搜档网
当前位置:搜档网 › 引物纯化方式选择指南设计

引物纯化方式选择指南设计

引物纯化方式选择指南设计
引物纯化方式选择指南设计

引物纯化方式选择指南2012-2-16 10:24:14

容导读

一、DNA合成的方法和原理

二、引物纯化的方法原理及其效果

三、纯化方法与应用指南

四、常见问题的原因分析及相应的对策

一、DNA合成的方法和原理

目前引物合成主要采用固相亚磷酰胺三酯法进行。基于该方法的DNA合成仪有多种,由ABI/PE 公司生产的高通量DNA自动合成仪得到了广泛的应用。各合成仪进行引物合成的原理基本相同,主要区别在于合成产率的高低、试剂消耗量和单个循环用时等。生工公司采用的合成仪主要机型为全新的ABI3900高通量合成仪。

固相亚磷酰胺三酯法合成DNA片段,具有高效、快速偶联以及起始反应物比较稳定的特点。该方法是在固相载体上完成DNA链的合成的,DNA化学合成不同于酶促的DNA合成过程从5’→3’方向延伸,而是由3’端开始,相邻的核苷酸通过3’→5’磷酸二酯键连接。具体的反应步骤如图一。

1、脱保护基(Deblocking)

用三氯乙酸(Trichloroacetic Acid,TCA) 脱去连结在CPG (Controlled Pore Glass) 上的核苷酸的保护基团DMT (二甲氧基三苯甲基),获得游离的5'-羟基端,以供下一步缩合反应。2、活化(Activation)

将亚磷酰胺保护的核苷酸单体与四氮唑活化剂混合并进入合成柱,形成亚磷酰胺四唑活性中间体(其3'-端已被活化,但5'-端仍受DMT保护),此中间体将与GPG上的已脱保护基的核苷酸发生缩合反应。

3、连接(Coupling)

亚磷酰胺四唑活性中间体遇到CPG上已脱保护基的核苷酸时,将与其5'-羟基发生亲合反应,缩合并脱去四唑,此时合成的寡核苷酸链向前延长一个碱基。

4、封闭(Capping)

缩合反应后,为了防止连在CPG上的未参与反应的5'-羟基在随后的循环反应中被延伸,常通过乙酰化来封闭此端羟基,一般乙酰化试剂是用乙酸酐和N-甲基咪唑等混合形成的。

图1: DNA合成原理示意图(固相亚磷酰胺三酯法)

5、氧化(Oxidation)

缩合反应时核苷酸单体是通过亚磷酯键与连在CPG上的寡核苷酸连接,而亚磷酯键不稳定,易被酸、碱水解,此时常用碘的四氢呋喃溶液将亚磷酰转化为磷酸三酯,得到稳定的寡核苷酸。

经过以上五个步骤后,一个脱氧核苷酸就被连到CPG的核苷酸上,同样再用三氯乙酸脱去新连上的脱氧核苷酸5'-羟基上的保护基团DMT后,重复以上的活化、连接、封闭、氧化过程即可得到DNA片段粗品。最后对其进行切割、脱保护基,合成的Oligo在脱去保护基后,目的Oligo纯度是比较低的,其中含有大量的杂质。主要杂质有:所脱下的保护基与氨形成的苯甲酸氨和异丁酸氨,腈磷基上脱下的腈乙基,以及合成时产生的短链等。以至于粗产品中全长Oligo DNA含量仅为25%左右。尽管合成时每一步的效率都在98%~99%,但累积的效率并不高。这些杂质成分,尤其是存在于粗产品中的大量盐和短链,不但造成定量不准,还会影响下一步的反应。因此必须对Oligo DNA进行纯化、定量等合成后处理即可得到符合实验要求的寡核苷酸片段。

二、引物纯化的方法原理及其效果

基于以上合成的原理和步骤,目前,常见的几种纯化方法如C18柱、OPC或HAP、PAGE、

HPLC。生工公司采用HAP、ULTRA PAGE、HPLC三种纯化方法,其纯化的原理及其效果分别如下,我们建议客户应根据不同的实验需求,选择合适、经济并有效的纯化方法。

1. HAP纯化方法

HAP(HighAffinityPurification)是生工生物自主开发的新型oligoDNA纯化方法。该方法已取得国家专利(专利号:200310208040.X)。其原理是利用合成引物5'-端DMT基团对HAP树脂专一性吸附,而不含DMT的短链DNA不被吸附,从而达到分离纯化的目的。

