搜档网
当前位置:搜档网 › 气–固法合成制备氢化镁及热力学分析

气–固法合成制备氢化镁及热力学分析

气–固法合成制备氢化镁及热力学分析
气–固法合成制备氢化镁及热力学分析

Advances in Material Chemistry 材料化学前沿, 2015, 3, 53-59

Published Online July 2015 in Hans. https://www.sodocs.net/doc/0813049203.html,/journal/amc

https://www.sodocs.net/doc/0813049203.html,/10.12677/amc.2015.33006

Preparation of MgH2 by Gas-Solid Synthesis and Thermodynamics Analysis

Menglei Tan, Zhejun Tan, Gaofeng Quan*

Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science & Engineering, Southwest Jiaotong University, Chengdu Sichuan

Email: *quangf@https://www.sodocs.net/doc/0813049203.html,

Received: Jun. 28th, 2015; accepted: Jul. 10th, 2015; published: Jul. 17th, 2015

Copyright ? 2015 by authors and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

https://www.sodocs.net/doc/0813049203.html,/licenses/by/4.0/

Abstract

With the rapid development of hydrogen energy, hydrogen production, storage and transport be-come key issues of engineering technology. MgH2, as an Mg-based hydrogen storage material, has become the center of attention in hydrogen fuel-cell area because it has a high hydrogen capacity with less dense and easy control in hydrogen releasing. In this paper, gas-solid reaction is adopted to prepare MgH2. And a feasibility study in industry is analyzed about reactions between hydrogen with magnesium vapor and powder, respectively, by considering their thermodynamics calcula-tion. The thermodynamics analysis and experimental results show that the temperature and pres-sure conditions of the reaction between hydrogen and magnesium powder are more easily ful-filled (673 K, 7 MPa, 72 h) than that between hydrogen and magnesium vapor, and that this me-thod can be used in industry.

Keywords

Magnesium Hydride, Hydrogen Storage Materials, Thermodynamics Calculation, Explosive Reaction

气–固法合成制备氢化镁及热力学分析

谭梦蕾,谈哲君,权高峰*

西南交通大学材料科学与工程学院材料先进技术教育部重点实验室,四川成都

Email: *quangf@https://www.sodocs.net/doc/0813049203.html,

*通讯作者。

气-固法合成制备氢化镁及热力学分析

收稿日期:2015年6月28日;录用日期:2015年7月10日;发布日期:2015年7月17日

摘 要

氢能发展日益壮大,制氢、储氢、运氢成为关键的工程技术问题。氢化镁作为镁基储氢材料,因其储氢量大,密度小,氢气释放易于控制而成为氢燃料电池领域关注的焦点之一。本文采用气–固反应法制备氢化镁,并通过对不同状态的镁(镁蒸汽与固体镁粉)与氢气的在高温高压下的合成反应进行热力学计算和实验,从而论证其大规模生产的工业可行性。热力学分析和试验验证结果表明:相比于镁在蒸汽状态下与氢气反应制备氢化镁而言,工业高纯镁固体粉末与氢气反应制备氢化镁的温度和压强条件要求较低(673 K, 7 MPa, 72 h),可工业化制备氢化镁。

关键词

氢化镁,储氢材料,热力学计算,爆发式反应

1. 引言

近期我国104个城市频频出现雾霾,多个城市被严重污染的空气所笼罩,治理污染已经到了刻不容缓的地步。绿色发展、可持续发展、低碳发展,是时代潮流,也是各国积极追求的目标。氢能是一种绿色、可再生二次能源,具有来源多样、洁净环保、可储存和可再生等特点,可以同时满足资源、环境和可持续发展的要求[1]。氢能燃料电池技术,一直被认为是利用氢能,解决未来人类能源危机的途径之一,甚至被某些专家视为终极方案,是氢能经济中的核心技术。制氢是氢能应用的基础,然而高效、安全可靠、低成本的储氢、输氢技术是氢能规模应用的瓶颈。随着储氢材料和技术的研究进展,镁基储氢材料渐渐成为热点。镁基储氢材料可直接应用于燃料电池,是未来改变能源结构的有力武器[2]。镁金属在地面和盐湖、海水中的储量非常大,而且镁基储氢材料储氢量较高,其中,MgH 2拥有高达7.6 wt.%的储氢密度,成为最有潜力的储氢材料之一[3]。但是,目前MgH 2的实用化进程缓慢,这主要是由于MgH 2在吸放氢反应过程中的热力学特性不甚理想,包括吸氢过程缓慢、效率低等。针对这一问题,许多研究者尝试了一些不同的方法,如镁稀土合金储氢材料、镁基储氢复合材料等[4]-[9]。Hanada 等[10]研究了纳米颗粒Fe 、Co 、Ni 和Cu 对MgH 2储氢性能的影响机制,认为添加2% (摩尔分数) Ni 的MgH 2组分表现出较好的储氢性能,放氢量达到6.5% (质量分数)。与此同时,有关金属镁在蒸汽状态下与氢气反应及相关氢存储方面的研究鲜有报道。本文从金属镁与氢气在高温高压下制备MgH 2的热力学计算出发,通过实验室试制MgH 2,讨论不同形态金属镁与氢气在高温高压条件下直接工业制备氢化镁的可行性。

2. 气–气反应的热力学分析

镁蒸汽与氢气的反应式如下:

()()()22Mg g H g MgH s +→ (1)

假设该反应可以正向进行,其吉布斯自由能表达式如下:

()()()()()

2

2,ln ,

H Mg r m r m p G p T G T RT K K p p θθ

?=?+=

其中 (2)

而注意到:

气-固法合成制备氢化镁及热力学分析

()()()ΔΔr m r m r m G T H T T S T θθθ?=? (3)

()(),298.15K ΔΔ298.15K Δd T

r m r m r p m H T H C T θθ

=+∫ (4) ()(),298.15K

ΔΔΔ298.15K d T

r p m

r m r m C S T S T T

θθ=+∫ (5)

而对于某一物质B ,它的恒压热容为:

()35262,101010p m C B a b T c T d T ???=+×+×+× (6)

针对镁、氢及氢化镁公式中各参数选择如表1所示[11]。 就某一反应有:

35262,101010r p m B i B i B i B i C a b T c T d T νννν????=

+×+×+×∑∑∑∑ (7)

其中B ν表示该反应的化学计量数,B ν对反应物取负,产物取正。将表中数据带入公式(7),可得: 352,Δ20.8746.10710 6.3610r p m C T T ??=?+×?× (8)

设()()

2H Mg p x p =,并根据(),0r m G p T ?=,化简得到:

()()325

2103

2

73.269.69623.053510 3.1810lg Mg g 2ln102ln10

1020.87ln 30.56646.10710ln

T T p RT RT T T T RT x ?????××=+

??×++

(9)

其中()()Mg g p 的单位是Pa ,给定x 值,作()()-lg Mg g T p 曲线。如图1所示,其中曲线族为x 取值

1,2,3,,10 的十条()()-lg Mg g T p 曲线,与蒸汽压曲线有一系列的交点,曲线的右上方是反应可以进行的

区域。

由图1可知,交点温度很高,达到5000 K ,对于生产或实验设备要求苛刻,难度很大,可行性差。

3. 气–固反应的热力学分析

固态的镁粉与氢气的反应式如下

()()()22Mg s H g MgH s +→ (10)

计算方式与气态反应类似,但是热容系数取值不同,如表2所示[11]。

同样考查该反应自发进行的临界情况,即有(),0r m G p T ?=,化简得到

()333

2216.6310 3.79410lg H 0.897610 1.123ln 5.1183p T T T T ?×××?+?+ (11)

做()2-lg H T p 曲线如图2所示

如图2所示,在曲线右侧反应可以自发进行。而且,由图中数据与式(9)表达的气–气反应相关参数对比可见,该种固–气合成的方式制备氢化镁具有更高的可行性。从反应温度而言,气–气反应需要在数千度以上,甚至4000 K 、5000 K ,比气–固反应要高出一个量级;就反应压强而言,气–固反应所需压强虽然要比气–气反应高,但仍在工业操作范围内。

