搜档网
当前位置:搜档网 › Q67040-S4281中文资料

Q67040-S4281中文资料

Q67040-S4281中文资料
Q67040-S4281中文资料

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode

? 40lower E off compared to previous generation ? Short circuit withstand time – 10 μs ? Designed for:

- Motor controls - Inverter - SMPS

? NPT-Technology offers:

- very tight parameter distribution

- high ruggedness, temperature stable behaviour - parallel switching capability

? Complete product spectrum and PSpice Models : https://www.sodocs.net/doc/0312827333.html,/igbt/Type V CE I C E off T j Package Ordering Code SKW15N1201200V

15A

1.5mJ

150°C

TO-247AC

Q67040-S4281

Maximum Ratings Parameter

Symbol Value Unit Collector-emitter voltage V C E

1200V DC collector current T C = 25°C T C = 100°C

I C

3015

Pulsed collector current, t p limited by T jmax I C p u l s 52Turn off safe operating area V CE ≤ 1200V, T j ≤ 150°C -52

Diode forward current T C = 25°C T C = 100°C

I F

3215

Diode pulsed current, t p limited by T jmax I F p u l s 50A

Gate-emitter voltage V G E ±20V Short circuit withstand time 1)

V GE = 15V, 100V ≤ V CC ≤1200V, T j ≤ 150°C

t S C 10μs Power dissipation T C = 25°C

P t o t

198

W

Operating junction and storage temperature

T j , T s t g -55...+150Soldering temperature, 1.6mm (0.063 in.) from case for 10s

-260

°C

P-TO-247-3-1(TO-247AC)

Thermal Resistance Parameter Symbol Conditions Max. Value

Unit Characteristic

IGBT thermal resistance,junction – case

R t h J C 0.63Diode thermal resistance,junction – case R t h J C D 1.5

Thermal resistance,junction – ambient

R t h J A

TO-247AC 40

K/W

Electrical Characteristic, at T j = 25 °C, unless otherwise specified Value

Parameter

Symbol Conditions

min.typ.max.Unit

Static Characteristic

Collector-emitter breakdown voltage V (B R )C E S V G E =0V,

I C =1000μA 1200

--

Collector-emitter saturation voltage

V C E (s a t )

V G E = 15V, I C =15A T j =25°C T j =150°C

2.5-

3.13.7 3.6

4.3Diode forward voltage

V F

V G E =0V, I F =15A T j =25°C T j =150°C

- 2.0

1.75

2.5Gate-emitter threshold voltage V G E (t h )I C =600μA,V C E =V G E 345

V

Zero gate voltage collector current

I C E S

V CE =1200V,V GE =0V T j =25°C T j =150°C

----200800μA

Gate-emitter leakage current I G E S V CE =0V,V GE =20V --100nA Transconductance g f s V C E =20V, I C =15A 11-S Dynamic Characteristic Input capacitance C i s s -12501500Output capacitance

C o s s -155185Reverse transfer capacitance C r s s V C E =25V,V G E =0V,f =1MHz

-6580pF

Gate charge

Q G a t e V C C =960V, I C =15A V G E =15V -130175nC Internal emitter inductance

measured 5mm (0.197 in.) from case L E TO-247AC

-13-nH Short circuit collector current

1)

I C (S C )

V G E =15V,t S C ≤10μs 100V ≤V C C ≤1200V,T j ≤ 150°C

-

145

-A

Switching Characteristic, Inductive Load, at T j =25 °C Value

Parameter

Symbol Conditions

min.typ.max.Unit

IGBT Characteristic Turn-on delay time t d (o n )-1824Rise time

t r -2330Turn-off delay time t d (o f f )-580750Fall time t f -2229ns

Turn-on energy E o n - 1.1 1.5Turn-off energy E o f f -0.8 1.1Total switching energy

E t s

T j =25°C,

V C C =800V,I C =15A,V G E =15V/0V,R G =33?,

L σ1)

=180nH,C σ1)

=40pF

Energy losses include “tail” and diode reverse recovery.