HAP纯化柱中装有对DMT 具有亲和力的树脂,合成DNA 片段时保留5'端最后一个碱基上的DMT,所有合成产物吸附在柱上以后,用稀的有机溶剂洗柱,带有DMT 的片段吸附能力强,不易被洗脱,不带有DMT 的片段吸附能力弱,被洗脱。然后用三氟乙酸TFA 或三氯乙酸TCA 脱去DMT 基团,再用浓一点的有机溶剂洗脱DNA。这种方法具有多快好省的特点。制品纯度可达到80~90%,可以满足杂交探针、测序、常规PCR(不再做进一步克隆实验)等用途了。但是因为其专一性吸附DMT 能力有限,不免仍然有短片段带入的可能,而且负载量小。特别是对长于39 碱基以上的片段纯化效果不好。此级别只提供长度在10-39mer以下的合成oligo DNA制品。序列更长时,制品的纯度得不到保证。若考虑节约经费,对于要求较低的实验,如简单的PCR反应,则采用HAP纯化即可。

2. ULTRA PAGE纯化方法

PAGE (Polyacrylamide Gel Electrophoresis),该方法是使用变性聚丙烯酰胺凝胶电泳,对DNA片段进行分离,然后从凝胶中回收目的DNA的方法。PAGE纯化基于尺寸和构象分离全长产物和失败序列,可以分离相差一个碱基的引物(120碱基以),从而提供高纯度的引物。纯化后的DNA纯度大于90%,相比与其他两种方法,PAGE纯化对长链Oligo DNA (大于50 mer)的纯化特别有效,制品纯度保证90 ~ 95%。如订购的DNA欲用作RT-PCR引物、各种探针,或用于PCR克隆测序、定点突变等,请选用PAGE纯化制品。

ULTRA PAGE:理论上分析型PAGE变性电泳,可以区分引物之间一个碱基的差别。经过PAGE纯化的引物,特别是长引物要的量都比较高,上样量都是非常大,电泳时的条带往往比较宽,带与带之间有重叠,分辨率有所下降,电泳后割带回收目的引物时,导致割的条带有时可能比较宽,很难避免割到差别仅一个或几个碱基的引物。因此生工生物为了给客户更好解决以上问题,将原有的PAGE纯化方式升级优化为现在的ULTRA PAGE纯化方式,即在PAGE纯化的同时配合质谱对DNA进行定性分析,以保证回收片段的正确性。

3. HPLC纯化方法

HPLC (High Performance Liquid Chromatography)是使用高效液相色谱的原理,依据DNA的疏水性来分离产物的。合成粗产物中不同长度的DNA 片段的疏水性不同,一般来说较长的片段具有较强的疏水性,AT含量高的片段也具有较强的疏水性。先将粗产物检测主峰位置,再增加加样量,回收主峰位置的部分。该方法用于分离纯化时能达到很高的纯度和灵敏度,可以有效的去除大部分N-短片段,因而可以除去失败序列或未结合的标记物,从而对DNA片段进行纯化。同时配合质谱对DNA进行定性分析,以保证回收片段的正确性。由于HPLC产品的纯度非常高,使用本法纯化的DNA制品可适用于各种基因工程实验。主要用于PCR克隆、定点突变、人工合成基因、长链和修饰引物的纯化等。它的优点是自动化程度高、省人力;弱点是纯化量通量小、成本较高。

三、纯化方法与应用指南

表1: HAP、ULTRA PAGE和HPLC三种纯化方法的特点比较

根据不同的实验要求,您可以选用以下适合的纯化方法,具体见表2。表2: HAP、ULTRA PAGE和HPLC三种纯化方法的应用

四、常见问题的原因分析及相应的对策

Q-1. 拿到引物后,想在实验室检测纯度,如何实现?

A-1:

实验室可通过变性的聚丙烯酰胺凝胶电泳进行引物纯度的检测:

使用加有7M尿素的聚丙烯酰胺凝胶进行电泳,碱基数≤12个的引物用20%的胶,12-60个碱基的引物用16%的胶,>60个碱基的引物用12%的胶。

取0.2-0.5 OD的引物,用尿素饱和液溶解或引物溶液中加入尿素干粉直到饱和,上样前加热变性(95℃,2 min)。加入尿素的目的一是变性,二是增加样品比重,容易加样。600V电压进行电泳,一定时间后(约2-3小时),剥胶,用荧光TLC板在紫外灯下检测带型,在主带之下没有杂带,说明纯度是好的。(有时由于变性不充分,主带之上可能会有条带,是引物二级结构条带)

Q-2. 测序发现引物有突变或缺失是什么原因?

