言之,这种研究的任务在实用中主要表现于两个方面。一是关于用有效地数值方法离散偏微分方程及其边界条件。对此,差分法和有限元法是目前被普遍认为行之有效的两类主要的数值方法。二是关于高效率高精度求解离散微分方程。对此,解同样的离散微分方程,采用好的算法与采用一般算法的计算效果往往相差很大,采用好的算法不但能使求解过程数值稳定、数值解的精度得到提高,而且能数十倍、数百倍地节省计算工作量[7]-[10]。 二、研究的基本内容与拟解决的主要问题

第二章 二阶线性偏微分方程的分类

第二章 二阶线性偏微分方程的分类 1.把下列方程化为标准形式: (1)02=+++++u cu bu au au au y x yy xy xx 解:因为 02 22112 12=?-=-a a a a a a 所以该方程是抛物型方程,其特征方程为 12 2 =-± =a a a a dx dy 。 它只有一族实的特征线 c x y =- 在这种情况下,我们设x y -=ξ,x =η(或令y =η,总之,此处η是与ξ无关的任一函数,当然宜取最简单的函数形式x =η或y =η)。 方法一:用抛物型方程的标准形式 ][12122 F Cu u B u B A +++- =ηξηηη 先算出: ? ??? ? ? ?? ? ? ?-====?+?+?+?+?=++++=?+-+?+?+?=++++==?+?+=++=b c C b c b a a a b b a a a B c b a a a b b a a a B a a a a a a a A y x yy xy xx y x yy xy xx y y x x 0F ,1010020 2 1)1(0020 2 002 2212212112 2122121112 221221122ηηηηηξξξξξηηηη ∴])[(1 u bu u c b a u +++--=ηξηη 即 01=+ + -+ u a u a b u a b c u ηξηη 方法二:应用特征方程,作自变量变换,求出 ??? ??=+-=+-=+--==+-= ,2 ,ξξηξξξηηξηξξηηηξξηξξξηξu u u u u u u u u u u u u u u u u u yy xy xx y x 代入原方程得,0)(=++-+u bu u b c au ηξξη

五点差分法(matlab)解椭圆型偏微分方程

用差分法解椭圆型偏微分方程 U(0,y)=si n(pi*y),U(2,y)=eA2si n( pi*y); 先自己去看一下关于五点差分法的理论书籍 Matlab 程序: unction [p e u x y k]=wudianchafenfa(h,m,n,kmax,ep) % g-s 迭代法解五点差分法问题 %kmax 为最大迭代次数 %m,n 为x,y 方向的网格数,例如(2-0 ) /0.01=200; %e 为误差,p 为精确解 syms temp ; u=zeros(n+1,m+1); x=0+(0:m)*h; y=0+(0:n)*h; for (i=1:n+1) u(i,1)=sin(pi*y(i)); u(i,m+1)=exp(1)*exp(1)*sin(pi*y(i)); end for (i=1:n) for ( j=1:m) f(i,j)=(pi*pi-1)*exp(x(j))*sin(pi*y(i)); end -(Uxx+Uyy)=(pi*pi-1)eAxsin(pi*y) 0

end t=zeros(n-1,m-1); for (k=1:kmax) for (i=2:n) for ( j=2:m) temp=h*h*f(i,j)/4+(u(i,j+1)+u(i,j-1)+u(i+1,j)+u(i- 1,j))/4; t(i,j)=(temp-u(i,j))*(temp-u(i,j)); u(i,j)=temp; end end t(i,j)=sqrt(t(i,j)); if (k>kmax) break ; end if (max(max(t))

二阶线性偏微分方程的分类与小结

二阶线性偏微分方程的分类与小结

————————————————————————————————作者: ————————————————————————————————日期:

第六章 二阶线性偏微分方程的分类与小结 一 两个自变量的二阶线性方程 1 方程变换与特征方程 两个自变量的二阶线性偏微分方程总表示成 f cu u b u b u a u a u a y x yy xy xx =+++++212212112 ① 它关于未知函数u 及其一、二阶偏导数都是线性的,其中 f u c b b a a a ,,,,,,,21221211都是自变量y x ,的已知函数, 假设它们的一阶偏 导数在某平面区域D 内都连续,而且 221211a a a ,,不全为0 。 设),(000y x M 是D 内给定的一点,考虑在0M 的领域内对方程进行简化。取自变量变换 ),(y x ξξ=,),(y x ηη= 其中它们具有二连续偏导数,而且在0M 处的雅可比行列式。 = ??),(),(y x ηξy x y x ηηξξ =x y y x ηξηξ- 根据隐函数存在定理,在0M 领域内存在逆变换, ),(ηξx x =,),(ηξy y = 因为 x x x u u u ηξξξ+=,y y y u u u ηξξξ+=