故而得出:镁蒸汽与氢气反应,计算发现其条件苛刻,需要在非常高的温度和压力下才可以反应,而固态镁(粉末)与氢气在一般高温高压条件下即可合成氢化镁,条件易于实现和便于操作与控制。

气-固法合成制备氢化镁及热力学分析

Table 1. Constant pressure thermal capacity in gas-gas reaction

表1. 气–气反应各物质恒压热熔系数

系数Mg(g) H2(g) MgH2(s)

a 20.786 27.280 27.196

b 0 3.264 49.371

c 0 0.502 ?5.858

d 0 0 0

Table 2. Constant pressure thermal capacity in gas-solid reaction

表2. 气–固反应各物质恒压热熔系数

系数Mg(g) H2(g) MgH2(s)

a 21.389 27.280 27.196

b 11.778 3.264 49.371

c 0 0.502 ?5.858

d 0 0 0

Figure 1. Gas-gas reaction T-lg p(Mg(g)) curve

图1. 气–气反应T-lg p(Mg(g))曲线

Figure 2. Vapor-solid reaction T-lg p(H2(g)) curve

图2. 气–固反应T-lg p(H2(g))曲线

气-固法合成制备氢化镁及热力学分析

4. 气–固法制备氢化镁实验研究

4.1. 实验材料

超高纯度工业镁粉,纯度99.995%,颗粒度250目,氩气包装,表面处于自然钝化状态,呈亮银白色,未见氧化情形;高纯氢气,纯度99.999%,供应压力30MPa。

4.2. 实验设备

高温高压反应釜,有效容积3.5 L,设计压力12.5 MPa,设计温度723 K,采用电加热法,加热功率2.5 KW,自动恒温控制。

4.3. 试验方法

将镁粉放在镁合金盒内(无盖),整体置于反应釜内,而后缓慢通入氢气,并缓慢放出进行氢气清洗,持续清洗足够长时间后关闭出气阀,开始升压、升温。保持温度和压强分别为673 K、7 MPa,如图3所示。持续时间72 h。随后,采用XRD对反应产物进行物相分析。

5. 结果分析

经过氢化镁制备试验后,发现存在两种不同色泽、形态的物质,如图4所示。通过表观分析可知:浮于表面的纯白色粉末推测为氢化镁,分别收集白色粉末(样品1)与盒底稍深色粉末(样品2)进行X射线衍射图谱分析,如图5所示。

氢化镁在常温常压下为金红石晶体结构,其特征峰出现在2θ = 27.947,35.744,54.617,晶面指数分别为(110),(101),(211),如图5。其中除氢化镁外,还可以标定出纯镁与极少量氧化镁。其中纯镁的特征峰出现在2θ = 32.173,34.385,36.604。而氧化镁特征峰角度较大,只标出了其中两个特征峰2θ = 42.909,62.306。由此可以确定:样品1是由氢化镁与少量未反应的纯镁颗粒组成;样品2中包含氢化镁、纯镁与少量氧化镁,氧化镁的存在是由于在转移纯镁的过程中,难免与空气接触,因此产生少量氧化镁。

仔细观察样品1发现,这些雪白色的粉末状MgH2成团絮状堆聚在一起,或以团聚状贴附在反应釜器壁上,且团聚内的实际的颗粒尺寸远小于反应前镁颗粒尺寸,有文献报道为8~100 nm [12]。同时,尚

Figure 3. Experiment parameter point in vapor-solid reaction

图3. 气–固实验参数点

气-固法合成制备氢化镁及热力学分析

Figure 4. Macroscopic appearance of resultant

图4. 反应产物宏观形貌

Figure 5. XRD of resultant

图5. XRD分析图谱

未反应的纯镁颗粒是完整的。这种反应产物能跳离原位贴附在容器壁上的现象,证明在反应过程中有产生了一种推动力,将粉末推向了容器壁。作者分析认为,最可能一种原因是:在反应初期,纯镁颗粒的表面随温度升高和氢气压强的增加而逐渐活化,其活化比表面积逐渐增大,当达到临界活化比表面积时,该活化部分的颗粒表面与氢气发生了快速气–固反应,在极短的时间里整个颗粒的镁原子全部转化成为氢化镁。文献分析认为氢化镁由于晶格常数大,快速转变时表现为爆发式转变,即在极短的时间内完成了一个纯镁颗粒到一团氢化镁的转变,所以反应产物很蓬松,成团絮状浮于镁粉表面,个别由镁粉粒转化成的氢化镁团聚体,更由于临近粉粒的几乎同时发生的爆发式转变而被冲击弹射到合成釜侧壁,贴附于器壁上。而未发生反应的则全部是整个颗粒的镁粉粒;形成爆发式转变的另一种原因是:反应产物氢化镁在冷却和降压的过程中,因为发生晶格转变而发生快速膨胀产生推动力,因而互相分散开了。在高压下氢化镁为六方β-MgH2相和斜方γ-MgH2相结构[13],随反应釜内压强的降低,氢化镁转变为常压下的α-MgH2金红石型四方晶体结构。由于转变过程中伴随着的体积膨胀,且转变速度足够快,就产生了爆炸式转变,氢化镁团聚互相分散开了。综合考虑,作者认为这两种过程先后发生有更大的可能性。

为了初步验证反应产物就是氢化镁,将收集到的混合物与水反应,采用量气法进行放氢实验,用量

气-固法合成制备氢化镁及热力学分析瓶收集氢气。通过量气法计算,得到氢化镁转化率达到了43.210%

±。由于该组反应的时间为72 h,而在铁盒内尚未反应的纯镁由于活化时间仍然不够,并没有达到临界活化比表面积,预测活化时间越长,纯镁制备氢化镁的转化率将越高。镁粉的粒度分布,尺寸,都影响着它的活化时间与转化率,虽然氢化镁有很高的储氢能力,但它的反应速率并不理想,这影响了它在储氢方面的应用,这个问题已经超过了热力学范围,成为了动力学问题。要达到能够满足汽车用储氢材料的指标[14],更需要改善制备氢化镁和储氢器件吸–放氢的动力学障碍。

6. 结论

1) 热力学平衡计算表明,相比于镁固体粉末与氢气反应制备氢化镁,镁蒸汽状态下与氢气反应制备氢化镁的方案,需要更高的温度,条件过于苛刻,工业上难以实现。

2) 镁固体粉末状态下与氢气反应生成氢化镁是可行的,温度要求较低(673 K),压强在可控范围内(7 MPa),一般的转化率就达到()

±,可以进行工业转化应用。

43.210%

3) 纯镁粉在高温高压状态下与氢气发生了爆发式反应,生成氢化镁,该反应特点是:每个纯镁颗粒在高温高压氢气中活化后与氢气在短时间内迅速反应,像爆炸一样跳离原位,形成更细小纳米粉末团聚,堆聚在一起呈团絮状,或贴附在容器壁上。

致谢

感谢为本研究提供支持的成都天智轻量化科技有限公司。

参考文献(References)

[1]夏丽洪(2005) 专家谈我国能源行业的协调发展. 国际石油经济, 2, 10-14.

[2]闫惠忠(2012) 储氢材料产业现状及发展. 高科技与产业化, 195, 68-71.

[3]刘新波, 刘子利(2007) 镁基储氢合金的研究进展. 金属功能材料, 3, 32-36.