A-2:

测序发现引物区有突变,主要考虑三个方面的原因:测序,PCR/克隆过程,引物本身。

A、测序引入的错误

对于PCR产物进行的克隆而言,无论是TA克隆或酶切克隆,引物区往往位于载体两端,如果用载体引物进行测序,此时克隆引物区离测序引物区的距离比较近,处于测序起始阶段或正好处于测序染料峰所在的区域(90-120 bp),这两个区域也是最容易产生测序错误的地方。因此,首先要看原始的测序峰图在引物区是否清晰,碱基的错误或缺失是否是由于峰图不清楚而导致的计算机误读。

B、PCR/克隆过程

尽管使用高保真聚合酶进行PCR出错的可能性比较少,但不排除PCR错配或者克隆过程中

突变的可能。有的人会问,PCR的突变怎么会出现在引物区呢?这是因为,引物是单链,PCR 产物引物区的互补链同样是以引物为模板进行扩增得到的,因此,有可能存在引物正确但其产物出错的情况。

针对这种情况的解决方法是进行测序时,请送2-3个独立的克隆子进行测序,这样可以排除PCR过程出错或克隆产生突变的情况。

C、引物本身错误

如前面所述,引物合成是一种多步骤的化学反应,即使每一步合成效率达到99%,仍有1%的序列不能连接或错误地连接下一个碱基,这些序列在经过Capping后脱离循环,成为缺碱基的失败序列;

对于缺失突变,一般认为是一般认为是带帽(capping)反应不彻底造成的,Caping反应主要是封闭极少数5'-羟基没有参加反应单体。被封闭的引物,在下一轮偶连时将不能继续参与合成。对于实验中测序发现的较常见碱基缺失的可能原因如下:

1. 由于DNA合成是沿着3'→5'端方向将碱基逐个连接上去的,每连上一个碱基,都需要经过(Detritylation、Coupling、Capping、Oxidation)一个循环。Coupling是上一个碱基的5'-OH 与下一个碱基的3'活性部分发生反应,该反应的效率最高可达99%,即便如此,仍有1%的序列不能连接下一个碱基,这些序列在经过Capping后脱离循环,成为缺碱基的失败序列;

2. Capping是将没有连接上下一个碱基的5'-OH乙酰化,Capping的效率不可能达到100%,没有被乙酰化的5'OH会进一步发生反应,造成中间缺碱基的失败序列;

3. Detritylation是脱掉上一个碱基5'-OH上的保护基,准备连接下一个新碱基,Detritylation的效率也不可能达到100%,没有脱保护的5'-OH会跳过该循环而直接进入下一个循环,造成中间缺碱基的失败序列;

至于插入突变,引物序列中往往是碱基重复,一般认为,偶连过程中,正在偶连的部分碱基

发生丢失DMT,处于活性状态的新碱基在没有与上一个碱基反应前发生自连,将会造成碱基重复,故会发生插入同一碱基的突变的失败序列。

对于碱基置换的突变,产生的原因一般认为是碱基不能100%脱保护,即引物上可能含有残留保护基团,通常发生在G转换成其它碱基。碱基G在一定条件下可以转化为烯醇异构体

2,6-diaminopurine(脱嘌呤),DNA复制和PCR过程中DNA聚合酶将2,6-diaminopurine 看作碱基A,发生G到A的转换,测序就会发现碱基G-A置换。脱嘌呤现象在富含嘌呤的引物中发生的频率较高。

引物合成过程中,造成碱基缺失,插入,置换突变的因素客观存在,上述各种原因产生的失败序列可通过纯化不同程度地得到去除。但是基于目前大规模生产的纯化方法,还不能达到100%的纯度,对40 mer以下的DNA制品,HPLC是最好的纯化方法,其次是ULTRA PAGE;而对40 mer以上的DNA制品ULTRAPAGE纯化要优于单纯的HPLC纯化。所以,如您要对PCR产物克隆后测序,一定要选择ULTRA PAGE纯化或HPLC纯化的引物。

测序发现引物区域有突变,特别是40个碱基以下的引物, 发生的概率不大,但是偶尔也会发生。客户一般可以放心,引物序列一般都是通过电脑直接将您的序列复制到合成仪的,人为造成的序列出错可能微乎其微。在目前的技术水平下,各家公司还没有办法彻底解决引物合成出错的这个问题。引物合成的固相合成原理都一样,采用的机器也基本相同,合成主要原料都是由可数的几家跨国公司提供的,所以每个合成服务商遇到的问题也基本类似,没有哪家公司可以完全避免。

Q-3. 长链引物为什么出错的几率非常高?

A-3:

引物合成时,每一步反应效率都不能达到100%,产生碱基插入,缺失,置换突变的因素客观条件都有一直存在。引物链越长,出错的频率累加起来就越高。客户总希望合成的引物完全正

确,这种心情可以理解。但是正像PCR扩增,不可能绝对保证扩增产物中没有突变,引物合成也不可能保证100%正确。通常引物合成中发生错误(非人为因素)的频率,比任何高保真高温聚合酶PCR扩增过程所产生的频率都要高。做引物合成,特别是长链引物合成,出了建议选择ULTRA PAGE和HPLC联合使用的纯化方法,同时您也要有引物中部分引物可能有突变的思想准备。

Q-4. 如何能保证引物的正确性?