- 1.9

2.6

mJ

Anti-Parallel Diode Characteristic Diode reverse recovery time

t r r t S t F

---65 ns

Diode reverse recovery charge Q r r -0.5μC Diode peak reverse recovery current I r r m -15A Diode peak rate of fall of reverse recovery current during t F

di r r /dt

T j =25°C,

V R =800V, I F =15A,di F /dt =650A/μs

-500

A/μs Switching Characteristic, Inductive Load, at T j =150 °C Value

Parameter

Symbol Conditions

min.typ.max.Unit

IGBT Characteristic Turn-on delay time t d (o n )-3846Rise time

t r -3036Turn-off delay time t d (o f f )-652780Fall time t f -3137ns

Turn-on energy E o n - 1.9 2.3Turn-off energy E o f f - 1.5 2.0Total switching energy

E t s

T j =150°C V C C =800V,I C =15A,

V G E =15V/0V,R G =33?,

L σ1)

=180nH,C σ1)

=40pF

Energy losses include “tail” and diode reverse recovery.- 3.4

4.3

mJ

Anti-Parallel Diode Characteristic Diode reverse recovery time

t r r t S t F

---200 ns

Diode reverse recovery charge Q r r - 2.0μC Diode peak reverse recovery current I r r m -23A Diode peak rate of fall of reverse recovery current during t F

di r r /dt

T j =150°C

V R =800V, I F =15A,di F /dt =650A/μs

-

140

A/μs

1)

Leakage inductance L σ and stray capacity C σ due to dynamic test circuit in figure E.

I C , C O L L E C T O R C U R R E N T

10Hz

100Hz 1kHz 10kHz 100kHz 0A 10A 20A 30A 40A 50A 60A 70A

I C , C O L L E C T O R C U R R E N T

1V 10V 100V 1000V

0.1A

1A

10A

100A

f , SWITCHING FREQUENCY

V CE , COLLECTOR -EMITTER VOLTAGE Figure 1. Collector current as a function of switching frequency

(T j ≤ 150°C, D = 0.5, V CE = 800V,V GE = +15V/0V, R G = 33?)

Figure 2. Safe operating area (D = 0, T C = 25°C, T j ≤ 150°C)

P t o t , P O W E R D I S S I P A T I O N

25°C

50°C 75°C 100°C 125°C 0W 25W 50W 75W 100W 125W 150W 175W 200W

I C , C O L L E C T O R C U R R E N T

25°C

50°C 75°C 100°C 125°C

0A

5A 10A 15A 20A 25A 30A

35A

T C , CASE TEMPERATURE

T C , CASE TEMPERATURE

Figure 3. Power dissipation as a function of case temperature (T j ≤ 150°C)Figure 4. Collector current as a function of case temperature

(V GE ≤ 15V, T j ≤ 150°C)

I C , C O L L E C T O R C U R R E N T

0V

1V 2V 3V 4V 5V 6V 7V

0A 10A

20A

30A

40A 50A

I C , C O L L E C T O R C U R R E N T

0V

1V 2V 3V 4V 5V 6V 7V

0A 10A

20A

30A

40A

50A

V CE , COLLECTOR -EMITTER VOLTAGE

V CE , COLLECTOR -EMITTER VOLTAGE

Figure 5. Typical output characteristics (T j = 25°C)Figure 6. Typical output characteristics (T j = 150°C)

I C , C O L L E C T O R C U R R E N T

3V

5V 7V 9V 11V

0A 10A

20A

30A

40A

50A

V C E (s a t ), C O L L E C T O R -E M I T T E R S A T U R A T I O N V O L T A G E

-50°C

0°C 50°C 100°C 150°C

0V

1V

2V

3V

4V

5V

6V

V GE , GATE -EMITTER VOLTAGE

T j , JUNCTION TEMPERATURE

Figure 7. Typical transfer characteristics (V CE = 20V)

Figure 8. Typical collector-emitter

saturation voltage as a function of junction temperature (V GE = 15V)

t , S W I T C H I N G T I M E S

0A

10A

20A

30A

40A

10ns

100ns

1000ns

t , S W I T C H I N G T I M E S

0?