[4]Li, F.B., et al. (2006) Synthesis and hydrogenation properties of Mg-Li-H system by reactive Mechanical alloying. In-

ternational Journal of Hydrogen Energy, 31, 581-585. https://www.sodocs.net/doc/0813049203.html,/10.1016/j.ijhydene.2005.06.007

[5]Porcu, M., Petford-Long, A.K. and Sykes, J.M. (2008) TEM studies of Nb2O5 catalyst in ball-milled MgH2 for hydro-

gen storage. Journal of Alloys and Compounds, 453, 341-346. https://www.sodocs.net/doc/0813049203.html,/10.1016/j.jallcom.2006.11.147

[6]Kim, J.W., Ahn, J.P. and Jin, S.A. (2008) Microstructural evolution of NBF5-doped MgH2exhibiting fast hydrogen

sorption kinetics. Journal of Power Sources, 178, 373-378. https://www.sodocs.net/doc/0813049203.html,/10.1016/j.jpowsour.2007.12.005

[7]Li, Q., Liu, J. and Liu, Y. (2010) Comparative study on the controlled hydriding combustion synthesis and the micro-

wave synthesis to prepare Mg2Ni from micro-particles. International Journal of Hydrogen Energy, 35, 3129-3135.

https://www.sodocs.net/doc/0813049203.html,/10.1016/j.ijhydene.2009.07.121

[8]CHourashiya, M.G. and Yang, D.-C. (2012) Comparison of commercial and hydriding-combustion-synthesized Mg-

hydride. Materials Letters, 66, 42-45. https://www.sodocs.net/doc/0813049203.html,/10.1016/j.matlet.2011.08.008

[9]Zhong, H.C., Wang, H. and Liu, J.W. (2011) Altered desorption enthalpy of MgH2 by the reversible formation of Mg

(In) solid solution. Scripta Materialia, 65, 285-287. https://www.sodocs.net/doc/0813049203.html,/10.1016/j.scriptamat.2011.04.024

[10]Hanada, N., Ichikawa, T. and Fujii, H. (2005) Catalytic effect of nanoparticle 3d-transition metals on hydrogen storage

properties in magnesium hydride MgH2 prepared by mechanical milling. The Journal of Physical Chemistry B, 109, 7188-7194. https://www.sodocs.net/doc/0813049203.html,/10.1021/jp044576c

[11]Dean, J.A., 著(2003) 魏俊发, 等, 译. 兰氏化学手册. 第二版, 科学出版社, 北京.

[12]李志宝, 孙志贤, 张莹洁(2014) MgH2储氢热力学研究进展. 中国科学, 6, 964-972.

[13]Jain, I.P., Lal, C. and Jain, A. (2010) Hydrogen storage in Mg: A most promising material. International Journal of

Hydrogen Energy, 35, 5133-5144. https://www.sodocs.net/doc/0813049203.html,/10.1016/j.ijhydene.2009.08.088

[14]Schlapbaah, L. (2001) Hydrogen storage materials for mobile application. Nature, 414, 353-358.

https://www.sodocs.net/doc/0813049203.html,/10.1038/35104634

煤制乙二醇工艺流程详细工艺

环氧乙烷水合制乙二醇 乙二醇是合成聚酯树脂的主要原料,大家熟知的涤纶纤维就是由乙二醇与对苯二甲酸合成的。乙二醇还可用作防冻液,w(乙二醇)=55%的水溶液的冰点为-36℃,可用作中国北方冬天汽车必需的冷却液。此外,乙二醇还可用作溶剂和用于化妆品、毛皮加工、烟叶润湿和纺织工业染整等。据预测,2000年乙二醇的世界产量将达到10Mt/a。中国1995年的产量为53×104 t/a,到2000年将达72×104 t/a。 1.乙二醇生产方法综述 现在,乙二醇有多种工业生产方法,但环氧乙烷水合制乙二醇法仍占主导地位。 (1)环氧乙烷法 可用酸作催化剂,但用得较多的是加压水合: 反应中生成约10%的二乙二醇醚(二甘醇)和三乙二醇醚(三甘醇),它们是有用的化工产品,故反应所得的有用产品总产率按环氧乙烷计接近100%,生成的二乙二醇醚用作纤维素、树胶、涂料、喷漆的溶剂或稀释剂。三乙二醇醚主要用来生产刹车液。它们的售价比乙二醇还高,因此可改善生产装置的经济效益。 环氧乙烷法因环氧乙烷售价高,生产总成本也比较高。 (2)乙烯乙酰氧基化法 乙烯乙酰氧基化法又称奥克西兰(Oxirane)法,它可由乙烯为原料生产乙二醇。工艺分二步进行,第一步乙烯与醋酸反应生成乙二醇-醋酸酯和乙二醇二醋酸酯: 反应条件:反应温度160℃,反应压力,催化剂TeO2/HBr[w(HBr)=48%的水溶液],还可用醋酸锰加碘化钾作催化剂,乙烯转化率60%,选择性95%~97%,产品分布:乙二醇二醋酸酯70%,乙二醇一醋酸酯25%,乙二醇5%。 第二步是醋酸酯水解生成乙二醇和醋酸:

反应条件为:反应温度107~130℃,压力,选择性95%。 该法的总反应式为: 2CH2=CH2+2H2O+O2→2HOCH2-CH2OH 以乙烯计的摩尔产率为94%,高于以环氧乙烷法生产乙二醇的产率。 该法虽然以廉价的乙烯作原料,但投资和能耗比环氧乙烷法高,经济上是否比环氧乙烷法好尚有争论,再加上醋酸对设备的腐蚀是一个头痛问题,催化剂的再生和回收问题也没有很好解决,致使已开工生产的a生产装置被迫停产关闭。 (3)乙烯氧氯化法 该法又称帝人(Teijin)法。由日本帝人公司开发成功,是对老式的氯乙醇法生产环氧乙烷的改进。采用TiCl3-CuCl2-HCl水溶液为催化剂。化学反应如下: CH2=CH2+TiCl3+H2O→ClCH2-CH2OH+TiCl+HCl ClCH2-CH2OH+H2O→HOCH2-CH2OH+HCl 催化剂再生: TiCl+2CuCl2→2CuCl2+H2O 2CuCl+2HCl+ 1/2 O2→2CuCl2+H2O 反应条件为:反应温度160℃,压力,pH<4,乙二醇选择性为89%,乙醛6%,其他(二氧杂环己烷和二乙二醇)5%,如果Cl-∶Ti3+的比例小于4∶1时,乙醛产率将显著增大,在反应温度大于120℃时,氯乙醇可在同一装置内水解。 乙烯的氧氯化亦可在另一个催化剂体系中进行: 催化剂再生: 2Cu+(或2Fe2+)+2H++1/2O2→2Cu2+(或2Fe3+)+H2O 反应条件:反应温度150~180℃,压力~,乙二醇选择性86%,该法的优点是乙烯消耗定额很低,仅 kg/kg乙二醇,但有强腐蚀性,产物与催化剂溶液的分离比较困难。 (4)由合成气制乙二醇 合成气是一氧化碳和氢气混合物的总称。现在工业上用煤、天然气和劣质重油为原料可廉价、大量的生产出来,目前主要用来生产甲醇、合成氨、羰基化产品等。由合成气制乙二醇已引

纸张燃烧的制作方法

步骤1:首先建立一个720*576,长度为6秒的合成图像(comp),把它命名为“燃烧”。如图1。

步骤2:导入一段影片。此练习中导入heart.jpg。将heart拖动到合成图像中。按Ctrl+Alt+F,使图像与合成图像一样大。如图2。 步骤3:再建立一个720*576的名为“置换”的合成图像。建立一个和合成图像等大的固体层(solid),在该层上施加Fractal Noise效果(Effects/Render/Fractal Noise)。将contrast值设为205。在Transform卷展栏中取消“uniform scal

ing”的圈选,将高度缩放值设为200%(这样使火苗的长度增加,在原来的火球形状上产生更多的卷曲火舌)。如图3。

步骤4:在Fractal Noise的evolution项上,设定关键帧。0秒时为0,4秒时为旋转4圈。如图4。 接下来我们要使Fractal Noise产生向上的动画效果。 在分形噪波(Fractal Noise)的Transform项中的offset turbulence上,设定关键帧,0秒时值为360,288,4秒时为360,96。如图5。