A-4:

1. 订购引物时,选用高纯度级纯化方法。

2. 最好选用小于40个碱基的引物。

3. 克隆实验时,一定要选择ULTRA PAGE纯化或HPLC纯化的引物。并且每次克隆都须进行测序验证,以保证序列的正确性,然后再进行进一步实验。进行蛋白表达实验时,尤其需要注意。

Q-5. PCR产物经克隆后测序发现,引物处的碱基有错误,怎么办?

A-5:

1. 遇到这种情况,首先和我们取得联系,我们的生产人员会检查生产的原始记录,主要是核对合成序列是否和定单一致,我们在电脑中保留所有原始数据。

2. 如果确认引物合成序列没有输错,我们建议重新挑取克隆测序,您可能会找到正确克隆的。因为引物纯度不可能是100%,因此,挑选克隆时,有可能挑选了杂质引物扩增出的PCR 产物的克隆。根据我们经验,请重新挑选2-3个克隆测序,会得到正确的结果。一般情况下,每个克隆突变的位点都不一样,提示正确的总是有的,就是如何找到它。

3. 如果挑选2 ~ 3个克隆测序情况还没改观,您也可以要求我们将引物免费重合一次,不过重合的引物和第一次的引物一样,都可能含突变,不会因为重合的引物就减少您的遇到问题的

几率。

Q-6. 进行蛋白表达实验数个月不成功,后经测序发现引物处有错误,怎么办?

A-6:

1. 进行克隆实验时,一定要选择ULTRA PAGE纯化或HPLC纯化的引物。

2. 并且每次克隆都须进行测序验证,以保证序列的正确性,然后再进行进一步实验。

3. 我们可以免费重新合成引物。

4. 如进行索赔时,按国际行业惯例,索赔围限于制品价格围之。

5. 引物合成超过三个月时间的投诉我们不再受理。

Q-7. 引物是经过ULTRA-PAGE纯化的,为什么还有碱基缺失或插入?

A-7:

理论上分析型PAGE变性电泳,可以区分引物之间一个碱基的差别。但是制备PAGE电泳,上样量都是非常大,电泳时的条带非常宽,带与带之间有重叠,分辨率已下降,电泳后割带回收目的引物时,很难完全避免差别仅一两个碱基的引物。但经过PAGE纯化的引物的纯度已经有了极大的提高,尤其是我们的ULTRA PAGE引物,出错的概率非常非常低了。

Q-8. 为什么我的引物经过了质谱检测,结果还是出错了?

A-8:

我们在合成引物时,出现大量的错误和缺失概率是很小的,同时采用三种纯化方法加质谱检测,已经将错误降低到极小的概率围。但质谱检测也只能检测主要产物的分子量,经过质谱检测的引物可以确定序列没有错误,但不管采用何种纯化方式,纯度都不能是100%,因此仍然有可能存在少量有错误的引物分子。

引物设计原则(必看)

mi引物设计原则 1. 引物的长度一般为15-30 bp,常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。 2. 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错配。引物3’端出现3个以上的连续碱基,如GGG或CCC,也会使错误引发机率增加。 3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。另外,引物二聚体或发夹结构也可能导致PCR反应失败。5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。 4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。 5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法(the nearest neighbor method)。 6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG 值相对较高的引物。引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。 7. 引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。 8. 对引物的修饰一般是在5’端增加酶切位点,应根据下一步实验中要插入PCR 产物的载体的相应序列而确定。 引物序列应该都是写成5-3方向的, Tm之间的差异最好控制在1度之内, 另外我觉得扩增长度大一些比较好,500bp左右。 要设计引物首先要找到DNA序列的保守区。同时应预测将要扩增的片段单链是否形成二级结构。如这个区域单链能形成二级结构,就要避开它。如这一段不能

引物设计大全

引物设计和Primer-BLAST的应用 Lv Peng 2015.11.18

CONTENT 1.PCR-引物设计目的 2.引物设计原则 3.设计引物软件 4.在线设计工具 5.probeBase 简介

1.1PCR(Polymerase Chain Reaction) 聚合酶链式反应 1971 Khorana 提出设想 1985 Kary Mullis 发明了PCR 1986年5月 Mullis在冷 泉港实验室 做专题报告 冷泉港实验室(The Cold Spring Harbor Laboratory,缩写CSHL),又译为科尔德斯普林实验室。

几不同的PCR技术 1.扩增已知序列两侧DNA的PCR:反向PCR(Inverse PCR,IPCR)、锚定PCR(anchored PCR)、RACE(Rapid Amplification of cDNA Ends)、连接介导的PCR(ligation-mediated PCR,LM-PCR); 2.检测有限量稀有靶序列,即一对引物扩增产物不足以以通过凝胶电泳观察到的时:巢式PCR(nested PCR); 3.快速、灵敏、特异而准确定量的PCR:实时荧光定量PCR (real-time quantitative PCR,RQ-PCR)。

