搜档网
当前位置:搜档网 › 高等代数在初等数学中的一些应用

高等代数在初等数学中的一些应用

高等代数在初等数学中的一些应用
高等代数在初等数学中的一些应用

高等代数与中学数学的联系

目录 摘要................................................................................ I Abstract........................................................................... I 1 引言 (1) 2 知识方面的联系 (1) 2.1多项式理论的应用 (1) 2.2行列式的应用 (2) 2.3柯西不等式的应用 (3) 2.4二次型的应用 (4) 3 思想方面的联系 (4) 3.1符号化思想 (4) 3.2分类思想 (5) 3.3化归与转化思想 (5) 3.4结构思想 (6) 3.5公理化方法 (6) 3.6坐标方法 (6) 3.7构造性方法 (7) 4 观念方面的联系 (7) 结束语 (8) 参考文献 (8)

致谢 (10)

摘要:运用高等代数的理论、方法、思想与观点剖析和阐述中学数学相关内容的若干问题,通过若干典型试题的解析,从知识方面、思想方面以及观念方面研究了高等代数与中学数学的联系,探索高等数学观点对中学数学一些教学内容的理论依据,深化与发展高等代数在中学数学的相关内容,促进高等代数在中学数学领域的应用,探求二者的内在的联系,以便高等代数能与中学数学完美的结合. 关键词:高等代数;中学数学;数学思想方法;应用 Abstract: The problems related to elementary mathematics are analyzed and explained by using the theory,method,thoughts and views of higher algebra.Through analyzing some typical test questions,the relation between higher algebras and elementary mathematics are investigated from the aspects of knowledge、thought and idea. Exploring the higher mathematics view to middle school mathematics some teaching content theory and model,deepening and development in higher algebra in middle school mathematics related content,and promote higher algebra in the middle school mathematics field of application,and to explore the inner link,so that higher algebra can be combined with the middle school closely.Keywords: higher Algebra;middle school mathematics;mathematical thinking;application

高等代数论文选题

高等代数论文选题 1.关于矩阵的乘积的秩的研究; 2.矩阵相似的若干判定方法; 3.线性变换的命题与矩阵命题的相互转换问题; 4.矩阵的特征值与特征向量的应用; 5.化二次型为标准型的方法; 6.“高等代数”知识在几何中的应用; 7. 矩阵初等变换的应用; 8.“高等代数”中的思想方法; 9.“高等代数”中多项式的值、根的概念及性质的推广; 10.线性变换“可对角化”的条件及“可对角化”方法; 11.行列式的若干应用; 12.行列式的计算技巧; 13.欧式空间与柯西不等式; 14.《高等代数》对中学数学的指导作用; 15.关于多项式的整除问题; 16.虚根成对定理的又一证法及其应用; 17.范德蒙行列式的若干应用; 18.矩阵相似及其应用; 19.矩阵的迹及其应用;

20.关于对称矩阵的若干问题; 21.关于反对称矩阵的性质; 22.关于n阶矩阵的次对角线的若干问题; 23.有理数域上多项式不可约的判定; 24.n阶矩阵可对角化的条件; 25.有理数域上多项式的因式分解; 26.矩阵在解线性方程组中的应用; 27.关于整系数有理根的几个定理及求解方法; 28.代数基本定理的几种证明方法简介; 29.关于线性变换的确定(求法); 30.线性变换思想在中学数学中的应用; 31.关于矩阵正定的若干判别方法; 32.矩阵可逆的若干判别方法; 33.线性空间与欧式空间; 34.向量组线性相关与线性无关的判定方法; 35.常见线性空间与欧式空间的基与标准正交基的求法; 36.线性变换的内积刻划; 37.线性方程组的推广——从向量到矩阵; 38.幂零矩阵的性质; 39.矩阵可交换的条件; 40.关于幂等矩阵及其性质; 41.矩阵的标准形及其应用;

高等数学中常用的初等数学知识(第一章)

