搜档网
当前位置:搜档网 › 了解一下锂电池充电IC的选择方案

了解一下锂电池充电IC的选择方案

了解一下锂电池充电IC的选择方案
了解一下锂电池充电IC的选择方案

随着手持设备业务的不断发展,对电池充电器的要求也不断增加。要为完成这项工作而选择正确的集成电路 (IC),我们必须权衡几个因素。在开始设计以前,我们必须考虑诸如解决方案尺寸、USB标准、充电速率和成本等因素。必须将这些因素按照重要程度依次排列,然后选择相应的充电器IC。本文中,我们将介绍不同的充电拓扑结构,并研究电池充电器IC的一些特性。此外,我们还将探讨一个应用和现有的解决方案。

锂离子电池充电周期

锂离子电池要求专门的充电周期,以实现安全充电并最大化电池使用时间。电池充电分两个阶段:恒定电流 (CC) 和恒定电压 (CV)。电池位于完全充满电压以下时,电流经过稳压进入电池。在CC模式下,电流经过稳压达到两个值之一。如果电池电压非常低,则充电电流降低至预充电电平,以适应电池并防止电池损坏。该阈值因电池化学属性而不同,一般取决于电池制造厂商。一旦电池电压升至预充电阈值以上,充电便升至快速充电电流电平。典型电池的最大建议快速充电电流为1C(C=1 小时内耗尽电池所需的电流),但该电流也取决地电池制造厂商。典型充电电流为~0.8C,目的是最大化电池使用时间。对电池充电时,电压上升。一旦电池电压升至稳压电压(一般为4.2V),充电电流逐渐减少,同时对电池电压进行稳压以防止过充电。在这种模式下,电池充电时电流逐渐减少,同时电池阻抗降低。如果电流降至预定电平(一般为快速充电电流的10%),则终止充电。我们一般不对电池浮充电,因为这样会缩短电池使用寿命。图1 以图形方式说明了典型的充电周期。

线性解决方案与开关模式解决方案对比

将适配器电压转降为电池电压并控制不同充电阶段的拓扑结构有两种:线性稳压器和电感开关。这两种拓扑结构在体积、效率、解决方案成本和电磁干扰(EMI) 辐射方面各有优缺点。我们下面介绍这两种拓扑结构的各种优点和一些折中方法。

一般来说,电感开关是获得最高效率的最佳选择。利用电阻器等检测组件,在输出端检测充电电流。充电器在CC 模式下时,电流反馈电路控制占空比。电池电压检测反馈电路控制CV 模式下的占空比。根据特性集的不同,可能会出现其他一些控制环路。我们将在后面详细讨论这些环路。电感开关电路要求开关组件、整流器、电感和输入及输出电容器。就许多应用而言,通过选择一种将开关

组件和整流器都嵌入到IC 中的器件,可以缩小解决方案的尺寸。根据不同的负载,这些电路的典型效率为80% 到96%。开关转换器因其电感尺寸一般会要求更多的空间,同时也更加昂贵。开关转换器还会引起电感EMI 辐射,以及开关带来的输出端噪声。

线性充电器通过降低旁路组件的输入电压,降低DC 电压。这样做的好处是解决方案只要求三个组件:旁路组件和输入/输出电容。相比电感开关,线性压降稳压器 (LDO) 通常为一款低成本的解决方案,且噪声更低。通过稳压旁路组件的电阻来限制进入电池的电流,从而对充电电流进行控制。电流反馈一般来自充电器IC 的输入。对电池电压进行检测,以提供CV 反馈。改变旁路组件的电阻,来维持进入IC 输入端的恒定电流或者恒定电池电压。器件的输入电流等于负载电流。这就是说解决方案的效率等于输出电压与输入电压的比。LDO 解决方案的缺点是高输入输出电压比时(即低电量情况)效率较低。所有功率都被旁路组件消耗,其意味着LDO 并非那些输入输出差较大的高充电电流应用的理想选择。这些高功耗应用要求散热,从而增加了解决方案的尺寸。

功耗及温升计算

其中,η为充电器的效率,而POUT = VOUT × IOUT。利用热阻,可以计算得到功耗带来的温升。每种应用的热阻都不同,其取决于电路板布局、气流和封装等具体参数。我们应该针对终端应用电路板对热阻建模。请记住,产品说明书中定义的ΘJA 并非这种应用中热阻的恰当表示方法。

应该使用什么样的拓扑?

您需要研究的第一个参数是充电电流。对于一些小型应用来说,例如:充电电流介于25Ma 到150mA 之间的蓝牙TM耳机等,最佳解决方案几乎都是线性充电器。这些应用一般都具有非常小的体积,无法为开关的更多组件提供额外空间。另外,由于其非常低的功耗要求,功耗带来的温升可以忽略不计。对于手机应用来说,充电电流一般在350-700mA 范围以内。在这种范围中,很多时候线性解决方案仍然非常有效。由于它们通常都为低成本手机,其成本压力更大,因此线性充电器便成为一种理想的解决方案。智能手机应用的电池体积较大,且充电电流需求大于1.5A,这时使用开关解决方案则更加合理。1.5A 电流条件下,温升会非常大。例如,使用一个线性充电器通过5V 适配器对一块3.6V 电池充电时,效率为72%。首先,这个效率听起来似乎不太坏。如果您从功耗的角度来看它,这种应用要消耗约2W。在一个热阻 (ΘJA) 为40°C/W 的应用中,芯片温度上升80°C。在40°C 环境温度下,电路板温度会上升至120°C,其对手持设备来说是不可接受的。在极低电池电压(即3 V)下,这一问题甚至会变得极端严重。

相同3V 条件下,温度升至120°C。让我们来看相同条件下的开关解决方案,使用一个单体电池IC 充电器时,效率上升至约85%。使用一块3.6V 电池时,功耗低于1W,从而带来40°C 的温升。3V 时这种改善更加明显。假设3V 输出时的效率为80%,则功耗低于800 mW,因此温升会更低(约32°C)。这些智能手机的体积一般可以容许稍大一点的解决方案,并且能够承受开关模式解决方案相关的稍许成本增加。

为任务选择正确的IC

在您已经完成您的初步热分析并且选好充电器拓扑以后,您便可以转到选择应用的最佳IC 上来。新型的电池充电器解决方案集成了许多特性,可以利用它们改善系统的性能。诸如输入过压保护、电源路径管理 (PPM)、VIN_DPM、散热稳压、负温度系数热敏电阻 (NTC) 监测和USB 充电等特性,都被集成到许多电池充电器IC 中。大多数单体电池充电器解决方案都已将要求FET 集成到了器件中,旨在节省电路板面积。

输入过压保护(单输入与双输入对比)

在当今的市场上,USB 电源已经成为最为常见的电源,因此通过USB 电源充电已经成为一种必然性。市场已经从使用专门AC 适配器和单独USB 接口的初始双输入转变为将一个USB 接口既作为墙上电源适合器接口使用,也作为使用相同线缆的USB 数据输入接口的单输入解决方案。这样便导致一种从双输入解决方案向单输入解决方案的转移。单输入在接口方面存在许多挑战。由于存在如此多的配件市场适配器解决方案和一种通用接口,输入端必须要能够在无损坏的情况下承受更高的电压。由于电池充电器始终连接到输入端,因此充电器对所有下游电路实施过电压状态保护是有道理的。为了实施这一功能,市场上出现了许多能够承受20V 甚至30V 电压的解决方案。另外,这些器件都具有过电压保护(OVP) 电路,其在输入超出OVP 阈值时阻止器件运行。这样便进一步保护了下游电路,使其免受潜在的瞬态过电压状态损坏。