xx xx x x x x xx u u u u u u ηξηηξξηξηηξηξξ++++=222 yy yy y y y y yy u u u u u u ηξηηξξηξηηξηξξ++++=222 xy xy y x x y y x x x xy u u u u u u ηξηηηξηξξξηξηηξηξξ+++++=)( 将代入①使其变为 F Cu u B u B u A u A u A =+++++ηξηηξηξξ212212112 经过变换后,方程的阶数不会升高,由变换的可逆性,方程的阶数也不会降低,所以221211,,A A A 不全为0。并可验证 222112122211212))((x y y x a a a A A A ηξηξ--=- 这表明,在可逆变换下2 22112 12A A A -与22112 12 a a a -保持相同的正负号。 定理 在0M 的领域内,不为常数的函数),(y x ?是偏微分方程022*******=++y y x x a a a ????之解的充分必要条件是: C y x ≡),(?是常微分方程的 0)(2)(22212211=++dx a dxdy a dy a 通解。 2 方程的类型及其标准形式 根据以上结论简化方程的问题归结为寻求其特征曲线。为此将特征方程分解成两个方程: 11 22 11 2 12 12 a a a a a dx dy -+=,11 22 11 2 12 12 a a a a a dz dy --= (1) 若在0M 的邻域内022112 12>-a a a 时,方程可以化为

五点差分法(matlab)解椭圆型偏微分方程

用差分法解椭圆型偏微分方程 -(Uxx+Uyy)=(pi*pi—1)e^xsin(pi*y) 0<x<2; 0

五点差分法(matlab)解椭圆型偏微分方程

用差分法解椭圆型偏微分方程 -(Uxx+Uyy)=(pi*pi-1)e^xsin(pi*y)0<x<2; 0kmax) break; end if(max(max(t))<ep) break; end end for(i=1:n+1) for(j=1:m+1)

五点差分法matlab解椭圆型偏微分方程

用差分法解椭圆型偏微分方程 -(Uxx+Uyy)=(pi*pi-1)e^xsin(pi*y)0<x<2; 0kmax) break; end if(max(max(t))<ep) break; end end

偏微分方程差分方法

第9章 偏微分方程的差分方法 含有偏导数的微分方程称为偏微分方程。由于变量的增多和区域的复杂性,求偏微分方程的精确解一般是不可能的,经常采用数值方法求方程的近似解。偏微分方程的数值方法种类较多,最常用的方法是差分方法。差分方法具有格式简单,程序易于实现,计算量小等优点,特别适合于规则区域上偏微分方程的近似求解。本章将以一些典型的偏微分方程为例,介绍差分方法的基本原理和具体实现方法。 9.1椭圆型方程边值问题的差分方法 9.1.1 差分方程的建立 最典型的椭圆型方程是Poisson (泊松)方程 G y x y x f y u x u u ∈=??+??-≡?-),(),,()(2222 (9.1) G 是x ,y 平面上的有界区域,其边界Γ为分段光滑的闭曲线。当f (x ,y )≡0时,方程 (9.1)称为Laplace(拉普拉斯)方程。椭圆型方程的定解条件主要有如下三种边界条件 第一边值条件 ),(y x u α=Γ (9.2) 第二边值条件 ),(y x n u β=??Γ (9.3) 第三边值条件 ),()( y x ku n u γ=+??Γ (9.4) 这里,n 表示Γ上单位外法向,α(x,y ),β(x,y ),γ(x,y )和k (x,y )都是已知的函数,k (x,y )≥0。满足方程(9.1)和上述三种边值条件之一的光滑函数u (x ,y )称为椭圆型方程边值问题的解。 用差分方法求解偏微分方程,就是要求出精确解u (x ,y )在区域G 的一些离散节点(x i ,y i )上的近似值u i ,j ≈(x i ,y i )。差分方法的基本思想是,对求解区域G 做网格剖分,将偏微分方程在网格节点上离散化,导出精确解在网格节点上近似值所满足的差分方程,最终通过求解差分方程,通常为一个线性方程组,得到精确解在离散节点上的近似值。 设G ={0

相关主题