25?50?

10ns

100ns

1000ns

I C , COLLECTOR CURRENT

R G , GATE RESISTOR

Figure 9. Typical switching times as a function of collector current (inductive load, T j = 150°C,

V CE = 8600V, V GE = +15V/0V, R G = 33?,dynamic test circuit in Fig.E )Figure 10. Typical switching times as a function of gate resistor (inductive load, T j = 150°C,

V CE = 800V, V GE = +15V/0V, I C = 15A,dynamic test circuit in Fig.E )

t , S W I T C H I N G T I M E S

-50°C

0°C 50°C 100°C 150°C

10ns

100ns

1000ns

V G E (t h ), G A T E -E M I T T E R T H R E S H O L D V O L T A G E

-50°C

0°C 50°C

100°C 150°C

0V

1V

2V

3V

4V

5V

6V

T j , JUNCTION TEMPERATURE

T j , JUNCTION TEMPERATURE

Figure 11. Typical switching times as a function of junction temperature (inductive load, V CE = 800V,

V GE = +15V/0V, I C = 15A, R G = 33?,dynamic test circuit in Fig.E )

Figure 12. Gate-emitter threshold voltage as a function of junction temperature (I C = 0.3mA)

E , S W I T C H I N G E N E R G Y L O S S E S

0A

10A 20A 30A 40A 50A

0mJ 2mJ 4mJ 6mJ 8mJ

10mJ 12mJ

14mJ

E , S

W I T C H I N G E N E R G Y L O S S E S

0?

25?50?75?

0mJ 1mJ

2mJ

3mJ

4mJ

5mJ

I C , COLLECTOR CURRENT

R G , GATE RESISTOR

Figure 13. Typical switching energy losses as a function of collector current (inductive load, T j = 150°C,

V CE = 800V, V GE = +15V/0V, R G = 33?,dynamic test circuit in Fig.E )Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, T j = 150°C,

V CE = 800V, V GE = +15V/0V, I C = 15A,dynamic test circuit in Fig.E )

E , S W I T C H I N G E N E R G Y L O S S E S

-50°C

0°C 50°C 100°C 150°C

0mJ 1mJ

2mJ

3mJ

4mJ

Z t h J C , T R A N S I E N T T H E R M A L I M P E D A N C E

1μs

10μs

100μs

1ms 10ms 100ms 1s

10-3

K/W

10-2

K/W 10-1

K/W

T j , JUNCTION TEMPERATURE

t p , PULSE WIDTH

Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 800V,

V GE = +15V/0V, I C = 15A, R G = 33?,dynamic test circuit in Fig.E )

Figure 16. IGBT transient thermal

impedance as a function of pulse width (D = t p / T )

V G E , G A T E -E M I T T E R V O L T A G E

0nC

50nC

100nC

150nC

0V 5V

10V

15V

20V

C , C A P A C I T A N C E

0V

10V

20V

30V

100pF

1nF

Q GE , GATE CHARGE

V CE , COLLECTOR -EMITTER VOLTAGE Figure 17. Typical gate charge (I C = 15A)

Figure 18. Typical capacitance as a function of collector-emitter voltage (V GE = 0V, f = 1MHz)

t s c , S H O R T C I R C U I T W I T H S T A N D T I M E

10V 11V

12V

13V

14V

15V

s 10μs

20μs

30μs

I C (s c ), S H O R T C I R C U I T C O L L E C T O R C U R R E N T

10V

12V 14V

16V 18V 20V

0A 50A

100A

150A

200A

250A

300A

V GE , GATE -EMITTER VOLTAGE

V GE , GATE -EMITTER VOLTAGE

Figure 19. Short circuit withstand time as a function of gate-emitter voltage (V CE = 1200V, start at T j = 25°C)Figure 20. Typical short circuit collector current as a function of gate-emitter voltage (100V ≤V CE ≤1200V, T C = 25°C, T j ≤ 150°C)