把合成图像“置换”拖到合成图像“燃烧”中。关闭它的可视开关。(前面的小眼睛)。如图6。 步骤5:在合成图像“燃烧”中,创建一个720*576,名为“火焰”的固体层。在其上施加椭圆(Ellipse)效果(Effect/Rende r/Ellipse)。将Ellipse中的内圈颜色(inside color)设置为桔黄色(R255,G128,B0),外圈颜色(outer color)设为一种略深的桔黄色(R128,G64,B0)。柔和度(softness)设为0%。 在时间线窗口中,ellipse滤镜中选择高度(height),按下Shift+Alt+=,建立一个表达式。

燃烧合成介绍

燃烧合成(combustion synthesis,简称CS)又称为自蔓延燃烧合成,是一种利用化学反应的自身放热使反应持续进行的合成方法。该方法的历史可以追溯到前苏联科学家对火箭固体推进剂燃烧问题的探讨。早在1967年,Merzhanov和Borovinskaya在研究Ti-B混合粉坯时就发现自蔓延燃烧现象,并提出自蔓延高温合成(self-propagating high- temperature synthesis,简称SHS)的概念[104]。SHS 最大的特点是合成反应的自发热和自维持,在合成过程中不需要外部能源供给[104,105]。采用SHS工艺可以合成陶瓷材料、金属基与陶瓷基复合材料、金属间化合物、梯度材料、高温超导等高技术结构材料与功能材料[106,107]。此项新的合成技术一出现就受到各国的重视并列入各国高技术材料发展的规划中。 然而,SHS技术工艺可控性较差。同时,由于燃烧温度一般高于2000 °C,合成的粉末粒度大,难以满足小粒径、大表面粉体材料合成的要求。因此,研究人员将SHS技术与湿化学方法相结合,发展出了低温燃烧合成(1ow-temperature combustion synthesis,LCS)新技术。相对于SHS工艺,LCS工艺中的燃烧温度大为降低,从而避免了产物的严重烧结。LCS技术具有以下特点:(1) 起燃温度低,一般在120-350 °C。(2) 反应自维持,合成时间短;(3) 反应产生的大量气体使产物具有疏松多孔的微观形貌;(4) 保留湿化学方法的优点,化学计量比准确,各组分间能达到分子或原子级均匀度;(5) 产物的烧成温度比传统固相反应有较大降低;(6) 合成所需设备简单,原材料成本低。因此,LCS技术被广泛应用于各种氧化物粉体[108-112],尤其是复合氧化物粉体材料的制备,例如各种固体氧化物燃料电池材料,BaTiO3、SrTiO3电子陶瓷,YBCO系高温超导体及多种其它功能陶瓷材料[113-116]。 燃烧合成中的燃烧反应本质上是一个氧化-还原反应。通常选取金属硝酸盐作氧化剂,有机物作还原剂(燃料)。金属硝酸盐在充当氧化剂的同时,还提供目标产物所需的金属离子。此外,硝酸盐还保证了金属粒子的良好溶解性。燃料的选取一般有两个要求。一是要求燃料与硝酸盐所发生的燃烧反应比较温和,产生气体无毒。二是选取的燃料最好对金属离子有络合作用,因为络合剂可以增加金属离子的溶解性,并阻止在前驱体溶液中金属盐的结晶析出。 燃烧合成所需氧化剂和还原剂(燃料)的量可根据推进剂化学原理进行计算。Jain等[117]提出了一种计算氧化剂和还原剂比例的简单方法,即分别计算两者的总还原价和总氧化价,按照总还原价和总氧化价相等的原则来确定它们的化学计量比。当燃料/硝酸盐的比例少于化学计量比时,燃烧反应称为“贫燃反应”。当燃料/硝酸盐的比例高于化学计量比时,称为“富燃反应”。为了保证目标产物的化学组成和燃烧反应的完全,有时需额外添加一定量的氧化剂。硝酸铵是常用的一种氧化剂。例如,在合成钛酸钡时,加柠檬酸的同时需要加入适量硝酸铵,既保证了Ba2+、Ti4+有足够的络合剂,又避免过量有机物燃烧不完全。另外,空气中的氧气也可作辅助氧化剂。

合成气制乙二醇项目建议书

项目建议书 合成气制乙二醇 第一章总论 1.1 项目概况 乙二醇在经济中有着极其重要的地位。用于生产聚酯纤维、薄膜、容器瓶类等系列产品和汽车防冻剂,还可用于除冰剂、表面涂料、表面活性剂、增塑剂等化工产品的原料。其生产的聚酯碳纤维强度高、耐腐化,是世界公认的无危害高新工程材料。因此,发展和技术改造乙二醇工艺设计对我国经济发展有着重要的意义。 本项目是为一综合化工企业设计一座采用清洁生产工艺制取乙二醇分厂。要求利用煤和水制取的CO和氢气,采用合成气间接法工艺合成乙二醇。 1.2 调研依据 1)《化工建设项目可行性研究报告内容和深度规定》2005 年10 月2)2015年三井杯大赛相关指导意见书 1.3 项目背景 乙二醇产业状况 目前,我国乙二醇生产技术主要为石油路线,即以乙烯为原料,

经环氧乙烷生产乙二醇,该技术全部为引进装置,主要集中在中石化、中石油及中海油等大型国有企业中,引进技术包括英荷壳牌公司(Shell)、美国科学设计公司(SD)以及美国DOW化学公司(原UCC公司)的技术。非石油路线是以合成气为原料,可采用多种方法合成乙二醇,在我国已经实现产业化的主要是我国自主研究开发的以煤或者天然气制备乙二醇的生产技术。 由煤制合成气(CO+H:)生产EG的新技术发展很快,而传统用石油基乙烯生产EG工艺受到以煤为原料的合成气路线挑战,尤其是最近几年国内已有多套以煤基合成气生产EG的工业装置实现运行,煤制EG新增产能远高于石油基乙烯路线EG,以合成气为基础的EG 生产新工艺引起业内普遍关注。 合成气制EG技术发展现状 合成气可来源于石油、煤、天然气等化石原料以及生物质资源,获取途径十分广泛,合成气生产工艺在国内已经十分成熟。合成气制EG 分为间接法和直接法2种,直接法是合成气通过高温高压和贵金属催化剂直接合成EG,目前此法仍处于研究阶段;间接法是利用合成气先合成出某些中间产品(例如草酸二甲酯),再通过催化加氢制得EG,这是目前及今后EG生产工艺发展的重点。 煤制乙二醇发展前景 传统的乙二醇生产方法是走石油化工路线,即由石油加工得到乙烯,乙烯氧化生成环氧乙烷,环氧乙烷进一步水合生产乙二醇,随着世界石油资源的日渐短缺,开辟新的工艺路线已成为当务之急,考