第一章 函数、极限与连续 第一节 函数及其特性 (一)集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。 我们通常用大字拉丁字母A 、B 、C 、……表示集合,用小写拉丁字母a 、b 、c ……表示集合中的元素。 如果a 是集合A 中的元素,就说a 属于A ,记作:a ∈A ,否则就说a 不属于A ,记作:a ?A 。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作 N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z 。 ⑷、全体有理数组成的集合叫做有理数集。记作Q 。 ⑸、全体实数组成的集合叫做实数集。记作R 。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合中元素的个数 有限集:我们把含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集。 (二)常量与变量 ⑴、变量的定义:我们在观察某一现象的过程时,常常会遇到各种不同的量,其中有的量在过程中不起变化,我们把其称之为常量;有的量在过程中是变化的,也就是可以取不同的数值,我们则把其称之为变量。 ⑵、变量的表示:如果变量的变化是连续的,则常用区间来表示其变化范围。在数轴上来说,区间是指介于某两点之间的线段上点的全体。 区间的名称 区间的满足的不等式 区间的记号 区间在数轴上的表示。 闭区间 a ≤x ≤b [a ,b] 开区间 a <x <b (a ,b ) 半开区间 a <x ≤b 或a ≤x <b (a ,b]或[a ,b ) 以上我们所述的都是有限区间,除此之外,还有无限区间: [a ,+∞):表示不小于a 的实数的全体,也可记为:a ≤x <+∞; (-∞,b):表示小于b 的实数的全体,也可记为:-∞<x <b ; (-∞,+∞):表示全体实数,也可记为:-∞<x <+∞ 注:其中-∞和+∞,分别读作"负无穷大"和"正无穷大",它们不是数,仅仅是记号。 ⑶、邻域:00000{}(, (,) )-----x x x x x U x x δδδδδ=-<-+=一维 以为中心,以为半径的邻域 0000000{}(, )(, )------x 0(,)x x x x x x x U x δδδδδ=-<=-?+<以为中心,以为半径的空心邻域 00(),()U x U x -----0x 的某个邻域、某个空心邻域

在_Word_表格中怎样使用公式

在Word 表格中使用公式 您可以使用公式在表格中执行计算和逻辑比较。“公式”命令位于“表格工具”的“布局”选项卡上的“数据”组中。 当您打开包含公式的文档时,Word 中的公式会自动更新。您也可以手动更新公式结果。有关详细信息,请参阅更新公式结果部分。 Word 表格中的公式是一种域代码。有关域代码的详细信息,请参阅“另请参阅”部分。 本文内容 ?在表格单元格中插入公式 ?更新公式结果 更新特定公式的结果 更新表格中的所有公式结果 更新文档中的所有公式 ?锁定或取消锁定公式 ?示例:使用位置参数对表格中的数字进行求和 ?可用函数 ?在公式中使用书签名或单元格引用 RnCn 引用 A1 引用 在表格单元格中插入公式 1. 选择需要在其中放置结果的表格单元格。如果该单元格不为空,请删除其内容。 2. 在“表格工具”的“布局”选项卡上的“数据”组中,单击“公式”。 3. 使用“公式”对话框创建公式。您可在“公式”框中键入公式,从“编号格式”列表中选择编 号格式,并使用“粘贴函数”和“粘贴书签”列表粘贴函数和书签。

更新公式结果 在Word 中,插入公式后,当包含公式的文档打开时,会计算公式的结果。 您也可以手动更新: ?一个或多个特定公式的结果 ?特定表格中的所有公式的结果 ?文档中的所有域代码(包括公式) 更新特定公式的结果 1. 选择要更新的公式。您可在选择公式时按住Ctrl 键,从而选择多个公式。 2. 执行下列操作之一: ?右键单击公式,然后单击“更新域”。 ?按F9。 更新表格中的所有公式结果 ?选择包含要更新的公式结果的表格,然后按F9。 更新文档中的所有公式 此过程可更新文档中的所有域代码,而不仅仅是更新公式。 1. 按Ctrl+A。 2. 按F9。 锁定或取消锁定公式 您可以锁定公式以防止其结果更新,也可以取消锁定已经锁定的公式。 ?请执行下列操作之一: 锁定公式选择公式,然后按Ctrl+F11。 取消锁定已经锁定的公式选择公式,然后按Ctrl+Shift+F11。

高等数学与初等数学相关内容的比对

高等数学与初等数学相关内容的比对 高等数学与初等数学相关内容的比对作文/zuowen/经过调研了解到,2003年3月教育部颁发的《普通高级中学数学课程标准》出台之后,新出版的高中教材与以前的教材相比,一个重要的特点是新教材进一步加强了高中数学与大学数学的联系,高中教材中安排了大学数学课程里的一些基本概念、基础知识和思维方法。试图从教学内容方面解决高中数学与大学数学的衔接问题。但是,大学数学与高中数学教材内容的衔接上还存在不少问题。这些问题影响了大学数学课程的教学质量,对大学新生尽快适应大学数学学习形成了障碍。高等数学与初等数学教材内容的有效衔接亟待解决。 1 “函数与极限”的衔接 函数,是高中数学的重点内容,高考要求较高,学生掌握也比较牢固。高等数学教材中的这部分内容基本相同,但内涵更丰富,难度也提高了。 (1)函数概念:在原有内容中,增加了几个在高等数学中经常用到的实例,如取整函数、狄利克雷函数、黎曼函数、符号函数等。因此,在学习中,函数概念部分可以简略,重点学习这几个特殊函数即可。 (2)初等函数:反三角函数要求提高,新增加了“双曲函数”和“反双曲函数”等内容。反三角函数的概念在高中已学过,但高中对此内容要求较低,只要求学生会用反三角函数表示“非特殊角”即可。而高等函数中要求较高,此处在