t r r , R E V E R S E R E C O V E R Y T I M E

200A/μs

400A/μs 600A/μs 800A/μs 1000A/μs

0ns

50ns 100ns 150ns 200ns 250ns 300ns 350ns

400ns

Q r r , R E V E R S E R E C O V E R Y C H A R G E

200A/μs

400A/μs 600A/μs 800A/μs 1000A/μs

0.0μC

0.5μC

1.0μC

1.5μC

2.0μC

2.5μC

di F /dt , DIODE CURRENT SLOPE

di F /dt , DIODE CURRENT SLOPE

Figure 21. Typical reverse recovery time as a function of diode current slope (V R = 800V, T j = 150°C,

dynamic test circuit in Fig.E )Figure 22. Typical reverse recovery charge as a function of diode current slope (V R = 800V, T j = 150°C,

dynamic test circuit in Fig.E )

I r r , R E V E R S E R E C O V E R Y C U R R E N T

200A/μs

400A/μs 600A/μs 800A/μs 1000A/μs

0A

5A

10A

15A

20A

25A

30A

d i r r /d t , D I O D E P E A K R A T E O F F A L L

O F R E V E R S E R E C O V E R Y C U R R E N T

200A/μs

400A/μs 600A/μs 800A/μs 1000A/μs

0A/μs

100A/μs

200A/μs

300A/μs

400A/μs

di F /dt , DIODE CURRENT SLOPE

di F /dt , DIODE CURRENT SLOPE

Figure 23. Typical reverse recovery current as a function of diode current slope (V R = 800V, T j = 150°C,

dynamic test circuit in Fig.E )

Figure 24. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (V R = 800V, T j = 150°C,

dynamic test circuit in Fig.E )

I F , F O R W A R D C U R R E N T

0V

1V 2V 3V 4V

0A 10A

20A

30A

40A

50A

V F , F O R W A R D V O L T A G E

0°C

40°C 80°C 120°C

0.0V

0.5V

1.0V

1.5V

2.0V

2.5V

3.0V

V F , FORWARD VOLTAGE

T j , JUNCTION TEMPERATURE

Figure 25. Typical diode forward current as a function of forward voltage Figure 26. Typical diode forward voltage as a function of junction temperature

Z t h J C D , T R A N S I E N T T H E R M A L I M P E D A N C E

10μs

100μs 1ms 10ms 100ms 1s

10-2

K/W

10-1

K/W

100

K/W

t p , PULSE WIDTH

Figure 27. Diode transient thermal

impedance as a function of pulse width (D = t p / T )

dimensions

symbol

[mm][inch]

min

max min

max A 4.78 5.280.18820.2079B 2.29 2.510.09020.0988C 1.78 2.290.07010.0902D 1.09 1.320.04290.0520E 1.73 2.060.06810.0811F 2.67 3.180.10510.1252G 0.76 max 0.0299 max

H 20.8021.160.81890.8331K 15.6516.150.61610.6358L 5.21 5.720.20510.2252M 19.8120.680.77990.8142N 3.560 4.9300.14020.1941?P

3.610.1421

Q

6.12

6.22

0.2409

0.2449

TO-247AC

Figure A. Definition of switching times Figure B. Definition of switching losses

I

r r m

90% I

r r m

10% I

r r m

di/dt

F

t

r r

I

F

i,v

t

Q

S

Q

F

t

S

t

F

V

R

di/dt

r r

Q=Q Q

r r S F

+

t=t t

r r S F

+

Figure C. Definition of diodes

switching characteristics

τ1τ2nτ

r r r

Figure D. Thermal equivalent

circuit

Leakage inductance Lσ=180nH,

and stray capacity Cσ=40pF.

Published by

Infineon Technologies AG i Gr.,

Bereich Kommunikation

St.-Martin-Strasse 53,

D-81541 München

? Infineon Technologies AG 1999

All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

相关主题