特性 优化 碱基组成 (G+C )含量应在40%-60%,4种碱基要分布均匀;长度 一般为18-27个核苷酸长度。上下游引物长度差别不能大于3bp ;重复和自身互补序列 不能有大于3bp 的反向重复序列或自身互补序列存在;上下游引物互补性一个引物的3’末端序列不能结合到另一个引物的任何位点上; 解链温度(Tm ) 两个引物的Tm 值相差不能大于5℃,扩增产物与引物的Tm 值相差不能大于10℃3’末端 引物3’末端碱基尽量为G 或C ,不能使3’末端有NNGC 或NNCG 序列引物序列不要有局部的GC rich 或AT rich (特别是3’端),避开T/C 或A/G 的连续结构 1.2引物设计原则 引物特性及优化设计

引物纯化方式选择指南设计

引物纯化方式选择指南2012-2-16 10:24:14 容导读 一、DNA合成的方法和原理 二、引物纯化的方法原理及其效果 三、纯化方法与应用指南 四、常见问题的原因分析及相应的对策 一、DNA合成的方法和原理 目前引物合成主要采用固相亚磷酰胺三酯法进行。基于该方法的DNA合成仪有多种,由ABI/PE 公司生产的高通量DNA自动合成仪得到了广泛的应用。各合成仪进行引物合成的原理基本相同,主要区别在于合成产率的高低、试剂消耗量和单个循环用时等。生工公司采用的合成仪主要机型为全新的ABI3900高通量合成仪。 固相亚磷酰胺三酯法合成DNA片段,具有高效、快速偶联以及起始反应物比较稳定的特点。该方法是在固相载体上完成DNA链的合成的,DNA化学合成不同于酶促的DNA合成过程从5’→3’方向延伸,而是由3’端开始,相邻的核苷酸通过3’→5’磷酸二酯键连接。具体的反应步骤如图一。 1、脱保护基(Deblocking) 用三氯乙酸(Trichloroacetic Acid,TCA) 脱去连结在CPG (Controlled Pore Glass) 上的核苷酸的保护基团DMT (二甲氧基三苯甲基),获得游离的5'-羟基端,以供下一步缩合反应。2、活化(Activation) 将亚磷酰胺保护的核苷酸单体与四氮唑活化剂混合并进入合成柱,形成亚磷酰胺四唑活性中间体(其3'-端已被活化,但5'-端仍受DMT保护),此中间体将与GPG上的已脱保护基的核苷酸发生缩合反应。

3、连接(Coupling) 亚磷酰胺四唑活性中间体遇到CPG上已脱保护基的核苷酸时,将与其5'-羟基发生亲合反应,缩合并脱去四唑,此时合成的寡核苷酸链向前延长一个碱基。 4、封闭(Capping) 缩合反应后,为了防止连在CPG上的未参与反应的5'-羟基在随后的循环反应中被延伸,常通过乙酰化来封闭此端羟基,一般乙酰化试剂是用乙酸酐和N-甲基咪唑等混合形成的。 图1: DNA合成原理示意图(固相亚磷酰胺三酯法) 5、氧化(Oxidation) 缩合反应时核苷酸单体是通过亚磷酯键与连在CPG上的寡核苷酸连接,而亚磷酯键不稳定,易被酸、碱水解,此时常用碘的四氢呋喃溶液将亚磷酰转化为磷酸三酯,得到稳定的寡核苷酸。 经过以上五个步骤后,一个脱氧核苷酸就被连到CPG的核苷酸上,同样再用三氯乙酸脱去新连上的脱氧核苷酸5'-羟基上的保护基团DMT后,重复以上的活化、连接、封闭、氧化过程即可得到DNA片段粗品。最后对其进行切割、脱保护基,合成的Oligo在脱去保护基后,目的Oligo纯度是比较低的,其中含有大量的杂质。主要杂质有:所脱下的保护基与氨形成的苯甲酸氨和异丁酸氨,腈磷基上脱下的腈乙基,以及合成时产生的短链等。以至于粗产品中全长Oligo DNA含量仅为25%左右。尽管合成时每一步的效率都在98%~99%,但累积的效率并不高。这些杂质成分,尤其是存在于粗产品中的大量盐和短链,不但造成定量不准,还会影响下一步的反应。因此必须对Oligo DNA进行纯化、定量等合成后处理即可得到符合实验要求的寡核苷酸片段。 二、引物纯化的方法原理及其效果 基于以上合成的原理和步骤,目前,常见的几种纯化方法如C18柱、OPC或HAP、PAGE、