学习中应补充有关内容:在复习概念的基础上,要求学生熟悉其图像和性质,以达到灵活应用的目的。新增加的“双曲函数”和“反双曲函数”在高等数学中经常用到,故应特别注意。代写论文 (3)函数极限:“数列极限的定义”,高中教材用的是描述性定义,而高等数学重用的是“”定义,此处是学生在高等数本文由收集整理学的学习中遇到的第一个比较难理解的概念,因此在教学中应注意加强引导,避免影响函数极限后面内容的学习。新增内容“收敛数列的性质”虽是新增内容,但比较容易理解和掌握,教学正常安排即可。“极限四则运算”处增加了“两个重要极限”,要加强有关内容的学习。 2 “导数与微分” 的衔接 高中新教材中的一元函数微积分的部分内容,是根据高等数学内容学习需要所添加,目的是加强高中数学与高等数学的联系,让中学生初步了解微积分的思想。 (1)导数的定义:高中数学和高等数学教材中,这一内容是相同的,不同的是学习要求。高中数学要求:了解导数概念的某些实际背景(例如瞬时速度,加速度,光滑曲线的切线的斜率等);掌握函数在一点处的导数的概念和导数的几何意义;理解导函数的概念。也就是说,尽管极限与导数在高中已经学过,但主要是介绍概念和求法,对概念的深入理解不作要求。到了大学,概念上似懂非懂、不会灵活

(完整word版)excel表格公式大全

1 、查找重复内容公式:=IF(C0UNTIF(A:A,A2)>1,"重复","") 2 、用出生年月来计算年龄公式:=TRUNC((DAYS360(H6,"2009/8/30",FALSE))/360,0) 3 、从输入的18 位身份证号的出生年月计算公式:=CONCATENATE(MID(E2,7,4),"/",MID(E2,11,2),"/",MID(E2,13,2)) 4 、从输入的身份证号码内让系统自动提取性别,可以输入以下公式: =IF(LEN(C2)=15,IF(MOD(MID(C2,15,1),2)=1," 男","女"),IF(MOD(MID(C2,17,1),2)=1,"男","女))公式内的“C 代表的是输入身份证号码的单元格。 1、求和:=SUM(K2:K56) ――对K2到K56这一区域进行求和; 2、平均数:=AVERAGE(K2:K56) ――对K2 K56这一区域求平均数; 3、排名:=RANK(K2,K$2:K$56) ――对55名学生的成绩进行排名; 4、等级:=IF(K2>=85,"优',IF(K2>=74,"良",IF(K2>=60,"及格","不及格"))) 5、学期总评:=K2*0.3+M2*0.3+N2*0.4 ――设K列、M列和N列分别存放着学生的平时总评”、期中”期末"三项成绩 6、最高分:=MAX(K2:K56) ——求K2至U K56区域(55名学生)的最高分; 7、最低分:=MIN(K2:K56) ——求K2到K56区域(55名学生)的最低分; 8、分数段人数统计: (1) =COUNTIF(K2:K56,"100") ――求K2到K56区域100分的人数;假设把结果存放于K57单元格; (2) =COUNTIF(K2:K56,">=95") —K57 ――求K2至U K56区域95? 99.5分的人数;假设把结果存放于K58单元格; (3) =COUNTIF(K2:K56,">=90") —SUM(K57:K58)――求K2 到K56 区域90? 94.5 分的人数;假设把结果存放于K59 单元格; (4) =COUNTIF(K2:K56,">=85") —SUM(K57:K59)――求K2 到K56 区域85-89.5 分的人数;假设把结果存放于K60 单元格; (5) =COUNTIF(K2:K56,">=70") —SUM(K57:K60)――求K2 到K56 区域70-84.5 分的人数;假设把结果存放于K61 单元格; (6) =COUNTIF(K2:K56,">=60") —SUM(K57:K61)――求K2 到K56 区域60-69.5 分的人数;假设把结果存放于K62 单元格; (7) =COUNTIF(K2:K56,"<60") ------ 求K2到K56区域60分以下的人数;假设把结果存放于K63单元格;