目前,随着绿色输入(即太阳能电池)或无线充电的出现,应用又再一次向双输入要求转移。根据具体的应用要求,两种配置结构都可以使用。

电源路径管理/最小系统电压

电池充电器的一般方法是将系统直接连接到电池,让充电器同时为电池和系统供电。然后,对系统的总电流进行稳压,这样做存在几个问题。特别是低电池电量启动、终止干扰和早期计时器超时等问题。电源路径管理通过对电池电流和系统电流进行分别监测,消除了这些问题。

最低系统电压

使用传统方法时,系统电压始终与电池相同。因此,电池深度放电时,在电池充电到某个可用电平以前系统都不会启动。利用PPM,可对系统电压单独稳压,将其与电池电压区分开来。这就意味着可以实现最低系统电压,其与电池电压无关。对用户而言,这就意味着连接适配器的同时他们便可以使用设备,假设条件是其具有足够的功率来驱动系统。如bq25060 等器件就具有这种功能。

更短的充电时间

由于系统电流和充电电流是单独编程的,因此可以使用适配器的满功率,其与电池的容量和充电电流的大小均无关。传统拓扑结构中,充电器的输出电流必须设定为最大充电电流,以应对没有系统负载的情况。当系统中有负载时,由于系统吸收可用电流,有效充电电流降低。例如,一个使用900 mA 适配器和500 mAhr 电池的系统,使用传统方法可以编程500 mA 的充电电流。如果系统负载为200 mA,有效充电电流仅为300 mA,充电时间几乎翻了一翻。如果使用PPM 来研究这一相同案例,输入电流限制设定为900 mA。这样便允许全部500 mA充电电流,且拥有多达400 mA 的额外系统电流。

终止和早期计时器超时

在对总电流进行稳压的传统系统中,电流在电池和负载之间共用。如果系统负载足够大到从电池拉取充电电流,且在计时器超时以前电池不充电,则计时器会出现伪超时。另外,如果系统电流绝对不会降至设定终止电流以下,则永远不会终止。电源路径管理通过单独监测充电电流,并动态地使用可稳压计时器(通过减少充电电流进行稳压),防止这些条件出现。就终止问题而言,单独对充电电流进行监测,可让终止条件测定变得容易。

基于输入电压的动态电源管理 (VIN-DPM)

为了防止出现输入源超负载的欠压状态,一些器件实施了基于输入电压的动态电源管理 (VIN-DPM)。这种环路降低输入电流限制来防止输入崩溃。VIN-DPM 环路对输入电压进行有效的稳压,来最大化电源的电流。图4 显示了在无

VIN-DPM 保护的情况下USB 端口的超负载结果。请注意,输入电压降至电源状态良好阈值以下时,充电器关闭。这样便关闭了电源负载,并允许输入电压恢复,从而开启充电器。这种开/关脉冲发生并不是我们想要的。

VIN-DPM 通过限制输入电流阻止脉冲发生,从而防止输入源崩溃。图5 显示了超负载USB 端口的结果。VIN-DPM 功能开始生效,降低输入电流限制,从而防止输入源崩溃。

NTC 监测(包括JEITA)

通过充电期间的监测防止电池组损坏甚至是爆炸时,电池温度极为重要。一般来说,通过对集成到电池组中或者靠近系统板上电池组安装的NTC 热敏电阻进行监测,来完成这项工作。许多充电器都具有集成到IC 中的NTC 监测功能。如果电池温度处在某些非安全温度下时,这些IC 便对温度和禁用充电电流进行监测。

一种新兴的电池充电标准是日本电池温度标准 (JEITA)。这种标准规定了一些需降低充电电压或者电流以提供更安全运行的中间温度。该JEITA标准在许多充电器IC 中也很容易实施。例如,单输入单体锂离子电池充电器集成了一种无需主机关联的独立解决方案。对于NTC 受主机监测的系统来说,许多IC 都提供了非常简单的实施。I2C 接口允许用户动态地改变充电电压和充电电流,使用具有这种接口的充电器时,主机根据电池温度来修改充电参数。这种方法在没有硬件改动的情况下,在为不同平台和电池设置要求的温度阈值方面拥有一定的灵活性。

USB 充电标准

USB 充电时,可以使用许多充电器IC,它们都结合了USB100和USB500 电流限制。通过USB 充电器输出运行所有下游电路,让广大设计人员能够确保不超出USB 电流限制。

额外功率输出

随着USB 充电的流行,许多应用都要求一个USB PHY 或者USB 收发器与主机枚举。因此,这些器件通常直接连接到VBUS 电源,从而要求过电压保护。因此,许多充电器IC 都集成了一个连接电源并通过电源供电的5V LDO。每当连接一个有效电源时,这种输出便有效。5V LDO 稳压电压保护USB 电路免受未稳压适配器和其他过电压状态的损害。

为单体锂离子电池充电有很多种方法。我们必须对诸如充电电流、可用空间、USB 标准、成本和特性集等要求进行行研究,以选择最佳的解决方案。首先按照重要程度把这些要求排列出来,然后选择最适合这些要求的拓扑结构。请一定要

考虑散热因素,最后为每种输出选择最具成本效益的解决方案。在这些简单步骤之后,您的电池充电器设计应该就会变得简单了。

了解一下锂电池充电IC的选择方案

随着手持设备业务的不断发展,对电池充电器的要求也不断增加。要为完成这项工作而选择正确的集成电路 (IC),我们必须权衡几个因素。在开始设计以前,我们必须考虑诸如解决方案尺寸、USB标准、充电速率和成本等因素。必须将这些因素按照重要程度依次排列,然后选择相应的充电器IC。本文中,我们将介绍不同的充电拓扑结构,并研究电池充电器IC的一些特性。此外,我们还将探讨一个应用和现有的解决方案。 锂离子电池充电周期 锂离子电池要求专门的充电周期,以实现安全充电并最大化电池使用时间。电池充电分两个阶段:恒定电流 (CC) 和恒定电压 (CV)。电池位于完全充满电压以下时,电流经过稳压进入电池。在CC模式下,电流经过稳压达到两个值之一。如果电池电压非常低,则充电电流降低至预充电电平,以适应电池并防止电池损坏。该阈值因电池化学属性而不同,一般取决于电池制造厂商。一旦电池电压升至预充电阈值以上,充电便升至快速充电电流电平。典型电池的最大建议快速充电电流为1C(C=1 小时内耗尽电池所需的电流),但该电流也取决地电池制造厂商。典型充电电流为~0.8C,目的是最大化电池使用时间。对电池充电时,电压上升。一旦电池电压升至稳压电压(一般为4.2V),充电电流逐渐减少,同时对电池电压进行稳压以防止过充电。在这种模式下,电池充电时电流逐渐减少,同时电池阻抗降低。如果电流降至预定电平(一般为快速充电电流的10%),则终止充电。我们一般不对电池浮充电,因为这样会缩短电池使用寿命。图1 以图形方式说明了典型的充电周期。 线性解决方案与开关模式解决方案对比 将适配器电压转降为电池电压并控制不同充电阶段的拓扑结构有两种:线性稳压器和电感开关。这两种拓扑结构在体积、效率、解决方案成本和电磁干扰(EMI) 辐射方面各有优缺点。我们下面介绍这两种拓扑结构的各种优点和一些折中方法。 一般来说,电感开关是获得最高效率的最佳选择。利用电阻器等检测组件,在输出端检测充电电流。充电器在CC 模式下时,电流反馈电路控制占空比。电池电压检测反馈电路控制CV 模式下的占空比。根据特性集的不同,可能会出现其他一些控制环路。我们将在后面详细讨论这些环路。电感开关电路要求开关组件、整流器、电感和输入及输出电容器。就许多应用而言,通过选择一种将开关