利用INTERNET设计PCR引物举例

利用IN T ERN ET设计PCR引物举例 周咏东 华西医科大学附属第一医院眼科(610041) 国际互联网上信息资源十分丰富,给人们的生活、学习和工作带来了极大的方便。过去,需要设计PCR引物时,研究人员需要查阅大量文献,有时因无法查到原文,或无相关报道,会使研究工作一开始就不能顺利开展。笔者在科研中发现,有许多科研人员未能掌握I NT ERN ET上有关引物设计的共享资源,故结合实际应用经验予以介绍。使你的科研工作如虎添翼。 IN T ER NET上设计引物,分为两个步骤: 1 检索待扩增基因的DN A序列 首先接入IN T ERN ET,然后键入网址:w w w.ncbi.nlm. nih.g ov便进入了美国国家医学图书馆的生物技术信息中心的主页。在“Sear ch”右边的检索框内选择“G enBank”,然后在“fo r”右边的框内键入你检索的基因序列名,如“human Bcl-2cDN A sequence”,点击“Go”,检索就开始了。 出现的下一网页是“Cur rent Q uery”即告诉你检索出相关文献的数目。如你对结果不满意,该网页下半部分有“A dd T er m(s)to Q uer y”和“M o dify Cur rent Q uer y”两栏供你重新检索;如你对检检索结果满意,即可点击“Retr iev e XX”(X X 为查出的文献数)。接着即显示了刚才调出的文献名。你可选择一篇最符合的,然后将“Display”键右边的框内选择为FA ST A r epor t”(这是下一步设计引物所规定的),点击“D is-play”健,你要的序列就显示出来了。 最后,将这段序列全选,在“编辑”栏中点击“复制”,将此窗口最小化,重开窗口,进入下一步骤。 2 引物的设计 在新开的窗口中,健入网址w ww.g eno me.w https://www.sodocs.net/doc/0b8241511.html, 你即进入了“Whitehead Instit ut e for Bio medical R eser ch/ M IT Cent er for Genome Resear ch”的主页。在主页中先找到“G enome Center Softw ar e”标题,在其中的标题为“Ex peri-mental W eb-based Softw ar e”中,点击“W WW.P rimer P ick-ing(Pr imer3)”,此项,我们将用此网上软件设计引物。 网页上显示为“P r imer3o ld V ersio n”及“Click Her e T o T r y N ex t Ver sio n”,这两个版本大同小异,随便用哪一个。关键是在“Paste sour ce sequence belo w”文字下方的大空框内,粘贴上第一步查出的那段序列。然后根据自己的要求,对列出的各项引物设计指标作相应变动,否则为默认。确认指标设定完毕后,点击粘贴序列框下方的“Pick Pr imer s”键,你即得到了所需的引物,显示在“P rimer3O utput”网页上,共有5对,你可按需任选其一。 通过上述两个步骤,你如愿以偿,是不是很简便、快捷?快动手试一试吧!。 编辑 陈小娜 2.1.2非标准数字影像设备上网直接接入模块 该模块用于解决一部分带有数字网络接口,但又仅符合生产厂家内部标准的设备上网问题。以往,生产数字影像设备的众多厂家由于没有统一的上网标准,使医院相当一部分数字影像设备难以上网,因此,该模块须克服许多困难和问题,在实践中逐渐地、局部性地予以实现和完善。 2.1.3 非标准数字影像设备上网间接接入模块 此模块专用于对医院过去引进的,生产厂商根本就没提供上网接口的一部分早期非标准数字影像设备,通过对影像重新A/D的方法让它们间接上网。 2.2 数字影像会诊中心模块 建立医院数字影像局域网与PA CS系统,其核心意义在于能够方便地汇集各种各类检查的数字影像,提供给专家进行综合会诊。因此,在PA CS局域网基础上,建立硬件设施过硬、图像显示清晰、显示技术优良,能同时方便地显示各种数字诊断影像的数字化影像会诊中心,在很大程度上将代表整个项目的临床诊断价值与水平。2.3 数字影像局域网网络工程模块 网络工程模块包括:网络服务器、数据存储与管理软件系统模式、网络布局与工作站分布、网络构架与布线等等。此部分模块归属于计算机Intr anet信息网络工程范畴,对当前医院影像局域网In-tr anet的软硬件性能指标及设备系统的可扩展性具有决定性的作用。 2.4 各工程模块的信息流与局域网系统P ACS软件模块 如果说硬件是骨架,软件就是血液。建立了良好的硬件平台以后,必须要建立合理的网络信息流向和配以优良的PA CS 软件系统,才能保证整个系统能够正常运行。因此,这是建立数字影像会诊中心时,必须很好建立的又一个重要模块。 总之,医院建立数字影像局域网,并逐步过度到最终院际广域网连接已是二十一世纪医院计算机网络发展的必然趋势。我们必须紧跟这一时代发展潮流,扎扎实实从手上工作做起,理清各个系统模块关系,做好各方面技术储备,为医院建立数字影像局域网及P A CS系统作好准备。 编辑 杨立新 142?医学信息2001年3月第14卷第3期 Internet应用●

引物设计原则(含Realtime引物)