高等代数

高等代数方法论文 信科0901 09271013 孟庆阳

等价无穷小性质的理解、延拓及应用 【摘要】等价无穷小具有很好的性质,灵活运用这些性质,无论是在在求极限的运算中,还是在正项级数的敛散性判断中,都可取到预想不到的效果,能达到罗比塔法则所不能取代的作用。通过举例,对比了不同情况下等价无穷小的应用以及在应用过程中应注意的一些性质条件,不仅使这些原本复杂的问题简单化,而且可避免出现错误地应用等价无穷小。 【关键词】等价无穷小极限罗比塔法则正项级数比较审敛法 Comprension,Expand and Application of Equivalent Infinitesimal's Character Abstract Equivalent Infinitesimal have good characters,both in opreation of test for Limit and determine whether the positive series converges or diverges,if these quality that apply flexibly can obtain more effect,the effection can not be replace by L'Hospital Rule.this paper give examples and compare some instance to pay attention to condition in application of Equivalent Limit,so the question can be simply and avoid error in application. Key words equivalent Infinitesimal; limit; L'Hospital rule positive series; comparison test 等价无穷小概念是高等数学中最基本的概念之一,但在高等数学中等价无穷小的性质仅仅在“无穷小的比较”中出现过,其他地方似乎都未涉及到。其实,在判断广义积分、级数的敛散性,特别是在求极限的运算过程中,无穷小具有很好的性质,掌握并充分利用好它的性质,往往会使一些复杂的问题简单化,可起到事半功倍的效果,反之,则会错误百出,有时还很难判断错在什么地方。因此,有必要对等价无穷小的性质进行深刻地认识和理解,以便 恰当运用,达到简化运算的目的。 1 等价无穷小的概念及其重要性质〔1〕 无穷小的定义是以极限的形式来定义的,当x→x0时(或x→∞)时,limf(x)=0,则称函数 f(x)当x→x0时(或x→∞)时为无穷小。 当limβα=1,就说β与α是等价无穷小。 常见性质有: 设α,α′,β,β′,γ 等均为同一自变量变化过程中的无穷小,①若α~α′,β~β′,且limα′β′存在,则limαβ=limα′β′②若α~β,β~γ,则α~γ 性质①表明等价无穷小量的商的极限求法。性质②表明等价无穷小的传递性若能运用极 限的运算法则,可继续拓展出下列结论:

高等数学与初等数学的联系及一些应用

高等数学与初等数学的联系及一些应用 摘要:众所周知,初等数学是高等数学的基础,高等数学是初等数学的延伸和 发展。由于现阶段数学数字化时代的发展,中学教师要是掌握一定的高等数学的知识与方法,并在教学中与初等数学的知识有机结合起来,那么将能提高学生的思维,开阔学生的思路,培养学生的数学修养并提高其解决问题的能力。因而,本文着重把高等数学与初等数学联系起来,通过几个例子来阐述高等数学在初等数学中的一些重要的应用。 关键词:高等数学;初等数学;应用 1.引言 数学是一门概括性、逻辑性很强的学科,将它从自然科学中分离出来而成为一门独立的学科与自然科学、社会科学并驾齐驱,在修完高等数学课程之后才能体会到这个主张是非常科学的。因此有人把它叫做思维的体操,也有人把它称作其他自然科学必备的基础工具。这些都是基于这种认识和理解,是有一定的道理的。 中小学的数学,即使是高中数学的教学,它所要承担的教学任务和培养的目 标只能是学会基本的运算和简单的推理,由于学生的接受能力有限,更深一层次 的研究只能在大学进行。只有通过大学高等数学各门必修课程和选修课程的学习 和理解,才能深切感受到数学这门充满生机、古老的学科的庞大的体系和深邃的 理论,才能认识到数学区别于其他学科的三种特性:抽象性、严谨性和高度的概 括性。 2.国内外研究现状 大学课程学习的思维单向性很强。大学的学习给学生的感觉是用中学知识去 学习大学课程中的内容,学生几乎感觉不到能用大学知识解决中学数学中的问题 或对解中学数学问题有什么帮助。“用”的观念淡薄了,“学”的热情自然而然的 就少了。抓住高等数学与初等数学之间的联系,加强高等数学对初等数学的指导 作用及高等数学在初等数学中的一些应用是本课题研究的重点和关键问题。中学 数学教材中的教学难点经常让新教师费劲口舌,但学生仍然晕头转向,不知其意。 比如极限定义、集合和函数等。一位新数学教师在解释从非空数集A到数集B 的映射是函数时常常讲不清楚函数的值域到底是不是B。如果他的数学分析中的 映射掌握得好,完全可以既讲得轻松而学生又听得明白。法国数学家F·克莱因 曾经说过:“教师应具备较高的数学观点,理由是,观点越高,事物就显得越简