单节1A锂电充电IC M1056

简述 M1056是一款完整的单级锂离子电池采用恒定电流/恒定电压线性充电器。其底部带有散热片的SOP-8/MSOP-8封装与较少的外部元件数目使得M1056成为便携式应用的理想选择。M1056可以适合USB电源和适配器电源工作。M1056采用了内部PMOSFET架构,加上防倒充电路,所以不需要外部隔离二极管,热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充电电压固定于4.2V,而充电电流可通过一个电阻器进行外部设置。当充电电流在达到最终浮充电压之后降至设定值1/10时,M1056将自动终止充电循环。 当输入电压(交流适配器或USB电源)被拿掉时,M1056自动进入一个低电流状态,将电池漏电流降至2uA以下。M1056在有电源时也可置于停机模式,以而将供电电流降至50uA。 M1056的其他特点包括电池温度检测、欠压闭锁、自动再充电和两个用于指示充电、结束的LED状态引脚。 特点 高达1000mA的可编程充电电流 无需MOSFET、检测电阻器或隔离二极管 用于单节锂离子电池、采用SOP封装的完整线性充电器 恒定电流/恒定电压操作,并具有可在无过热危险的情况下实现充电速率最大化的热调节功能 精度达到±1%的4.2V预设充电电压·用于电池电量检测的充电电流监控器输出 自动再充电 充电状态双输出、无电池和故障状态显示 C/10充电终止 待机模式下的供电电流为50uA 2.9V涓流充电 软启动限制了浪涌电流 电池温度监测功能 封装: SOP8-PP/MSOP8-PP 应用 移动电话、PDA MP3、MP4播放器 数码相机 电子词典 GPS 便携式设备、各种充电器 典型应用图

基于单片机的锂离子电池充电系统设计方案

济南大学泉城学院 毕业设计方案 题目基于单片机的锂离子电池 充电系统设计 专业电气工程及其自动化 班级1301班 学生姚良洁 学号2013010873 指导教师张兴达魏志轩 二〇一七年四月十日 学院工学院专业电气工程及其自动化 学生姚良洁学号2013010873 设计题目基于单片机的锂离子电池充电系统设计 一、选题背景与意义 1. 国内外研究现状

自90年代以来,中国正日趋成为世界上最大的电池生产国和最大的电池消耗国。随着科技的发展,人们对身边电子产品的数字化、自动化和效率的要求越来越高。便携式电池成为用户的首选,随着各式各样的电池出现,用户在选用电池时,在考虑到电池的环保、性价比的同时,更加注重电池的便携性。正因为锂离子电池具有高的体积比能量和环保性能,符合当前世界电池技术的发展趋势,逐渐成为市场的主流[1]。我国锂电池行业的年增长率已超过20%,2016年电池总体需求量达到50亿块左右。可见,在当前和今后相当一段时间,锂电池将成为我国电池工业的龙头。 虽然我国已是仅次于日本的锂离子电池生产大国,市场增长空间巨大,但并非强国,在全球锂离子电池产业仍处于低端。随着手机用户的日益增多,如何保养手机也成为了众多手机使用者面临的一个实际问题,而手机电池作为手机的一个重要组成部分,直接影响了使用寿命和性能。智能手机的屏幕越来越大,功能越来越多,现有的锂离子电池产品越来越难以满足需求,选择合适的充电器,可以延长我们的手机锂离子电池的使用寿命。 现阶段消费者除了通过原厂配备的充电器给便携式设备充电之外,普遍采用的是通过移动电源来补充电池的电量。根据日本矢野经济研究所的预测,锂离子电池正以53.33%的年增长率快速取代传统的镍铬镍氢电池市场。目前国内移动电源市场上主要的品牌有小米、爱国者、品胜、华为等,国外市场比较知名的品牌有BOOSTCASE、MALA 等。移动电源市场在近几年得到了很大的发展,市场中出现了各式各样的品牌。与此同时,在移动电源产品中也存在很多需要解决的问题。比如:自身充电所需时间过长,USB输出电压不稳定,电能转化效率不高,输出保护较为单一,输出大电流时散热性能不好等。相较于国外而言,国内的锂电池智能充电系统性能欠佳,还需要加大研究力度[2]。 2. 选题的目的及意义 近几年来,便携式电子产品的迅猛发展促进了电池技术的更新换代。其中锂离子电池以其重量轻、储能大、功率大、无记忆效应、无污染、自放电系数小、循环寿命长等优点,脱颖而出,迅速成为市场的主流。锂电池是20世纪末才出现的绿色高效能可充电电池,目前随着锂离子电池的推广及大量应用,锂离子电池深受社会和用户的欢迎[3]。目前已广泛应用于手机、笔记本电脑、数码相机及众多的便携式设备,其中笔记本电脑占23%,手机占50%,为最大领域。电子、信息及通讯等3C产品均朝向无线化、可携带化方向发展,对于产品的各项高性能组件也往“轻、

锂电池解决方案

锂电池解决方案 篇一:单芯片锂电池保护解决方案 高集成度单芯片锂电池保护解决方案 目前锂电池的应用越来越广泛,从手机、MP3、MP4、GPS、玩具等便携式设备到需要持续保存数据的煤气表,其市场容量已经达到每月几亿只。为了防止锂电池在过充电、过放电、过电流等异常状态影响电池寿命,通常要通过锂电池保护装置来防止异常状态对电池的损坏。 锂电池保护装置的电路原理如图1所示,主要是由电池保护控制IC和外接放电开关M1以及充电开关M2来实现。当P+/P-端连接充电器,给电池正常充电时,M1,M2均处于导通状态;当控制IC检测到充电异常时,将M2关断终止充电。当P+/P-端连接负载,电池正常放电时,M1,M2均导通;当控制IC检测到放电异常时,将M1关断终止放电。 图1:锂电池保护装置电路原理。 几种现有的锂电池保护方案 图2是基于上述锂电池保护原理所设计的一种常用的锂电池保护板。图中的SOT23-6L封装的是控制IC,SOP8封装的是双开关管M1,M2。由于制造控制IC的工艺与制造开关管的工艺各不相同,因此图2中两个芯片是从不同的工艺流程中制造出来的,通常这两种芯片也是由不同的芯片厂商提供。