生活中的热力学

生活中的热力学 摘要:生活中的热力学现象无处不在,热力学现象的本质和原理亦来自生活。其实我们身边经常可以看到很多和热力学有关的现象。热力学第零定律、热力学第一定律、热力学第二定律、热力学第三定律是热力学的基本定律,高压锅、空调、电冰箱是生活中常见的用电器。 关键词:热力学定律 热力学第一定律也叫能量不灭原理,就是能量守恒定律。它指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。 热力学第一定律的另一种表述是:第一类永动机是不可能造成的。表征热力学系统能量的是内能,通过做功和传热,系统与外界交换能量,使内能有所变化。根据普遍的能量守恒定律,系统由初态Ⅰ经过任意过程到达终态Ⅱ后,内能的增量ΔE应等于在此过程中外界对系统传递的热量Q和系统对外界做功W之差,即 EⅡ-EⅠ=ΔE=Q-W 或 Q=ΔE+W 这就是热力学第一定律的表达式。对于无限小过程,热力学第一定律的微分表达式为 dQ=dE+dW 其中,E是态函数,dE是全微分;Q、W是过程量,dQ和dW只表示微小量并非全微分,用符号d以示区别。又因ΔE或dE只涉及初、终态,只要求系统初、终态是平衡态,与中间状态是否是平衡态无关。 热力学第二定律一般有两个表述: 1.开尔文表述:不可能制成一种循环动作的热机,只从单一热源吸取热量,使之完全变成有用的功而不产生其他影响。 2.克劳休斯表述:热量不可能自动地从低温物体传到高温物体。 其实这两种表述是等价的,我们知道自然界中的各种不可逆过程都是互相关联的。而这两种表述的区别在,克氏表述指出:热传导过程是不可逆的;开氏表述指出:功变热(确切地说,是机械能转化为内能)的过程是不可逆的。两种表述均指出在自然界中任何的过程都不可能自动地复原,要使系统从终态回到初态必需借助外界的作用,不可能做到“不引起其他变化”。热力学第二定律是一条关于方向性的定律,开尔文曾据此推测宇宙内所有的变化都会沿着有去无回的方向进展,他提出“时间是有

燃烧法直接合成氧化铁纳米粉体

齐鲁工业大学 外文翻译 院系名称:材料科学与工程学生姓名:乔宁 专业班级:材化10-2 学号:201007021047 指导老师:夏国栋

燃烧法直接合成氧化铁纳米粉体:反应机理和性能 Kishori 德什潘德,亚历山大Mukasyan ,和Arvind 尔马 化学与生物分子工程系,分子工程材料中心、圣母大学、圣玛丽,印第安纳州46556,与化学工程学院、普渡大学、西拉斐特,印第安纳州47907 2100 接收于2004年3月23日 不同的氧化物溶液燃烧合成涉及自我持续的反应(如,金属硝酸盐) 的氧化剂和燃料(如甘氨酸、肼)之间。为三个主要的铁氧化阶段,即α -和γ-Fe2O3和Fe3O4,使用的燃烧方法和简单的前体,如铁硝酸盐和草酸盐,以及不同燃料的组合合成反应机制进行调查。第一次在文献中,基于所获得的基本知识、与井结晶结构和表面地区范围50?175 m2/g 的上述粉末生产同时避免额外的煅烧过程同时使用一种方法。它还显示利用复杂的燃料和氧化剂复杂是有吸引力的方法来控制产品组成和特性。 介绍 铁氧化物是许多科学和工业应用中最常用的金属氧化物。例如,R-Fe2O3(赤铁矿)被广泛用作颜料,以及用于醇的催化剂氧化来制备醛和酮,磁铁矿(Fe3O4)是在各种反应中的催化剂如合成氨,同时,γ-Fe2O3(磁赤铁矿)备受关注的多种用途,包括作为磁记录材料,在生物医学中的应用。基于上述需求,所需的相组成和高比表面积的粉末是必需的。目前,有氧化铁纳米粒子的合成的几种方法,包括热分解,热解,醇热,溶胶-凝胶法,水热过程(参见参考4-10)。然而,以前的方法没有报道过可以用于这些氧化物的直接合成法,在纯结晶状态,由一个单一的路线。 水(液)燃烧合成(CS)不同的氧化物,包括铁氧体,钙钛矿,和氧化锆(参见参考11-15)是个有吸引力的技术。它涉及到一个氧化剂(例如,金属硝酸盐)和燃料(例如,甘氨酸,肼)之间自我维持的反应。首先,反应物溶解于水,得到的溶液充分混合,达到反应介质的基本分子水平的均匀化。被加热到水的沸点和蒸发后,该溶液可以点燃或自燃的温度迅速升高(可达104°C/S)值为1500°C.同时为高,这自持反应初始混合物通常细结晶良好的粉体所需的组合物。铁氧化物此前一直燃烧法合成的使用相对罕见的和复杂的含有前体如铁 (n2h3coo)2(N2H4)和n2h5fe (n2h3-coo)3 H2O。上述金属肼羧酸盐热分解产生的主要γ-Fe2O3的平均粒径小于25纳米,具体的比表面积范围是40-75 m2/g 。 在目前的工作中,通过燃烧法合成三大氧化铁物相,比如R- 和γ-Fe2O3和 Fe3O4,是使用一个简单的结合体如硝酸铁和草酸以及不同的燃料的研究。基于所获得的知识和优化的合成参数(大气,燃料的氧化剂比,φ,稀释系统,等等),一个新的上述单相氧化物粉末一步范围在50-175平方米/ g的结晶结构和表面面积的合成开始发展。 如有疑问请联系:电话:(765)494—4075。传真:(765)494-0805。电子邮件:avarma@https://www.sodocs.net/doc/0813049203.html,。 1) Cornell, R. M.; Schwertmann, U. The Iron Oxides. Structure, Properties, Reactions and Uses; VCH: Weinheim, 1996. (2) Zboril, R.; Mashlan, M.; Petridis, D. Chem. Mater. 2002, 14, 969.

燃烧法合成高纯β-SiC超细粉的工艺参数

蒲永平等:施主掺杂BaTiO3陶瓷临界浓度的理论计算· 817 ·第35卷第7期 燃烧法合成高纯β–SiC超细粉的工艺参数 张利锋,燕青芝,沈卫平,葛昌纯 (北京科技大学特种陶瓷粉末冶金研究室,北京 100083) 摘要:以硅粉、碳黑、活性炭为原料,以聚四氟乙烯为添加剂,在氮气中分别用直接燃烧合成和预热燃烧合成工艺制备了高纯β–SiC微粉。用扫描电镜测得产物呈等轴球形,平均粒径为100nm。添加剂聚四氟乙烯的质量分数(下同)为5%以上时,均可以直接点燃合成高纯度亚微米级的β–SiC,2%的添加剂就可以使理论预热温度由1023K降到673K,降低了成本。另外,以活性炭代替碳黑为原料,对比了硅和碳的摩尔比为1:1和1:1.25的2个配方对产物物相的影响, 说明用足够纯净的活性炭为原料代替碳黑制备β–SiC是可行的。将预热法、氮气助燃法以及化学活化法成功的进行了结合,布料方式由以往的压块改为直接粉状布料,且在60L燃烧合成反应器中单炉装料1kg条件下,合成了高纯度的β–SiC粉体,适应了中试生产的需要。 关键词:燃烧合成;β–碳化硅;亚微米粉末;预热自蔓延反应;化学活化自蔓延反应 中图分类号:TQ174 文献标识码:A 文章编号:0454–5648(2007)07–0817–05 TECHNOLOGY PARAMETERS OF ULTRA-FINE β–SiC POWDER BY COMBUSTION SYNTHESIS ZHANG Lifeng,YAN Qingzhi,SHEN Weiping,GE Changchun (Laboratory of Special Ceramics and Powder Metallurgy, University of Science and Technology Beijing, Beijing 100083, China) Abstract: Ultra-fine β–SiC powder has been obtained by two methods, direct combustion synthesis and preheating combustion syn-thesis, in nitrogen atmosphere using Si, carbon, activated carbon as raw materials and teflon (–C2F4–)n as additive. The crystallites of combustion products measured by a scanning electron microscopy showed that they are global and the average diameters are about 100 nm. Pure and ultra-fine β–SiC powders can be obtained on direct combustion when the mass fraction(the same below) of additive is more than 5%. The theoretic preheating-temperature can decrease from 1023K to 673K by decreasing the amount of additive to 2% and thus saving the cost. The same time, using activated carbon as substitution of carbon, the effect on combustion products of two batches of mole ratio of Si to active C with 1:1 and 1:1.25 was compared, it illustrated that the substitution of purer active C for carbon as raw material in preparing the β–SiC is possible. Three methods of preheating combustion synthesis, combustion synthesis in nitrogen atmosphere and chemical stimulation combustion synthesis were successfully combined, and the material introduce from pressed block to powdery spread, the ultra-fine β–SiC powders were fabricated through combustion synthesis in 60L reactor with a single load of more than 1 kg materials. It makes the needs of pilot-plant. Key words: combustion synthesis; beta silicon carbide; ultra-fine powder; preheating combustion synthesis; chemical stimulation combustion synthesis SiC最常见的有2种晶型[1]:α–SiC和β–SiC。β–SiC为立方晶型,类似金刚石的结构。与六方晶型的α–SiC相比,β–SiC有更高的硬度(Mohs硬度达9.5以上),更好的韧性和优越的磨削性能。β–SiC 相对于α–SiC还具有更加优异的烧结性能,而且粉体越细,烧结活性越高。此外,β–SiC还具有良好的吸波性能,是良好的吸波材料。 目前超细β–SiC的生产主要采用Acheson法,存在的问题是反应时间长(一般达几十小时)、需要酸洗除杂等后续工艺[2–6]。探索高效节能的低成本制备工艺一直是近年来的研究热点。 燃烧合成是已经得到广泛研究和获得应用的一种材料合成和制备的新技术[7–9],它是利用外部提供的瞬间能量,诱发高放热化学反应体系产生局部化 收稿日期:2007–01–11。修改稿收到日期:2007–03–08。第一作者:张利锋(1982~),男,硕士。Received date:2007–01–11. Approved date: 2007–03–08. First author: ZHANG Lifeng (1982—), male, master. E-mail: zlf8207@https://www.sodocs.net/doc/0813049203.html, 第35卷第7期2007年7月 硅酸盐学报 JOURNAL OF THE CHINESE CERAMIC SOCIETY Vol. 35,No. 7 J u l y,2007