高等代数论文

代数学从高等代数总的问题出发,又发展成为包括许多独立分支的一个大的数学科目,比如:多项式代数、线性代数等。代数学研究的对象,也已不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算。虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括为研究带有运算的一些集合,在数学中把这样的一些集合叫做代数系统。比如群、环、域等 多项式是一类最常见、最简单的函数,它的应用非常广泛。多项式理论是以代数方程的根的计算和分布作为中心问题的,也叫做方程论。研究多项式理论,主要在于探讨代数方程的性质,从而寻找简易的解方程的方法。 多项式代数所研究的内容,包括整除性理论、最大公因式、重因式等。这些大体上和中学代数里的内容相同。多项式的整除性质对于解代数方程是很有用的。解代数方程无非就是求对应多项式的零点,零点不存在的时候,所对应的代数方程就没有解 我们知道一次方程叫做线性方程,讨论线性方程的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家莱布尼茨。德国数学家雅可比于1841年总结并提出了行列式的系统理论。 行列式有一定的计算规则,利用行列式可以把一个线性方程组的解表示成公式,因此行列式是解线性方程组的工具。行列式可以把一个线性方程组的解表示成公式,也就是说行列式代表着一个数。 因为行列式要求行数等于列数,排成的表总是正方形的,通过对它的研究又发现了矩阵的理论。矩阵也是由数排成行和列的数表,可以行数和烈数相等也可以不等。 矩阵和行列式是两个完全不同的概念,行列式代表着一个数,而矩阵仅仅是一些数的有顺序的摆法。利用矩阵这个工具,可以把线性方程组中的系数组成向量空间中的向量;这样对于一个多元线性方程组的解的情况,以及不同解之间的关系等等一系列理论上的问题,就都可以得到彻底的解决。矩阵的应用是多方面的,不仅在数学领域里,而且在力学、物理、科技等方面都十分广泛的应用。 代数学研究的对象,不仅是数,也可能是矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。比较重要的代数系统有群论、环论、域论。群论是研究数学和物理现象的对称性规律的有力工具。现在群的概念已成为现代数学中最重要的,具有概括性的一个数学的概念,广泛应用于其他部门。 例1:矩阵A[ 1 , 0] M矩阵 [a ,b] ,A与M矩阵可互换,确定a b c d之间的关系,并写出矩阵M

《高等代数一》知识点

高等代数知识点 第一章 多项式 1. 数域的定义、常见数域 2. (系数在)数域P 上的多项式的定义 3. 多项式相等 4. 多项式的次数、零多项式和零次多项式 5. 一元多项式的运算(加减乘)、运算律、多项式环、次数定理 6. 整除的定义:()()g x f x ?()()()f x g x h x =(证明,不整除则用反证法)、因式和倍式 7. 整除的性质: (1) 一些特殊的整除性(0,常数,自身) (2) 整除的反身性 (3) 整除的传递性 (4) 整除的组合性 8. 带余除法()()()()f x q x g x r x =+、综合除法 9. 整除的判定法则:余式为零 10. 整除不受数域的影响 11. 公因式及最大公因式的定义、()()(),f x g x ,()0,()()g x g x =,()0,00= 12. 最大公因式的求法(辗转相除法)P44:5 13. 最大公因式可以表示为()(),f x g x 的一个组合()()()()()d x u x f x v x g x =+——P45:8 14. 互素的定义 15. 互素的相关定理(证明)P45:12、14 (1) ()()(),11()()()()f x g x u x f x v x g x =?=+ (2) ()()()()()()()(),1,f x g x f x g x h x f x h x =? (3) ()()()()()()() ()()()121212,,,1,f x g x f x g x f x f x f x f x g x =? 16. 不可约多项式的定义(次数大于等于1) 17. 平凡因式、不可约等价于只有平凡因式 18. 可约性与数域有关 19. 不可约多项式的性质: (1) ()p x 不可约,则()cp x 也不可约 (2) ()p x 不可约,()[],f x P x ?∈ ()()|(),(),()1p x f x or f x p x ?= (3) ()p x 不可约,()()()p x f x g x ()()()|(),p x f x or p x g x ? 20. 标准分解式1212()()()()s r r r s f x cp x p x p x =

高等代数学习报告

竭诚为您提供优质文档/双击可除 高等代数学习报告 篇一:高等代数期末论文学习总结 高等代数学习总结 摘要:两学期的高等代数已经接近尾声了,高等代数作为数学专业的基础学科之 一。本文主要讲述本人两学期下来学习高等代数的一些知识总结和学习体会。关键词: 行列式矩阵二次型 正文: 《高等代数》是数学学科的一门传统课程。在当今世界的数学内部学科趋于统一性和数学在其他学科的广泛应用 性的今天,《高等代数》以其追求内容结构的清晰刻画和作为数学应用的基础,是大学数学各个专业的主干基础课程。它是数学在其它学科应用的必需基础课程,又是数学修养的核心课程。 高等代数是代数学发展到高级阶段的总称,它包括许多分支。它是在初等代数的基础上研究对象进一步的扩充,引