图2:传统的电池保护方案。 近几年来,业界出现了将几个芯片封装在一起以提高集成度、缩小最后方案面积的趋势。锂电池保护市场也不例外。图3中的两种锂电池保护方案A及B看起来是将图2中的两个芯片集成于一个芯片中,但实际上其封装内部控制器IC及开关管芯片仍是分开的,来自不同的厂商,该方案仅仅是将二者合封在一起,俗称“二芯合一”。 图3:“二芯合一”的锂电池保护方案。 由于内部两个芯片实际仍来自于不同厂商,外形不能很好匹配,因此导致最终封装形状各异,很多情况下不能采用通用封装。这种封装体积比较大,又不能节省外围元件,所以这种“二芯合一”的方案实际上并省不了太多空间。在成本方面,虽然两个封装的成本缩减成一个封装的成本,但由于这个封装通常比较大,有的不是通用封装,有的为了缩小封装尺寸,需要用芯片叠加的封装形式,因此与传统的两个芯片的方案相比,其成本优势并不明显。图4是一种真正的将控制器芯片及开关管芯片集成在同一晶圆的单芯片方案。传统方案原理图1中的开关管是N型管,接在图1中的B-与P-之间,俗称负极保护。图4中的方案由于技术原因,开关管只能改为P型管,接在B+与P+之间,俗称正极保护。用此芯片完成保护板方案后,在检测保护板时用户需要更换测试设备及理念。此方案虽然减少了一定的封装成本,但芯

GS单节锂电充电芯片

特点 ·锂电池正负极反接保护; ·高达500mA 的可编程充电电流; ·无需MOSFET 、检测电阻器或隔离二极管; ·用于单节锂离子电池 ·恒定电流/恒定电压操作,并具有可在无过热危险的情况下实现充电速率最大化的热调节功能; ·可直接从USB 端口给单节锂离子电池充电; ·精度达到±1%的4.2V 预设充电电压; ·最高输入可达9V ; ·自动再充电; ·2个充电状态开漏输出引脚; ·C/10充电终止; ·待机模式下的供电电流为40uA ; ·2.9V 涓流充电器件版本; ·软启动限制了浪涌电流; ·采用6引脚SOT-23封装。 应用 ·充电座 ·蜂窝电话、PDA 、MP3播放器 ·蓝牙应用 典型应用 500mA 单节锂离子电池充电器 绝对最大额定值 ·输入电源电压(V CC ):-0.3V ~9V ·PROG :-0.3V ~V CC +0.3V ·BA T :-4.2V ~7V ·CHRG :-0.3V ~10V ·BA T 短路持续时间:连续 ·BA T 引脚电流:500mA ·PROG 引脚电流:800uA ·最大结温:145℃ ·工作环境温度范围:-40℃~85℃ ·贮存温度范围:-65℃~125℃ ·引脚温度(焊接时间10秒):260℃ 400mA 电流完整的充电循环(600mAh ) 描述 一款完整的单节锂离子电池充电器,带电池正负极反接保护,采用恒定电流/恒定电压线性控制。其SOT 封装与较少的外部元件数目使得便携式应用的理 想选择。 可以适合USB 电源和适配器电源工作。 由于采用了内部PMOSFET 架构,加上防倒充电路,所以不需要外部检测电阻器和隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。充满电压固定于4.2V ,而充电电流可通过一个电阻器进行外部设置。当电池达到4.2V 之后,充电电流降至设定值1/10,将自动终止充电。 当输入电压(交流适配器或USB 电源)被拿掉时,自动进入一个低电流状态,电池漏电流在2uA 以下。的其他特点包括充电电流监控器、欠压闭锁、自动再充电和两个用于指示充电结束和输入电压接入的状态引脚。 尚亿微电子 李华 GS1407 GS1407GS1407GS1407GS1407GS1407GS1407GS1407TEL135********Q1839845898

锂电池充电保护方案计划

方案一:BP2971 电源管理芯片 特点 ·输入电压区间(Pack+):Vss-0.3V~12V ·FET 驱动 CHG和DSG FET驱动输出 ·监测项 过充监测 过放监测 充电过流监测 放电过流监测 短路监测 ·零充电电压,当无电池插入 ·工作温度区间:Ta= -40~85℃ ·封装形式: 6引脚DSE(1.50mm 1.50mm 0.75mm) 应用 ·笔记本电脑 ·手机 ·便携式设备 绝对最大额定值 ·输入电源电压:-4.5V~7V

·最大工作放电电流:7A ·最大充电电流:4.5A ·过充保护电压(OVP):4.275V ·过充压延迟:1.2s ·过充保护电压(释放值):4.175V ·过放保护电压(UVP):2.8V ·过放压延迟:150ms ·过放保护电压(释放值):2.9V ·充电过流电压(OCC):-70mV ·充电过流延迟:9ms ·放电过流电压(OCD):100mV ·放电过流延迟:18ms ·负载短路电压:500mV ·负载短路监测延迟:250us ·负载短路电压(释放值):1V 典型应用及原理图

图1:BP2971应用原理图 引脚功能 NC(引脚1):无用引脚。 COUT(引脚2):充电FET驱动。此引脚从高电平变为低电平,当过充电压被V-引脚所监测到 DOUT(引脚3):放电FET驱动。此引脚从高电平变为低电平,当过放电压被V-引脚所监测到 VSS (引脚4):负电池链接端。此引脚用于电池负极的接地参考电压 BAT(引脚5):正电池连接端。将电池的正端连接到此管脚。并用0.1uF的输入电容接地。 V-(引脚6):电压监测点。此引脚用于监测故障电压,例如过冲,过放,过流