全球乙二醇生产工艺路线及成本对比

全球乙二醇生产工艺路线及成本对比 一目前全球乙二醇生产工艺路线及成本对比 目前世界上大规模生产乙二醇的方法有3种: 1)采用天然气为原料制乙二醇(主要集中在中东地区),2009年产能620万吨,占全球总产能的32%,预计2011年产能将达到1000万吨; 2)以石油为原料制乙二醇,2009年全球产能1300万吨,占世界的68%; 3)采用褐煤做原料生产乙二醇(丹化科技),年产能20万吨。 目前中东地区天然气3乙二醇每吨生产成本约250美元。据丹化科技披露,即便能以非常优惠的价格(130元/吨)获得褐煤资源,煤制乙二醇生产成本依然高达2600元/吨(约合380美元/吨)。因此相比天然气制乙二醇,即使加上运费(从中东到中国最新报价20美元/吨),煤制乙二醇也不具备竞争力。 与石油制乙二醇相比,煤制乙二醇是否具备成本优势,取决于国际油价和能否获得廉价煤炭资源。根据丹化科技煤制乙二醇实验数据推算,若煤价为750元/吨,当石油价跌到67美元/桶以下时,煤制乙二醇将不具备成本优势。 以天然气为原料制乙二醇(环氧乙烷水合法):具体工艺路线是:首先以天然气生产乙烯,然后乙烯生产乙二醇。采用该工艺路线,乙二醇的生产成本主要由两部分构成:1)原料成本约为6300元(其中乙烯市场价格按照10 000元/吨计算,成本6 000元);2)其他成本约700元(其中固定成本约330元,动力成本约380元)。 以石油为原料制作乙二醇(环氧乙烷水合法):具体工艺路线是:首先石脑油生产乙烯,然后使用乙烯生产乙二醇,本工艺路线和天然气为原料的工艺路线的区别在于获得乙烯的方式,前者通过石脑油制作乙烯,后者通过天然气制

合成气制乙二醇工艺 化学

一、EG目前市场及存在的问题 我国聚酯产业的快速发展对EG 产品的需求十分旺盛,加之产品市场缺口量大,从而为EG 产能增长尤其是煤制EG 新增产能释放提供了可观的市场空间,总体市场前景是令人乐观的,但是还存在以下几个不容忽视的问题: 第一,我国EG 装置产能低,产品主要依赖进口,同时石油路线EG 成本高、缺乏市场竞争力。 第二,我国煤制EG 虽然发展较快,但仍处于起步阶段,其核心技术( 主要是草酸酯加氢催化剂) 仍有待长周期工业运行的验证,另外煤制EG还存在煤耗高、水耗高、碳排放量大等缺陷,大规模发展煤制EG 受到资源条件、环境容量等方面因素制约。 第三,国外主要采用乙烷裂解制乙烯,生产成本低,其EG 产品价廉质优,而且主要出口到中国市场,因此无论是国产石油路线EG 还是煤制EG,都仍将受到进口EG 产品的强烈冲击。我国乙二醇供需状况: 二、选择该工艺的理由 与环氧乙烷水化法比较,该新型路线从合成气出发,首先由CO气相催化偶联合成草酸酯,草酸酯再催化加氢制备乙二醇,符合我国煤多油少的国情,通过煤基合成气制乙二醇,对国家经济发展具有战略意义,而且相对于石油化工路线来说,经济效益也较好。该方法工艺流程简单、能耗小、乙二醇的选择性相对较高,成为最有工业应用前景的反应。 煤制乙二醇经济性分析: 名称规格单耗单价成本 原辅材料

一氧化碳≥98.2%800m30.5 400 氢气≥99.5%1600m30.8 1280 氧气≥99%260m30.1 26 亚硝酸甲酯 4.4kg 522 甲醇≥99%130kg 2260 公用工程 新鲜水5t 523 循环水440t 0.5 220 电1100kwh 0.6 660 蒸汽 1.7 MPa 3.2t 120 384 蒸汽 1.0 MPa 3.6t 110 396 蒸汽0.5MPa 1.64t 100 164 压缩空气50m3150 合计3887 三、合成的工艺路线及简要工艺流程 草酸酯加氢制乙二醇工艺 此路线为两个反应过程组成: 首先,CO 与亚硝酸酯发生偶联反应,生成草酸酯和一氧化氮,一氧化氮在醇和氧气条件下发生再生反应,生成亚硝酸酯;其次,生成的草酸酯在催化剂的存在下与氢气发生加氢还原。反应原理及方程式如下: CO 偶联:2CO+ 2RONO →( COOR) 2+2NO NO 再生:2NO +2ROH +1/2O2 →2RONO+ H 2O 反应过程中并不消耗NO 与RONO,由CO 制草酸酯的总反应如下: 2CO +2ROH+1/2 O2→ ( COOR) 2+H 2O 草酸酯加氢机理: 首先草酸酯酯跟氢气发生反应生成中间产物烷基醇酸酯,然后中间产物再加氢生成乙二醇。由于醇羟基活泼性较高,在氢气存在下乙二醇可以进一步加氢生成副产物乙醇。方程式如下: 主反应: ( COOR) 2+2H2 →CH2OHCOOR+ROH CH2OHCOOR+2H2→(CH2OH)2+ROH 总反应:(COOR)2 + 4H2→(CH2OH)2 + 2ROH 烷基R 可为甲基、乙基、丙基、丁基等,RONO可由甲醇、乙醇、丙醇、丁醇等为原料制得。 副反应:(CH2OH)2+H2→CH3CH2OH+H2O 工艺流程图:

合成气制乙二醇

工艺选择 目前,乙二醇制备技术路线有3种:石油路线、煤路线和生物路线。 1.石油路线生产乙二醇 石油路线法均以石油化工产品乙烯或其所制产品环氧乙烷为原料,再经不同反应过程制得乙二醇,国内工业生产实际应用的石油路线法为环氧乙烷直接水合法。 环氧乙烷直接水合法采用原料环氧乙烷与水在190~200 ℃、MPa 操作条件下,反应 h,生成乙二醇含量约 10%的乙二醇、二乙二醇、三乙二醇混合水溶液,再经分离制得乙二醇。 优点:技术成熟,应用面广,收率为90%。 缺点:依赖石油资源,水耗大,成本高,并且国内缺少自主产权技术,即工艺技术对外依赖程度高。 2.煤路线生产乙二醇 该工艺是以煤为原料,制得合成气后,通过直接合成法或间接合成法最终制成乙二醇。目前国内合成气路线法乙二醇生产装置均采用间接法。 实际工程应用的间接法为草酸酯法。即先制得合成气,然后再经催化反应生成草酸二甲酯(DMO),然后以 Cu/SiO2为催化剂,150 ℃条件下进行 DMO 的低压加氢制取乙二醇。该方法转化率达 %,乙二醇选择性 %。 优点:成本低,能耗低,水耗低,适合我国缺油、少气、煤炭资

源相对丰富的资源国情。 : 缺点:技术不成熟,目前催化剂寿命较短,聚合级产品质量不稳定,工程放大存在风险。 3.生物路线生产乙二醇 自然界中的碳水化合物,无论是淀粉基的多糖类作物(如玉米、小麦等),还是单糖或多糖类农作物(如甜高粱、菊芋等)均可以作为生物路线生产乙二醇的原料。中科院大连化学物理研究所研究人员首次尝试采用廉价的碳化钨催化剂应用于纤维素的催化转化,利用碳化钨 催化剂在涉氢反应中具有的类贵金属性质,可以替代价格昂贵的贵金属催化剂,将纤维素全部转化为多元醇,而且对乙二醇的生成表现出独特的选择性,尤其是在少量镍的促进作用下,乙二醇的收率可高达61%, 是一种极具工业应用前景的绿色工艺路线。 优点:不需要消耗大量的氧气,没有废气、废水排放,属于环境友好技术。 缺点:收率低,技术难度大,目前达不到工业化生产要求。 目前,国内外大型乙二醇的生产均为石油法,其主要原料为乙烯和氧气,用银催化剂,甲烷或氮气做致稳剂,乙烯直接氧化成环氧乙烷,然后再生成乙二醇。全球环氧乙烷生产技术大部分使用的是英荷Shell 化学公司、美国科学设计公司 ( SD)和美国 UCC 3 家公司的技术。

乙二醇工艺流程总结

煤化工知识点之:乙二醇工艺方案的选择 1石油路线工艺 1.1环氧乙烷直接水合法 1859年Wurtz首次将乙二醇二乙酸酯与氢氧化钾作用制得乙二醇。1860年,又由环氧乙烷直接水合制得,其后经过不断技术改进,环氧乙烷直接水合法不断衍生出氯乙醇法、直接氧化法(空气氧化法、氧气氧化法)等工艺,最新技术为氧气氧化法,其工艺原理为环氧乙烷氧化反应原料乙烯和纯氧与循环气混合后,进入固定床环氧乙烷反应器,在入口温度约200℃,压力约2.OMPa的条件下,在高选择性银催化剂的作用下发生乙烯氧化反应,主反应生成环氧乙烷,氧化反应包括选择氧化和深度氧化,其反应过程: 主反应(选择氧化): C2H4+1/202→ C2H40+105.5kJ/mol 并列副反应(深度氧化): C2H4+302→2C02+2H20+1422.6kJ/mol 并列副反应(深度氧化): C2H4O+5/2O2→2CO2+2H2O+1316.4kJ/mol 目前此工艺技术全部掌握在外资手中,Shell、DOW(陶式化学公司)和SD二家技术的生产能力合计占总生产能力的91%,其中Shell占38%,SD占31%,DOW占22%,余下的9%主要为德国的BASF、日本的触媒公司、意大利的SNAM等公司占有。 由于反应中环氧乙烷与水以l:20-22(摩尔比)混合,需要大量的水,并且水大量过剩,产物中乙二醇的浓度较低,因此为了提纯出产品需蒸发除去大量的水分,生产工艺流程长、设备多、能耗高、成本较高。 1.2环氧乙烷催化水合法 针对环氧乙烷直接水合法生产乙二醇工艺中存在的不足,为了提高选择性,降低用水量,降低反应温度和能耗,世界上许多公司进行了环氧乙烷催化水合生产乙二醇技术的研究和开发工作。其技 页脚内容1

实验一 燃烧法合成红色发光材料Li2CaSiO4Eu3+ 完成

本科生实验报告 实验课程材料设计与制备综合实验 学院名称材料与化学化工学院 专业名称材料科学与工程 学生姓名冯有增 学生学号201202040223 指导教师邱克辉 实验地点C201 实验成绩 二〇一五年五月——二〇一五年六月

填写说明 1、适用于本科生所有的实验报告(印制实验报告册除外); 2、专业填写为专业全称,有专业方向的用小括号标明; 3、格式要求: ①用A4纸双面打印(封面双面打印)或在A4大小纸上用蓝黑色水笔书写。 ②打印排版:正文用宋体小四号,1.5倍行距,页边距采取默认形式(上下2.54cm,左右 2.54cm,页眉1.5cm,页脚1.75cm)。字符间距为默认值(缩放100%,间距:标准); 页码用小五号字底端居中。 ③具体要求: 题目(二号黑体居中); 摘要(“摘要”二字用小二号黑体居中,隔行书写摘要的文字部分,小4号宋体); 关键词(隔行顶格书写“关键词”三字,提炼3-5个关键词,用分号隔开,小4号黑体); 正文部分采用三级标题; 第1章××(小二号黑体居中,段前0.5行) 1.1 ×××××小三号黑体×××××(段前、段后0.5行) 1.1.1小四号黑体(段前、段后0.5行) 参考文献(黑体小二号居中,段前0.5行),参考文献用五号宋体,参照《参考文献著录规则(GB/T 7714-2005)》。

实验一燃烧法合成红色发光材料Li2CaSiO4:Eu3+ 一、实验名称:燃烧法合成红色发光材料Li2CaSiO4:Eu3+ 二、实验目的: 1、掌握燃烧法的实验原理和材料的基本测试方法; 2、掌握燃烧法合成Li2CaSiO4:Eu3+粉体的制备过程; 3、研究Eu3+浓度变化对荧光粉发光性能的影响; 三、实验原理 燃烧法是指通过前驱物的燃烧合成材料的一种方法。当反应物达到放热反应的点火温度时,以某种方法点燃,随后的反应即由放出的热量维持,燃烧产物就是拟制备的目标产物。其基本原理是将反应原料制成相应的硝酸盐,加入作为燃料的尿素(还原剂),在一定的温度下加热一定时间,经剧烈的氧化还原反应,溢出大量的气体,进而燃烧得到产物。 nSi(O2C2H5)4+nH2O== nSi(OH) 4+4nC2H5OH 6LiNO3+3Ca(NO3)2+ 3Si(OH) 4+ 12CO(NH2)2 ==3Li2CaSiO4+12CO2+4NH3+24H2O+16N2用燃烧法合成发光材料具有相当的适用性,燃烧过程产生的气体还可充当还原保护气氛,并具备不需要复杂的外部加热设备,工艺过程简便,反应迅速,产品纯度高,发光亮度不易受损,节省能源等优点,是一种很有意义的高效节能合成方法。 四、实验药品及仪器 药品:三氧化二铕(Eu2O3),硝酸钙(Ca(NO3)2·4H2O),尿素,正硅酸乙酯(Si(OC2H5)4),硝酸锂(LiNO3),浓HNO3,去离子水。 仪器:电子天平,量筒,烧杯,移液管,磁力搅拌器,恒温干燥箱,刚玉坩埚,马弗炉,X射线粉晶衍射仪(XRD),荧光光谱仪(FL)。 五、注意事项 1、准确称量样品; 2、严格按照实验流程操作; 3、注意安全;