进了许多新的概念以及与通常很不相同的量,比如最基本的有集合、向量和向量空间等。这些量具有和数相类似的运算的特点,不过研究的方法和运算的方法都更加繁复。通过学习后,我们知道,不仅是数,还有矩阵、向量、向量空间的变换等,对于这些对象,都可以进行运算,虽然也叫做加法或乘法,但是关于数的基本运算定律,有时不再保持有效。因此代数学的内容可以概括称为带有运算的一些集合,在数学中把这样的一些集合,叫做代数系统。 在学习之前,我一直认为高等代数就是把线性代数重学一遍,因为大一的时候线性代数学得不深,而且也没有学完。经过两学期的学习后,我发现,这两者之间区别还是挺大的。高等代数数学专业开设的专业课,更注重理论的分析,需要搞懂许多概念是怎么来的,而线性代数,只是一种运算工具,是供工科和部分医科专业开设的课程,只注重应用。 经过两学期的学习,我对高等代数里面的知识有了个初步的认识和接触,特别是代数的一些思想,也从中收获不少。下面就对两学期的学习做一个回顾和总结。行列式行列式是代数学中的一个基本概念,它不仅是讨论线性方程组理论的有力工具,而且还广泛的应用于数学及其他科学技术领域 定义:设A=(??????)为数域F上的n×n矩阵,规定A的行列式为

高等数学与初等数学的区别与联系

高等数学与初等数学的区别与联系 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 高等数学与初等数学的区别与联系 摘要从产生的历史、研究对象和研究方法3个方面说明高等数学与初等数学的区别与联系,使高等数学的初学者能够在初等数学即常量数学的基础上顺利进入高等数学即变量数学的学习。 关键词高等数学;初等数学;数学史;研究对象;研究方法 中图分类号:G642 文献标识码:B 文章编号:1671-489X(2011)15-0047-02 Difference and Relation from Advanced Mathematics Comparing with Primary Mathematics//Yang Limin, Zhao Songqing Abstract This paper shows the difference and relation from advanced mathematics comparing with primary mathematics by Mathematical History, Investigative object and Investigative method. Fresher who want to study advanced mathematics need to know them. Key words advanced mathematics; primary

mathematics; mathematical history; investigative object; investigative method Author s address College of Science, China University of Petroleum, BEijing, China 102249 高等数学是理、工、经、管类各专业大学生的一门重要专业基础课,近年来有些文科专业如英语、法律也开设相应的文科高等数学课程,说明高等数学的广泛应用性得到越来越多人的认识。如何学好高等数学是人们共同关注的问题。由于高等数学与初等数学所处历史时期不同,使得它们的研究对象、研究方法有着很大的不同。这使得有些学生在开始学习高等数学时有些迷茫,不明白数学怎么突然变了样子,导致不易入门,对高等数学产生抵触情绪,学不好高等数学。注意高等数学与初等数学的区别与联系是学好高等数学的重要环节,可以让学生顺利进入高等数学的学习,为专业课程的学习打好基础。 1 初等数学与高等数学处在不同历史时期[1] 数学 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意!

word表格嵌套公式

竭诚为您提供优质文档/双击可除 word表格嵌套公式 篇一:word表格数值计算 8、如何利用word表格的计算功能? ①1.求一列数据的和:将光标点到这列最下一格(准备放和数的格),在word的主菜单条上,用鼠标点击“表格”→“公式”,屏墓出现公式对话框, 在公式对话框中的公式(F)框中就 是你要进行的运算。 =sum(aboVe)就表示对本列上面所有数据求和。 点击“确定”按钮,所求和数就填入你的表格。 ②.求一行列数据的和: 将光标点到这行最右一格(准备放和数的格),在word 的主菜单条上,用鼠标点击“表格”→“公式”,屏墓出现公式对话框, 在公式对话框中的公式(F)框中就是你要进行的运算。=sum(leFt)就表示对本行左边的所有数据求和。点击“确定”按钮,所求和数就填入你的表格。③.对一列或一行数据求平均数(average)等:

好。 思考:1.的和,公式 国土资源部信息中心、全国地质资料馆 杨斌雄写于1999/3/24 二、word表格中的数据计算 在“成果地质资料电子文件汇交格式”中规定:地质成果报告文字部分中的插表要采用表格命令直接制作,不得采用超级链接的办法链接其它软件制作的表 格。附表类电子文件原则上也要用表格命令直接制作。 习惯于使用excel的同志总觉得word表格的计算功能太差。实际上对地质成果报告中不太复杂的表格,word表格的计算功能已完全够用,下面做一简单介绍: 1、word表格中的“单元格”概念 与excel一样,word表格在进行数据计算时也有“单元格”的概念,其每一个单元格也以a1、a2、b1、b2这种形式来表示。其中字母a、b、c、d等表示列号,数字1、2、3、4等表示号。只不过它在表的上边和左边没有象excel那样的明显指示。在进行复杂的计算时,你要从表格的左上端开始数一下。2、简单的求和 在大量的表格计算中是进行列或行中数据的求和,这在word表格中非常简单:例如当你要计算一列数据的和数, ①用鼠标点击你要存放“和数”的那个单元格,②→点