蓄电池的正确使用和维护

摘要:蓄电池是变电站直流系统的一个重要组成部分,蓄电池在供电可靠性保障和提高方面起到了十分重要的作用,现阶段使用较为广泛的蓄电池主要是全密封铅酸蓄电池,这类蓄电池具有免维护的优点,但相应地,电池密封也给蓄电池的日常维护和巡视带来较大困扰。 关键词:蓄电池;正确维护;使用 1 影响蓄电池正常使用寿命的因素(主要指免维护的铅酸蓄电池) 1.1 运行环境温度因素。周围运行环境温度较高是影响蓄电池正常使用寿命的重要因素,大部分蓄电池的生产厂家要求蓄电池的正常运行环境温度应在15~20℃之间,蓄电池在正常使用时,随着周围环境温度的升高,蓄电池的放电能力也会得到相应提高,但是若周围环境温度超过25℃时,温度每升高10℃,蓄电池的正常使用寿命就会减半。 1.2 蓄电池的过度放电。对蓄电池来讲,被过度放电也是影响蓄电池正常使用寿命的另一个重要因素。这种现象主要发生在变电站交流电源停电以后,使用蓄电池作为负载的供电电源期间。当蓄电池被过度放电时,尤其是当蓄电池过度放电到输出电压接近零时,会导致电池内部电解液中大量的硫酸铅被吸附到电池内部阴极导体的表面,导致电池阴极发生“硫酸盐化”现象。由于硫酸铅属于绝缘体,在阴极导体表面大量形成会对电池的充、放电性能产生不利的影响,在阴极导体表面形成的硫酸铅越多,蓄电池的内阻将变得越大,电池的性能就会越差,使用寿命就缩短。 1.3 板栅腐蚀程度。板栅的腐蚀,也是影响蓄电池正常使用寿命的重要因素。在蓄电池开路的状态下,蓄电池内部阴极导体铅合金与活跃的二氧化铅直接接触,并且共同浸泡在硫酸溶液中,它们各自与硫酸溶液建立起不同的电极电位。正常使用过程中,蓄电池正极栅板会不断溶解,特别是在蓄电池过度充电情况下,正极由于发生析氧反应,h2o被消耗,h+不断增加,从而导致正极附近溶液ph值下降,板栅的腐蚀速率增加。因此,如果蓄电池使用维护不当,长期处于过充状态时,蓄电池的板栅就会溶解变薄,导致蓄电池容量降低,使用寿命缩短。 1.4 电解液失水。蓄电池内部电解液失水,是影响其正常使用寿命的因素之一,蓄电池的电解液失水会导致电解液浓度增大,电池栅板的腐蚀速率增加,蓄电池电解液中活性物质逐渐减少,进而导致蓄电池的容量降低、使用寿命减少。 1.5 长期处于浮充状态。目前,变电站中蓄电池大多都处于长期的浮充状态,只进行充电,而不进行放电,这种状态很不科学。大量运行实践统计表明,长期处于浮充状态会发生蓄电池阳极极板钝化现象,从而使蓄电池的内阻急剧加大,进而导致蓄电池所容量大大减小,影响其正常使用寿命。 2 蓄电池正确运行和维护措施 2.1 如果运行条件允许,应当把蓄电池安装在独立的安装有空调的蓄电池室内,使其工作在合适的温度范围内(15到20℃之间)。 2.2 保持蓄电池室和蓄电池本体的清洁。安装调试好的蓄电池,其极柱均应涂抹一层凡士林,防止其极柱发生腐蚀。 2.3 严格遵守蓄电池放电后“恒流均充”再“恒压浮充”的充电规律要求,蓄电池组建议增加智能充电装置,以便在蓄电池放电后能得到合理的充电。 2.4 针对供电可靠性较高,很少发生停电问题,长期处于浮充状态的的变电站蓄电池来说,应当定期对其进行活化和核对性充放电。在正常的运行维护工作中,应该每隔2~3个月,人为的对直流电源的交流进线断电,或利用备用蓄电池组使用核对性放电仪,对蓄电池进行一次核对性放电,同时要注意加强监控,不能使蓄电池放电过度,放电幅度应在30%到50%之间;放电后,再重新对其进行充电。这样的可以延长蓄电池的正常使用寿命,保持蓄电池的容量。

电池充不进电的原因与解决办法

电池充不进电的原因与解决办法 市场上主要有两种充电电池分别是镍氢电池和锂离子电池,人们关注的电池充不进电的问题大多数是针对这两种类型的。同一类型和规格的电池又可以通过并联、串联和混联组成不同电芯数目的组合电池,作为一个普遍现象,人们希望了解电池及电池组充不进电的背后原因进而寻求解决之道。 1 电池充不进电的原因从大的方面来说,可以分为电池自身固有的内部原因和电池实施充电的外部原因。锂离子电池以其更优越的性能正在逐步占领镍氢电池的原有市场,所以,这里以锂电池充电为主进行说明,有区别的地方提到镍氢电池。2 3 电池充不进电的内因有: 1、电池零电压或者组合电池中有零电压电池。电池零电压要么本身就是不合格品,出厂时就没有达到相应的标称容量和电压值,要么属于寿终正寝,因长期使用,容量耗尽,电压降而为零。 考虑到锂电池经过长期搁置,如一年以上,也可能以自放电的形式把电量放尽从而使电压为零,现在的锂电池保护方案在设计上要求电池零电压时也能充进电。因而,对于电池零电压有两种区别:一种是能够充电继续使用的,另一种是以完全没有使用价值的;换句话说,前者容量损失是可逆的,而后者是不可逆的。充不进电的零电压电池如果不幸设计到锂电池组中,就可能通过保护芯片把零电压信号传导到电池组中,从而关断MOSFET,使电池组无法充电。 2、电池组连接错误。这种情况出现的可能性较小,因为充电电池或电池组出厂时

一般都要求全检,正规厂家的电池出现这种情况除非是某批电池出厂时没有全检,而恰恰连接错误的电池组就在未检之列。当然,对于非正规厂家出品或者个人组装则另当别论,出现连接错误并不能完全杜绝。相对来说,镍氢电池组全检率低些,这种错误的概率可能会大一点。 3、内部电子元件、保护电路出现异常。这种情况大抵是电池用久后出现的,电子元件的老化、脱落均会导致电池充电出现异常,尤其是集成到保护电路的电子元件出现上述情况后会直接影响到电路的保护功能的发挥,从而不能正确指导充电过程。 4 充电行为中导致充不进电的外部原因有: 1、充电器与电池不配套,特别是不配套的充电器与锂电池充电电流设计的差异会导致充电时瞬间电流过大,锂电池实施过流保护中止充电。解决这种不配套特别是注意不要把镍氢充电器与锂电充电器混用,有些万能充电器也尽量不要“万能”使用。 2、充电设备故障,无输出电压。出现这种情况,只需要把电池放到另一个同型号的充电器上充电即可。 3、不适宜的充电环境,充电器和充电电池都有自己的环境,越过了两者中任何一个限定条件,不论是高温还是低温都会令充电无法进行。 解决电池充不进电问题无外乎诊断和治疗。诊断的秩序是先外因后内因,因为充电方法出现的问题只要改正就行了,而内因则需要专业的电池知识和电池检测设备才能得出正确结论,在自己不能解决的情况下,可以拿到专业的维修网点进行维护。 注意事项 解决电池充不进电问题无外乎诊断和治疗。诊断的秩序是先外因后内因,因为充

单节双节线性锂电池充电器控制电路

开关型单节、两节锂离子/锂聚合物充电管理芯片HB6298A 1、功能简述 1.1、特性 ●适用于单节或两节锂离子/锂聚合物高效率充电器设计 ● 0.5%的充电电压控制精度 ●恒压充电电压值可通过外接电阻微调 ●智能电池检测 ●内置功率MOSFET ●软启动 ●开关频率400KHz ●可编程充电电流控制,最大充电电流可达1.5A ●防反相保护电路可防止电池电流倒灌 ● NTC 热敏接口监测电池温度 ● LED充电状态指示 ● CYCLE-BY-CYCLE电流限制,短路检测、保护 ●输入管脚最大耐压18V ●工作环境温度范围:-20℃~70℃1.2、应用 ●手持设备,包括医疗手持设备 ● Portable-DVD,PDA,移动蜂窝电话及智能手机 ●移动仪器 ●自充电电池组 ●独立充电器 1.3、概述 HB6298A为开关型单节或两节锂离子/锂聚合物电池充电管理芯片,非常适合于便携式设备的充电管理应用。HB6298A集内置功率MOSFET、高精度电压和电流调节器、预充、充电状态指示和充电截止等功能于一体,采用TSSOP20封装。HB6298A对电池充电分为三个阶段:预充(Pre-charge)、恒流(CC/Constant Current)、恒压(CV/Constant Voltage)过程,恒流充电电流通过外部电阻决定,最大充电电流为 1.5A.HB6298A 集成CYCLE-BY-CYCLE电流限制、短路保护,确保充电芯片安全工作.HB6298A集成NTC热敏电阻接口,可以采集、处理电池的温度信息,保证充电电池的安全工作温度. 2、HB6298A应用电路 图2.1、HB6298A应用示意图