1.引物最好在模板cDNA的保守区内设计。 DNA序列的保守区是通过物种间相似序列的比较确定的。在NCBI上搜索不同物种的同一基因,通过序列分析软件(比如DNAman)比对(Alignment),各基因相同的序列就是该基因的保守区。 2.引物长度一般在15~30碱基之间。 引物长度(primer length)常用的是18-27 bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA 聚合酶进行反应。 3.引物GC含量在40%~60%之间,Tm值最好接近72℃。 GC含量(composition)过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。另外,上下游引物的Tm值(melting temperature)是寡核苷酸的解链温度,即在一定盐浓度条件下,50%寡核苷酸双链解链的温度。有效启动温度,一般高于Tm值5~10℃。若按公式Tm= 4(G+C)+2(A+T)估计引物的Tm值,则有效引物的Tm为55~80℃,其Tm 值最好接近72℃以使复性条件最佳。 4.引物3′端要避开密码子的第3位。 如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。 5.引物3′端不能选择A,最好选择T。 引物3′端错配时,不同碱基引发效率存在着很大的差异,当末位的碱基为A时,即使在错配的情况下,也能有引发链的合成,而当末位链为T时,错配的引发效率大大降低,G、C 错配的引发效率介于A、T之间,所以3′端最好选择T。 6. 碱基要随机分布。 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(False priming)。降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,因这样会使引物在GC富集序列区错误引发。 7. 引物自身及引物之间不应存在互补序列。 引物自身不应存在互补序列,否则引物自身会折叠成发夹结构(Hairpin)使引物本身复性。这种二级结构会因空间位阻而影响引物与模板的复性结合。引物自身不能有连续4个碱基的互补。 两引物之间也不应具有互补性,尤其应避免3′ 端的互补重叠以防止引物二聚体(Dimer与Cross dimer)的形成。引物之间不能有连续4个碱基的互补。 引物二聚体及发夹结构如果不可避免的话,应尽量使其△G值不要过高(应小于4.5kcal/mol)。否则易导致产生引物二聚体带,并且降低引物有效浓度而使PCR 反应不能正常进行。 8. 引物5′ 端和中间△G值应该相对较高,而3′ 端△G值较低。 △G值是指DNA 双链形成所需的自由能,它反映了双链结构内部碱基对的相对稳定性,△G 值越大,则双链越稳定。应当选用5′ 端和中间△G值相对较高,而3′ 端△G值较低(绝对值不超过9)的引物。引物3′ 端的△G 值过高,容易在错配位点形成双链结构并引发DNA 聚合反应。(不同位置的△G值可以用Oligo 6软件进行分析) 9.引物的5′端可以修饰,而3′端不可修饰。 引物的5′ 端决定着PCR产物的长度,它对扩增特异性影响不大。因此,可以被修饰而不影响扩增的特异性。引物5′ 端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu3+等;引入蛋白质结合DNA序列;引入点突变、插入突变、缺失突变序列;引入启动子序列等。引物的延伸是从3′ 端开始的,不能进行任何修饰。3′ 端也不能有形成任何二级结构可能。 10. 扩增产物的单链不能形成二级结构。

引物纯化方式HAP、PAGE、DHLPC的区别

引物纯化方式HAP、PAGE、DHLPC等的区别 纯化方式: 一OPC纯化 OPC纯化是使用一种叫Cartridge的反向层析柱(美国Waters 公司生产 ),根据DNA保护基(DMTr基)和层析柱中树脂间的亲和力作用的原理进行纯化目的DNA片段。OPC法纯化的DNA纯度大于90%,适用于PCR用引物,DNA测序用引物,各种探针等。此级别对短链较为有效。具体操作方法如下。 1. DNA 合成是用全自动DNA 合成仪从3‘ →5‘ 进行人工合成的。在刚合成完的DNA 的5‘ 端的碱基上带有一个大型的疏水性保护基团DMTr 基,而中间产物的短链杂质DNA 中不具有DMTr 基。利用这一性质进行目的DNA 的纯化。 2. 把粗样DNA 加入Sep-Pak Cartridge 柱上(简易反相柱) 。此时,所有的合成产物全吸附于反相柱上。 3. 用甲醇清洗反相柱。此时,吸附能力强的带有DMTr 保护基的目的DNA 仍吸附于反相柱上,而短链杂质DNA 片段全部被冲走。 4. 向反相柱上加入强酸TFA (Trifluoroacetic acid) , 切断DMTr 保护基和目的DNA 之间的连接。 5. 再用乙腈洗脱目的DNA 。此时回收出来的目的DNA 的纯度能达到95% 以上。可用于DNA 测序等。 二 PAGE纯化 PAGE纯化法是使用变性聚丙烯酰胺凝胶电泳,对DNA片段进行分离,然后从凝胶中回收目的DNA的方法。PAGE纯化法也是一种非常有效的DNA纯化方法,纯化后的纯度大于95%,对长链Oligo DNA的纯化特别有效。适用于PCR用引物,DNA测需用引物,各种探针等。 三 HPLC纯化 采用高效液相色谱纯化,产物纯度极高,可达99%。适用于各种基因工程试验,特别是:荧光标记DNA、长链DNA、PCR克隆,定点突变,人工合成基因等。 HPLC 纯化 HPLC 纯化是使用高效液相色谱仪,对目的DNA 片段进行纯化的方法。HPLC 纯化的设备投资大,生产成本高,但使用本法纯化的 DNA 片段纯度极高,大于99% 。HPLC 纯化的操作方法如下。 1. 合成高纯度级DNA 制品时,在全自动DNA 合成仪上,需自动脱去DMTr 保护基。 2. 将粗样DNA 注入分离性能极强的离子交换高效液相色谱系统,进行粗检测,确认主峰位置、目的DNA 含量等。 3. 增加注样量,回收主峰平头部分。此时可达到去除杂质短链DNA ,纯化目的DNA 的目的。为了确保DNA 的纯度,一般一次的纯化量为 1 OD 左右。 4. 将回收后的DNA 进行纯度检测,确认纯度的可靠性。