矩阵及其秩在高等代数中应用论文

矩阵及其秩在高等代数中的应用 玲毓 师高等专科学校数学教育 摘要:在矩阵理论中,矩阵的秩是一个重要的概念。它是矩阵的一个数量特征,而且是初等变换下的不变量。矩阵的秩与矩阵是否可逆、线性方程组的解、极大无关组的情况等都有着密切的联系。通过引用了大量的实例说明了矩阵及其秩是高等代数中的一个重要的概念,希望通过本文的介绍可以让读者对矩阵及其秩有更深的了解。 关键词:矩阵;秩;变换;可逆

1 引言矩阵作为数学工具之一有其重要的实用价值,它常见于很多科学中,如:线性代数、线 性规划、统计分析、以及组合数学等,而本文主要介绍其在高等代数中的应用。高等代数是用辩证观点和严密的逻辑推理方法来体现的一门课程它常见于很多科学中, 矩阵作为数学工具之一有其重要的实用价值对其在高等代数中的应用概括为:求解一般的线性方程组,判定向量组的线性相关性,求极大无关组,化二次型为标准型,求规正交基,对称变换,正交变换的判断,欧氏空间中的积的表示。 这就使矩阵成为数学中一个极其重要而且广泛的工具.本文对矩阵的基本理论及其秩的应用进行具体阐述。 2矩阵的基本理论 定义2.1 矩阵是一简化了的表格,一般地

111212122212 n n m m mn a a a a a a ? ? ? ??? 称为n m ?矩阵,它有m 行、n 列,共n m ?个元素,其中第i 行、第j 列的元素用ij a 表 示.通常我们用大写黑体字母,,A B C 表示矩阵.为了标明矩阵的行数m 和列数n ,可用 m n A ?或() ij m n a ?表示.矩阵既然是一表,就不能像行列式那样算出一个数来. 定义2.2 所有元素均为0的矩阵,称为零矩阵,记作0. 定义2.3 如果矩阵A 的行、列数都是n ,则称A 为n 阶矩阵,或称为n 阶方阵. 定义2.4 令A 是数域F 上一个n 阶矩阵.若是存在F 上n 阶矩阵B ,使得, AB BA I == 那么A 叫作一个可逆矩阵,而B 叫作A 的逆矩阵.用1 A -来表示. 定义2.5 主对角线上元素全为1的对角矩阵,叫做单位矩阵,记为I ,即 1000100 1I ?? ? ?= ? ??? n ?1矩阵(只有一行)又称为n 维行向量;1?n 矩阵(只有一列)又称为n 维列向量.行向量、列向量统称为向量.向量通常用小写黑体字母a ,b ,x ,y 表示.向量中的元素又称为向量的分量.11?矩阵因只有一个元素,故视之为数量,即()a a =. 定义2.6 把矩阵A 的行与列互换所得到的矩阵称为矩阵A 的转置矩阵,记为T A ,即 111212122212 n n m m mn a a a a a a A a a a ?? ? ?= ? ? ?? ,11 21 11222212m m T n n mn a a a a a a A a a a ?? ? ? = ? ??? 若方阵A 满足T A A =,则称A 为对称矩阵. 定义2.7n 阶矩阵有一条从左上角到右下角的主对角线.n 阶矩阵A 的元素按原次序构成的n 阶行列式,称为矩阵A 的行列式,记作A . 定义2.8 设有n 阶方阵 111212122212 n n n n nn a a a a a a A a a a ?? ? ? = ? ??? 的行列式A 有2 n 个代数余子式ij A (j i ,=1,2,…,n ),将它们按转置排列,得到矩阵

高等代数知识点归纳.doc

A , i j , a i 1 A j1 a i 2 A j 2 L a in A jn 0, i j . A O A A O O B = B A B O B O A = A B O ( 1)mn A B B O a 1n O a 1n a 2n 1 a 2 n 1 ( 1 n ( n 1) 2 N N ) a n1 O a n1 O a 1n a 2 n K a n1 范德蒙德行列式: 1 1 L 1 x 1 x 2 L x n x 12 x 22 L x n 2 x i x j M M 1 j i n M x n 1 x n 1 L x n 1 1 2 n 代数余子式和余子式的关系: M ij ( 1)i j A ij A ij ( 1)i j M ij A 11 B 11 A 11 B 11 n A n 分块对角阵相乘: A , B AB , A 11 A 22 A n B 22 A 22 B 22 22 A B T A T C T 分块矩阵的转置矩阵: C D B T D T A 11 A 21 L A n1 A * A ij T A 12 A 22 L A n2 , A ij 为 A 中各个元素的代数余子式 . M M M A 1n A 2n L A nn AA * A * A A E , A * n 1 A 1 1 A , A . A * BA * 分块对角阵的伴随矩阵:

矩阵转置的性质:( A T )T A 矩阵可逆的性质:( A 1) 1 A ( A ) n 2 伴随矩阵的性质: A A n 若 r ( A) n r ( A )1 若 r ( A) n 1 0 若 r ( A) n 1 1 B 1 a1 A B A 1 ( AB)T B T A T A T A ( A 1 )T ( A T ) 1 ( A T ) ( A )T ( AB) 1 B 1 A 1 A 1 1 ( A 1 )k ( A k ) 1 A k A ( AB) B A A n 1 ( A 1 ) ( A ) 1 A ( A k ) ( A ) k A A AB A B A k A k AA A A A E (无条件恒成立) 1 1 1 1 a1 a1 a3 a2 1 a2 1 a2 a 2 a3 1 a3 1 a3 a1 矩阵的秩的性质: ① A O r ( A) ≥1; A O r ( A) 0 ;0≤ r ( A m n ) ≤ min( m, n) ④若A m n , B n s ,若r ( AB) 0 r ( A) r ( B) n 的列向量全部是 Ax 的解 B 0 ⑤r ( AB) ≤min r ( A), r (B) ⑥若 P 、Q可逆,则 r ( A) r (PA) r ( AQ) r ( PAQ) ;即:可逆矩阵不影响矩阵的秩 . Ax 只有零解 ⑦若 r ( A m n ) n r ( AB) r ( B) ;在矩阵乘法中有左消去律AB O B O A A B A C B C 若 r ( B n s ) n r ( AB) r ( B) 在矩阵乘法中有右消去律 . B 若 ( ) 与唯一的E r O 等价,称E r O 等价标准型 . ⑧为矩阵的 r A r A O O O O A ⑨r ( A B) ≤ r ( A) r (B) , max r ( A), r ( B) ≤r ( A, B)≤r ( A) r (B) ⑩ A O O A ( ) ( ) , A C ( ) ( ) r B B O r A r B r B r A r B O O

高等代数知识结构

高等代数知识结构

二、高等代数知识结构内容 (一)线性代数 工具:线性方程组 1 1 列时, a 性质1 性质2、一行得公因子可以提出来(或以一数乘行列式得一行就相当于用这个数乘此行列式。 性质3、如果某一行就是两组数得与,那么这个行列式就等于两个行列式得与,而这两个行列式除这一行以外与原行列式得对应行一样。 性质4、如果行列式中两行相同,那么行列式为零。(两行相同就就是说两行对应元素都相同) 性质5、如果行列式中两行成比例。那么行列式为零。 性质6、把一行得倍数加到另一行,行列式不变。 性质7、对换行列式中两行得位置,行列式反号。 2、矩阵: a、矩阵得秩:矩阵A中非零行得个数叫做矩阵得秩。 b、矩阵得运算 定义同型矩阵:指两个矩阵对应得行数相等、对应得列数相等得矩阵. 矩阵相等:设,, 若 , 称、 线性运算:, 加法: 数乘: 负矩阵: 减法: 矩阵得乘法定义:设 , 其中元素 得列数 = 得行数。 得行数 = 得行数; 得列数 = 得列数. 与得先后次序不能改变. (5)矩阵得初等变换 矩阵得等价变换形式主要有如下几种: 1)矩阵得i行(列)与j行(列)得位置互换; 2)用一个非零常数k乘矩阵得第i行(列)得每个元; 3)将矩阵得第j行(列)得所有元得k倍加到第i行(列)得对应元上去。 3、线性方程组 一般线性方程组、这里所指得一般线性方程组形式为

111122112 11222221122,,.n n n n s s s n n s ax ax ax b ax ax ax b ax ax ax b +++=??+++=??? ?+++=? L L L L L L ()i ()i 式中(1,2,,)i xi n =K 代表未知量,(1,2,,;1,2,,)i j a i s j n ==L L 称为方程组得系数,( 1,2,,)j b j n =L 称为常数项、 线性方程组)(i 称为齐次线性方程组,如果常数项全为零,即120s bb b ====L 、 令 111212122212n n s s sn a a a a a a A a a a ????? ?=??????L L M M M M L ,12n x x X x ??????=??????M , 12s b b B b ?? ????=???? ?? M , 则()i 可用矩阵乘法表示为 A X B =,,,.m n n m A C X C B C ?∈∈∈ a 、线性方程组得解法 1)消元法 在初等代数里,我们已经学过用代入消元法与加减消元法解简单得二元、三元线性方程组、实际上,这个方法比用行列式解方程组更具有普遍性、但对于那些高元得线性方程组来说,消元法就是比较繁琐得,不易使用、 2)应用克莱姆法则 对于未知个数与方程个数相等得情形,我们有 定理1 如果含有n 个方程得n 元线性方程组 11112211 21122222 1122,,.n n n n n n n n n n ax ax ax b ax ax ax b ax ax ax b +++=??+++=?? ? ?+++=? L L L L L L ()i i 得系数矩阵

相关主题