锂电池安全测试项目方案

锂电池安全测试项目分析及解决方案 截止今天,锂离子电池的应用已经取得了巨大的成功,特别是其广泛应用在了在移动电子产品。但不能忽视的是,自从锂离子电池大规模商业化推广以来,与其相关的安全事故就几乎没有停止过。锂离子电池的安全性已经成为制约其进一步发展的关键因素。鉴于电池材料体系、制造过程一致性等原因,对锂离子电池进行安全性检测将非常的重要。 目前针对锂离子电池的安全检测标准在不断的更新中,但其基本安全检测模式已经成型,各种常见的检测项目也已被广泛接纳和采用。在安全检测项目中,每个检测项目都模拟了一种用户在使用过程中可能会发生的误(滥)用情况。如过充电测试模拟的是保护电路板失效的情况。由于模拟的情况不同,锂离子电池各个安全测试项目的难度显然是不同的。根据摩尔实验室(MORLAB)的以往检测经验,过充电、150℃热冲击、针刺、挤压、高温短路、重物冲击等是经常发生失效(Fail)的项目。 由于内容设计面较多,因此我们将分期介绍并分析各种锂电池测试项目的相关程序、标准要求、失效原因以及对应的解决方案。本期我们主要讲一下锂电池的热冲击测试项目。热冲击: 以CTIA 关于符合IEEE1725标准的认证程序为例,其中与热冲击有关的条款: Section 4.2: Test Procedure: 5 cells at 80% +/- 5%SOC to be placed in oven at ambient temperature. The oven temperature shall be ramped at 5 ± 2°C per minute to 150 ± 2°C. After 10 minutes at 150 ±2°C, the test is complete. Compliance: No fire, smoke, explosion or breaching of the cell is allowed within t he first 10 minutes. Venting is permitted. Section 4.50: Test Procedure: 5 fully charged cells (per cell manufacture's specifications) shall be suspended (no heat transfer allowed to non-integral cell components) in a gravity convection or circulating air oven at ambient temperature. The oven temperature shall be ramped at 5 ± 2°C per minute to 130 ± 2°C. After 1 hour at 130 ± 2°C, the test is ended. Compliance: Cells shall not flame or explode when exposed to 130°C for 1h.

UPS电池维护与保养

UPS电池维护与保养 1.电池怎样保养,正常寿命是多少? 2.答: 1、正常时,电池每隔3~6个月充、放电一次,放电后标准机的充电时间应不少于10小时。 2、UPS长期闲置不用,应3~6个月充电一次。 3、电池使用环境要求温度在0℃到40℃之间,避免阳光直射并且保持清洁。 4、一般在室温条件下,正常使用时松下密封免维护铅酸电池的浮充使用寿命为3--5年。 2.UPS是否能使用加水电池? 答: 可以,但是建议用户使用免维护电池。因为在使用中有可能发生使用者遗忘加水、电池酸水淌出或电池气体排放不好等等因素,造成电池坏死或影响UPS负载正常运行。另外,山特UPS 的充电器是针对铅酸电池的特性而设计的,故不太适用于其他类型的电池。 3.UPS具体放电时间可有计算公式? 答: 因电池放电时间与放电电流、环境温度、负载类型、放电速率、电池容量等多因素相关,故实际放电时间无法直接用公式推导出。现提供电池最大放电电流公式:I=(Pcosφ)/(ηEi)其中P是UPS的标称输出功率; 是负载功率因数,PC、服务器一般取0.6~0.7; 是逆变器的效率,一般也取0.8(山特10KVA取0.85); Ei是电池放电终了电压,一般指电池组的电压。 将具体数据代入上式,求出电池最大放电电流后,即可从电池的各温度下放电电流与放电时间的关系图上查出相应的放电时间。请注意这里求出的是电池总放电电流值。当外接多组电池时则需求出单组电池的放电电流值。 4.UPS是否可选用碱型电池? 答: 此问题分两种情况:一是用户需用山特的监控软件。该情况下,则使用碱型电池后,监控软件显示的电池参数与实际情况会有差异。这给用户使用会带来困饶。二是用户不用山特的软件。由于碱型电池的放电特性与酸性电池的特性差异较大。从电池放电至警报点(UPS一秒一叫)到UPS自动关机时间很短,用户需在使用过程中必须特别注意;另外,碱型电池通常需要加液(一般为两年一次),用户使用不方便。 5.双机热备份后,电池如何维护? 答: 1.热备份时,主机与备份机可以采用不同容量的电池组,但是放电时需加以留意。 2.大容量之电池与备机配套为宜,一旦主机故障,备机有足够长的时间持续供电。在实际情况下,主机平常由于市电的变化而转由电池供电的几率明显大于备份机,即备份机很少能自动转电池供电。故双机备份的电池维护主要针对备份机而言。具体方法如下:备份机电池维护: (1)在市电模式下,按主机开机键1S,主机转为逆变旁路状态,这时旁路指示灯及逆变指示灯 都亮。 (2)按备机开机键1S,备机转为自检直到电池低电压模式。LINE、BYPASS、BATTERY、INVTER LED 会循环显示。 (3) 解除备份机电池维护状态有两种方式: A:手动,分别再次按开机键1S, 则主备机均转入Line INV-Mode。 B:自动,当备份机放电至截止保护电压时,主备机会转入Line INV-Mode;当市电异常或中断时,主备机会转入BAT INV-Mode(电池供电模式)。

锂电池充电电路详解

锂电池充电电路图 锂电池是继镍镉、镍氢电池之后,可充电电池家族中的佼佼者.锂离子电池以其优良的特性,被广泛应用于: 手机、摄录像机、笔记本电脑、无绳电话、电动工具、遥控或电动玩具、照相机等便携式电子设备中。 一、锂电池与镍镉、镍氢可充电池: 锂离子电池的负极为石墨晶体,正极通常为二氧化锂。充电时锂离子由正极向负极运动而嵌入石墨层中。放电时,锂离子从石墨晶体内负极表面脱离移向正极。所以,在该电池充放电过程中锂总是以锂离子形态出现,而不是以金属锂的形态出现。因而这种电池叫做锂离子电池,简称锂电池。 锂电池具有:体积小、容量大、重量轻、无污染、单节电压高、自放电率低、电池循环次数多等优点,但价格较贵。镍镉电池因容量低,自放电严重,且对环境有污染,正逐步被淘汰。镍氢电池具有较高的性能价格比,且不污染环境,但单体电压只有1.2V,因而在使用范围上受到限制。 二、锂电池的特点: 1、具有更高的重量能量比、体积能量比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; 6、可以快速充电。锂电池通常可以采用0.5~1倍容量的电流充电,使充电时间缩短至1~2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 9、成本高。与其它可充电池相比,锂电池价格较贵。 三、锂电池的内部结构: 锂电池通常有两种外型:圆柱型和长方型。 电池内部采用螺旋绕制结构,用一种非常精细而渗透性很强的聚乙烯薄膜隔离材料在正、负极间间隔而成。正极包括由锂和二氧化钴组成的锂离子收集极及由铝薄膜组成的电流收集极。负极由片状碳材料组成的锂离子收集极和铜薄膜组成的电流收集极组成。电池内充有有机电解质溶液。另外还装有安全阀和PTC元件,以便电池在不正常状态及输出短路时保护电池不受损坏。 单节锂电池的电压为3.6V,容量也不可能无限大,因此,常常将单节锂电池进行串、并联处理,以满足不同场合的要求。字串5 四、锂电池的充放电要求; 1、锂电池的充电:根据锂电池的结构特性,最高充电终止电压应为4.2V,不能过充,否则会因正极的锂离子拿走太多,而使电池报废。其充放电要求较高,可采用专用的恒流、恒压充电器进行充电。通常恒流充电至4.2V/节后转入恒压充电,当恒压充电电流降至100mA 以内时,应停止充电。 充电电流(mA)=0.1~1.5倍电池容量(如1350mAh的电池,其充电电流可控制在135~2025mA之间)。常规充电电流可选择在0.5倍电池容量左右,充电时间约为2~3小时。 2、锂电池的放电:因锂电池的内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离子在负极,以保证在下次充电时锂离子能够畅通地嵌入通道。否则,电池寿命就相应缩短。为了保证石墨层中放电后留有部分锂离子,就要严格限制放电终止最低电压,也就是说锂电池不能过放电。放电终止电压通常为3.0V/节,最低不能低于2.5V/节。电池放