煤制乙二醇工艺流程详细工艺

[煤制甲醇]环氧乙烷水合制乙二醇 可用酸作催化剂,但用得较多的是加压水合 反应中生成约10%的二乙二醇醚(二甘醇)和三乙二醇醚(三甘醇),它们是有用的化工产品,故反应所得的有用产品总产率按环氧乙烷计接近100%,生成的二乙二醇醚用作纤维素、树胶、涂料、喷漆的溶剂或稀释剂。三乙二醇醚主要用来生产刹车液。它们的售价比乙二醇还高 , 因此可改善生产装置的经济效益。 环氧乙烷法因环氧乙烷售价高,生产总成本也比较高。 (2)乙烯乙酰氧基化法 乙烯乙酰氧基化法又称奥克西兰(Oxirane)法,它可由乙烯为原料生产乙二醇。工艺分二步进行,第一步乙烯与醋酸反应生成乙二醇-醋酸酯和乙二醇二醋酸酯: JCH J—CH S C-HJH * 6 —* CH C~ —CH3OI I + CH*—I—OCHi—屛般' 反应条件:反应温度160 C,反应压力2.8MPa,催化剂TeO 2 /HBr[w(HBr)=48% 的水溶液],还可用醋酸锰加碘化钾作催化剂,乙烯转化率60%,选择性95%?97%,产品分布:乙二醇二醋酸酯70%,乙二醇一醋酸酯25%,乙二醇5%。 第二步是醋酸酯水解生成乙二醇和醋酸: O O O “丨! I 匚冃$—匚OCHj—THiOK* CHj C—OCHg -diO-C CH, * ―r o CT^OHt 3CH,—C- 5们「蚀 反应条件为:反应温度107?130 C ,压力0.117MPa,选择性95%。 该法的总反应式为:

2CH2 = CH2 + 2H2O + O2^2HOCH2 - CH2OH 以乙烯计的摩尔产率为94%,高于以环氧乙烷法生产乙二醇的产率。 该法虽然以廉价的乙烯作原料,但投资和能耗比环氧乙烷法高,经济上是否比环氧乙烷法好 尚有争论,再加上醋酸对设备的腐蚀是一个头痛问题,催化剂的再生和回收问题也没有很好 解决,致使已开工生产的0.36Mt/a生产装置被迫停产关闭。 该法又称帝人(Teijin)法。由日本帝人公司开发成功,是对老式的氯乙醇法生产环氧乙烷的改 进。采用TiCl 3 -CuCI 2 -HCI水溶液为催化剂。化学反应如下: CH2 = CH2+T iCI3+H2O^ CICH 2-CH2OH+ TiCl + H Cl CICH 2—CH2OH + H2OTHOCH2—CH2OH+ HCI 催化剂再生: TiCI+2CuCI 2CuCI 2 +H 2O 2CuCI+2HCI+ 1/2 O 2CuCI 2+H2O 反应条件为:反应温度160 C ,压力7.3MPa,pH<4,乙二醇选择性为89%,乙醛6%,其他(二氧杂环己烷和二乙二醇)5%,如果CI-:Ti3+的比例小于 4 :1时,乙醛产率将显著增大,在反应温度大于120 C时,氯乙醇可在同一装置内水解。 乙烯的氧氯化亦可在另一个催化剂体系中进行: + 2Cu z+(^2Fe u)4 2H;O —- CH?OH+ 2Cu+ {S 2H* 催化剂再生: 2Cu + (或2Fe 2 + ) +2H + + 1 / 2 O2^ 2Cu 2 + (或2Fe 3 + ) + H2O 反应条件:反应温度150?180 C ,压力1.0?6.0MPa,乙二醇选择性86%,该法的优点是乙烯消耗定额很低,仅0.47 kg/kg乙二醇,但有强腐蚀性,产物与催化剂溶液的分离比较困难。 ⑷由合成气制乙二醇 合成气是一氧化碳和氢气混合物的总称。现在工业上用煤、天然气和劣质重油为原料可廉价、 大量的生产出来,目前主要用来生产甲醇、合成氨、羰基化产品等。由合成气制乙二醇已引起世界各国高度重视,期望用合成气代替乙烯能取得更大的经济效益。 以合成气为原料合成甲醇,继而制得甲醛已是成熟的工业技术,世界各工业发达国家从甲醛 出发合成乙二醇的研究正在积极开展。开发成功的有谢夫隆(Chevron)法和美国的甲醛在丝光沸石上的低温低压合成法。7 ①谢夫隆公司法 首先由甲醛与合成气反应生成羟基乙酸: 该法的优点是操作压力不高,采用价廉的非贵金属催化剂,缺点是工艺流程长,投资和操作费用均较大。 ②甲醛低温低压合成法

溶液燃烧法制备无机材料

引言 (2) 1.溶液燃烧合成基本原理 (3) 1.1 发生燃烧合成的基本要素是 (3) 1.2 与传统工艺先比,燃烧合成技术的优点 (3) 2溶液燃烧制备过程的影响因素 (4) 2.1燃料的种类和用量 (4) 2.2 助剂 (5) 2.3pH (6) 结语 (7) 参考文献 (7)

溶液燃烧法制备无机材料 摘要:溶液燃烧法是一种新型无机材料制备工艺,介绍了该法制备机材料的特点和过程,阐述了燃料种类和用量、助剂、pH以及微波加热等因素对溶液燃烧过程及材料性质的影响,综述了制备荧光材料催化材料、电池材料、磁性材料和染料等方面的研究进展。 关键词:溶液燃烧法;无机材料;燃料 Abstract:Solution combustion(SC) is a new process to prepare various inorganic materials.In this paper,the characteristics and process of SC are introduced,and the effects of preparation conditions,such as fuel ,ratio of fuel to oxidant,promoter,pH,microwave,etc.,on SC process and nature of inorganic materials are discussed.The SC application in preparation of phosphors,catalysts,battery and electrode magnetic material and pigments are introduced as well. Key words:solution combustion synthesis;inorganic material;fuel 引言 1967年,原苏联科学院化学物理研究所发现钛-硼混合物的自蔓延燃烧合成现象,称之为“固体火焰”。60年代末,又发现了许多金属与非金属难熔化合物的燃烧合成现象,并首先将这种靠反应自身放热来合成材料的合成技术称为自蔓延高温合成法。(Slef-propagating High-temperature Synthesis,简称SHS)。 SHS技术是利用外部提供的能量诱发,使高温放热反应体系的局部发生化学反应,形成反应前沿燃烧波,此后化学反应在自身放出热量的支持下,继续向前行进,使邻近的物料发生化学反应,结果形成一个以一定速度蔓延的燃烧波,随着燃烧波的推进,原始混合物料转化为产物,待燃烧波蔓延至整个试样时,则合成了所需的材料。SHS技术在合成过程中燃烧温度高,反应中温度梯度极大和燃烧波速度快。工艺设备简单、能耗少,可获得高纯的合成产物。但是SHS缺点是工艺可控性较差。此外,由于燃烧温度一般高于2000℃,合成的粉末粒度较粗,一般不适用于复合氧化物的合成。几年来,SHS与湿化学方法相结合,发展出主要用于合成金属氧化物的新工艺—低温燃烧合成工艺(loc-temperature combustion synthesis,LCS)。 由于自燃烧在很短时间内借助外界初始能量进行具有自蔓延性质的燃烧,大量的有机组成在短时间内迅速发生氧化=还原反应燃烧并以气体形式放出。这些热量一方面促进各反应物之间的质量传输和扩散,有利于反应的进行,同时促进反应过程中生成的碳化物的分解;另一方面迅速传递给与反应物临近的未反应物,使其温度升高从而使得反应得以自维持,因此留下的固态产物必然具有大量孔洞。LCS产物特有的多孔微结构的形貌特征,可形成比表面积高的超细氧化物粉。它既保持了湿化学法中成分原子水平均匀混合的优势,又利用了反应体系自身的氧化还原反应燃烧着一SHS的特性,在数分钟内结束反应,直接得到所需的金属氧化物粉体。

相关主题