正确选择锂电池充电系统

正确选择锂电池充电系统 正确选择锂电池充电系统 中心议题:决定锂离子充电系统注意事项电池锂离子电池">锂离子电池充电终止方法锂 离子充电应用实例 解决方案:锂离子充电线性解决方案锂离子充电周期波形分析开关式充电解决方案 在有些应用中,较长的电池寿命电池寿命、较多的充电次数或较安全的电池比电池容量更重要。本文介绍几种可以极大延长电池寿命的锂离子电池充电和放电方法。几乎所有高性能便携式产品都会使用包括锂离子聚合物电池在内的可再充电锂离子电池,这是因为与其他可再充电电池相比,锂离子电池有较高的能量密度、较高的电池电压、自放电少、周期寿命非常长,而且环保,且充电和维护简单。另外,由于其具有相对高的电压 (2.9V至4.2V),因此很多便携式产品都能用单节电池工作,从而简化了产品总体设计。C速率等于特定条件下的充电或放电电流,定义如下:I=M×Cn其中:I=充电或放电电流,单位为A;M=C的倍数或分数;C=额定容量的数值,单位为Ah;N=小时数(对应于C)。以1倍C速率放电的电池将在一个小时内释放标称的额定容量。例如,如果标称容量是1000mAhr,那么1C的放电速率对应于1000mA的放电电流,C/10的速率对应100mA的放电电流。通常生产商标定的电池容量都是指n=5时,即5小时放电的容量。例如,上述电池在200mA恒流放电时能够提供5小时的工作时间。理论上该电池在1000mA恒流放电时能够提供1小时的工作时间。然而实际上由于大电池放电时效能降低,此时的工作时间将小于1小时。 给锂离子电池充电的推荐方法是,向电池提供一个±1%限压的恒定电流,直到电池充满电,然后停止充电。用来决定电池何时充满电的方法包括:给总的充电时间定时、监视充电电流或兼用这两种方法。第一种方法采用限压恒定电流,变化范围从C/2到1C,持续2.5至3小时,使电池达到100%充电。也可以使用较低的充电电流,但是 将需要更长时间。第二种方法与第一种方法类似,只是需要监视充电电流。随着电池的充电,电压上升,这与采用第一种方法时完全相同。电池电压达到编程限压值(也称为 浮动电压)时,充电电流开始下降。电流一开始下降时,电池约充电至容量的50%至60%.浮动电压继续提供,直到充电电流降至足够低的水平(C/10至C/20),这时电池

智能手机锂电池充电管理—一种集成化的解决方案

智能手机锂电池充电管理—一种集成化的解决方案 手机的锂离子电池充电安全性日益受到消费者重视,因此智能手机 制造商在设计产品时,须掌握锂离子电池的相关规格和特性,并使用具备完善 电池检测及保护功能的充电芯片,以降低过电流、过电压或过温等状况所造成 的危险。 一般来说,锂离子电池会有电性安全的范围限制。由于锂离子电池的特性,当电池电压在充电时上升到最高设定电压后,要立即停止充电,避免电池 因过充电造成电池损毁而产生危险;电池供电(放电)时,电池电压如果降至最低 设定电压以下便要停止放电,避免因过放电而降低使用寿命。此外,为确保电 池使用上的安全,锂离子电池还必须要加装短路保护,以避免发生危险。 本文以帝奥微电子一款开关充电芯片DIO5425为例,详细探讨关于智能手机充电管理的系统级设计。DIO5425部署于手机电源输入接口:USB/DC Source 之后,通过开关转换可以将输入电流同时用于手机系统供电和电池充电。DIO5425具有优秀的充电管理功能和锂电池保护功能,支持USB2.0和USB3.0协议。DIO5425具有智能电源路径管理功能。 Figure.1 DIO5425参考设计电路 锂离子电池充电管理芯片必须具备以下几点特性: 可提供固定电流给充电电池 当电池电压到达最大值且不再上升时,其充电电流便会开始下降,如此可避免对电池过度充电,造成电池损伤;当充电电流降至一定程度时,充电器将停止充电。 确保电池具备可使用电压 电池在充电完成后,若长时间放置不 使用会有自然放电的情形出现,为避免电池过度自放电导致电池电压下降,当 电池电压低于所设定电压时,充电器会重新开始对电池充电,确保电池在使用

蓄电池的维护与保养

蓄电池的维护保养 一、酸性蓄电池的维护保养 1.蓄电池电解液液面高度的测量 传统的铅酸蓄电池需要定期检查电解液的液面高度。 1)玻璃管测量法:测量时,用一根直径为3--5mm的空心玻璃管,垂直插入蓄电池加液孔内极板的上平面处,大拇指按紧玻璃管上端,使管口密封,然后提起玻璃管,迅速用尺测量管内的液面高度,或用浅色的干木条垂直插入孔内极板的上平面处,然后取出用尺量取痕迹的高度。高度标准应在10--15mm之间。若液面过高,用吸管吸至标准液面。若液面过低,一般应添加蒸馏水至标准液面; 2)观察液面高度指示法:对透明塑壳封装的蓄电池,可通过观察容器壁上的两条高低指示线,判断液面的高度,正常的液面高度应在两指示线之间。 2. 吸管式比重计的使用方法 将一定量的电解液吸入比重计内,使浮子处 于吸管的中部,不能触及吸管的顶部、底部及玻 璃壁,液面所在的刻度即为液体的比重值。或根 据浮子上的红、绿、黄三色标签,粗略判断比重 值的高低,红色区域为1.1--1.15,绿色区域为 1.15--1.25,黄色区域为1.25 -- 1.30。测量方法如 图7所示。 根据实际经验,电解液比重每减少0.01,相 当于蓄电池放电6%,所以从测得的电解液比重, 就可以粗略估算出蓄电池放电程度。需要注意的 是在大电流放电或刚加注蒸馏水的蓄电池,不可 立即测量电解液比重,因为此时电解液混合不均匀。 3. 高率放电计的使用方法 当蓄电池老化致使容量不足时,我们如果在刚 充完电时测量它的电压,其实也可接近标准的电压 值,但只要一经过放电,其电压就会迅速下降且难 以再恢复。所以我们可以采用高率放电计,测量蓄 电池的放电电压,从而更准确地了解它的电量情况。 高率放电计使用前先清洁蓄电池极桩上的氧化 物。之后将它的两个叉尖,用力紧压在蓄电池正负 极桩上,时间不超过5s,观察蓄电池大电流放电时 的端电压。如图8所示。 如果是测量电压值12V的表,且蓄电池额定容 量<60Ah,若蓄电池端电压能保持在11V以上,说 明蓄电池性能良好;若在9--11V之间,说明蓄电 池尚可使用,但电存半数;若<9.5V,则说明蓄电 池存电不足需充电。若蓄电池额定容量>60Ah, 若蓄电池电压能保持在11.5V以上,说明蓄电池性能良好;若在9.5--11.5V之间,说明蓄电池尚可使用;若<9.5V,则说明蓄电池存电不足需充电。

蓄电池的正确使用和维护

蓄电池的正确使用和维护 摘要:蓄电池是电力系统中直流供电系统的重要组成部分,正确使用和维护是保障蓄电池容量的重要工作。本文介绍了影响蓄电池容量的几个主要因素,并重点介绍了蓄电池内阻测试和核对性放电的重要意义。 关键词:蓄电池维护,蓄电池内阻,蓄电池放电 1 前言 蓄电池是电力系统中直流供电系统的重要组成部分,为电力系统中二次系统负载提供安全、稳定、可靠的电力保障,确保保护设备、通信设备的正常运行。因此,如何保证蓄电池组的稳定性和实际容量,是直流系统维护的重要工作。近年来,由于阀控式铅酸蓄电池具有容量稳定、体积小、易于安装等优点,被广泛应用。本文就阀控式铅酸蓄电池的使用、维护等几个方面作一阐述。 2 影响蓄电池容量的几个因素 2.1 合理的充电管理制度 一般讲阀控式蓄电池组运行充电方式有两种,一是浮充充电方式;二是均衡充电方式。 为延长阀控式蓄电池的使用寿命,生产厂商要求对电池组使用中要定期或者必要时对蓄电池组进行均衡充电。 从维护单位实际执行情况看有很多不合理的充电管理制度导致电池组运行长期亏电、充电不足、容量早期损失。如电池组浮充电压设置低,导致电池组浮充充电不足,电池组放电时放不出额定容量,过低导致电池组亏电,不能满足自放电和氧循环的需要,过高会使电解液损失,缩短电池寿命。再就是均衡充电制度贯彻没有得到落实,不论运行实际情况或运行时间长短均采用浮充充电方式,浮充电流小不能完成和满足电池组放电后的补充电,因而造成电池组充电不足,导致电池组达不到额定容量。 2.2 容量与温度的关系 典型阀控式铅酸蓄电池放电容量与温度的关系如图1所示。工作温度在25℃左右达到100%额定容量,工作温度增高至30℃容量超过100%,相反工作温度降低至-20℃是电池容量减小至60%额定容量。 2.3 蓄电池容量与内阻的关系 国内外的很多资料表明电池的内阻大小与电池所处的状态有关,与电池的剩余容量有关。电池处于放电状态时,随着剩余容量的减少,电池活性物质也在减少,结果使得电池的内阻增加。国内外许多研究资料表明,电池内阻与电池剩余容量有关,且与电池剩余容量成反比关系,如图2所示。 2.4 蓄电池容量与放电率的关系 阀控式铅酸蓄电池随着放电电流的增加,电池容量降低。这是因为,电流在极板上的分布是不均匀的,电化学反应电流优先分布在离主体溶液最近的表面上,这样就导致在电极表面形成硫酸铅而堵塞孔口,电解液扩散困难,不能充分供应多孔电极内部的需要,因而在大

锂离子电池及充电方案详解

电池部分 一、锂离子电池的结构与工作原理 所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。 ◎当电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO2、LiNiO2、LiMn2O4。 ◎做为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2 +3x+5y)/2)等。 ◎电解质采用LiPF6的乙烯碳酸脂(EC)、丙烯碳酸脂(PC)和低粘度二乙基碳酸脂(DEC)等烷基碳酸脂搭配的混合溶剂体系。

◎隔膜采用聚烯微多孔膜如PE、PP或它们复合膜,尤其是PP/PE/PP三层隔膜不仅熔点较低,而且具有较高的抗穿刺强度,起到了热保险作用。 ◎外壳采用钢或铝材料,盖体组件具有防爆断电的功能。 产品结构模型图 二、锂离子电池的种类 根据锂离子电池所用电解质材料不同,锂离子电池可以分为液态锂离子电池(lithium ion battery, 简称为LIB)和聚合物锂离子电池(polymer lithium ion battery, 简称为LIP)两大类。 液态锂离子电池和聚合物锂离子电池所用的正负极材料与液态锂离子都是相同的,电池的工作原理也基本一致。一般正极使用LiCoO2,负极使用各种碳材料如石墨,同时使用铝、铜做集流体。 它们的主要区别在于电解质的不同, 锂离子电池使用的是液体电解质, 而聚合物锂离子电池则以聚合物电解质来代替, 这种聚合物可以是“干态”的,也可以是“胶态”的,目前大部分采用聚合物胶体电解质。

智能化锂电池充电系统

摘要 本文主要介绍的智能化锂电池充电系统是专门为锂电池设计的高端技术解决方案。该系统 适用于锂离子、镍氢、铅酸蓄电池单体及整组进行实时监控、电池均衡、充放电电压、温度监 测等,釆用了电压均衡控制、超温保护等智能化技术,是功能强大、技术指标完善的动力电池 充电管理系统【1】。 关键词:智能化锂电池恒流恒压充电系统5148051.1 弓I 言 随着社会经济的迅速发展,移动电话、数码相机、笔记本电脑等便携式电子产品的普及,消费者对电池电能要求日渐提高;人们希望在获得大容量电能的同时,能够尽量减轻重量,提 高整个电源系统的使用效率和寿命。锂电池作为上世纪九十年代发展起来的一种新型电池12】,因具有能量密度高、性能稳定、安全可靠和循环寿命长等一系列的优点,很快在便携式电子设 备中获得广泛应用,更获得了广大消费者的青睐。由此可见,设计一套高精度锂电池充电管理 系统对于锂电池应用至关重要。 1锂电池充放电原理 锂电池主要由正极活性材料、易燃有机电解液和碳负极等组件构成〖3】。因此,锂电池的安 全性能主要是由这些组件间的化学反应所决定的。 根据锂电池的结构特性,锂电池的最高充电电压应低于4.2 04】,不能过充,否则会因正 极锂离子拿走太多,发生危险。其充放电要求较高,一般采用专门的恒流恒压充电器进行充电。通常恒流充电至设定值后转入恒压充电状态,当恒压充电至0.1人以下时15】,应立即停止充电。 锂电池的放电由于内部结构所致,放电时锂离子不能全部移向正极,必须保留一部分锂离 子在负极16】,以保证下次充电时锂离子能够畅通地嵌入通道。否则电池寿命会缩短,因此在放 电时需要严格控制放电终止电压。

相关主题