荧光定量PCR引物设计原则.

1.引物应用核酸系列保守区内设计并具有特异性。最好位于编码区5’端的300-400bp区域 内,可以用DNAman,Alignment 软件看看结果。 2. 产物不能形成二级结构(自由能小于58.61KJ/mol)。 3.引物长度一般在17-25碱基之间,上下游引物不能相差太大。 4.G+C含量在40%~60%之间,45-55%最佳。 5.碱基要随机分布,尽量均匀。 6.引物自身不能有连续4个碱基的互补。 7.引物之间不能有连续4个碱基的互补。 8.引物5′端可以修饰。 9.3′端不可修饰,而且要避开AT,GC rich的区域,避开T/C,A/G连续结构(2-3个)。 10. 引物3′端要避开密码子的第3位。 11.引物整体设计自由能分布5‘端大于3’端,且3‘端自由能最好小于9KJ/mol。 可用oligo 6 软件进行比对看结果的情况。 12.做荧光定量产物长度80-150bp最好,最长是300bp. 13.引物设计避免DNA污染,最好跨外显子接头区。 14.引物与非特异性扩增序列的同源性最好小于70%或者有8个互补碱基同源。 15.查看有无假基因的存在。假基因就是无功能的DNA序列,与需要扩增的目的片段长 度相似。 16.TM值在58-62度之间。 17.引物设计的软件Primer 5.0 有专门针对荧光的。 设计的目的是在两个目标间取得平衡:扩增特异性和扩增效率。引物分析软件将试图通过使用每一引物设计变化的预定值在这两个目标间取得平衡。设计引用有一些需要注意的基本原理: ①引物长度 一般引物长度为18~30碱基。总的说来,决定引物退火温度(Tm值)最重要的因素就是引物的长度。有以下公式可以用于粗略计算引物的退火温度。 在引物长度小于20bp时:[4(G+C)+2(A+T)]-5℃ 在引物长度大于20bp时:62.3℃+0.41℃(%G-C)-500/length-5℃ 另外有许多软件也可以对退火温度进行计算,其计算原理会各有不同,因此有时计算出的数值可能会有少量差距。为了优化PCR反应,使用确保退火温度不低于54℃的最短的引物可获得最好的效率和特异性。

lamp引物设计实例

核酸环介导等温扩增技术(LAMP)引物设计与实例Time:2009-12-07 PM 14:52 Author:bioer Hits: 1459 times 烟头整理 LAMP的特点 LAMP与以往的核酸扩增方法相比具有如下优点: (1)操作简单 LAMP核酸扩增是在等温条件下进行,对于中小医院只需要水浴锅即可,产物检测用肉眼观察或浊度仪检测沉淀浊度即可判断。对于RNA的扩增只需要在反应体系中加入逆转录酶就可同步进行(RT-LAMP),不需要特殊的试剂及仪器。 (2)快速高效 因为不需要预先的双链DNA热变性,避免了温度循环而造成的时间损失。核酸扩增在l h内均可完成,添加环状引物后时间可以节省1/2,多数情况在20-30 rain均可检测到扩增产物。且产物可以扩增至109倍,达0.5 mg/mL。应用专门的浊度仪可以达到实时定量检测。 (3)高特异性 由于是针对靶序列6个区域设计的4种特异性引物。6个区域中任何区域与引物不匹配均不能进行核酸扩增。故其特异性极高。 (4)高灵敏度 对于病毒扩增模板可达几个拷贝,比PCR高出数量级的差异。 缺点: 由于LAMP扩增是链置换合成,靶序列长度最好在300 bp以内。>500 bp则较难扩增。故不能进行长链DNA的扩增。由于灵敏度高。极易受到污染而产生假阳性结果。故要特别注意严谨操作,以及在产物的回收鉴定、克隆、单链分离方面均逊色于传统的PCR 方法。 引物设计实例 LAMP引物设计的在线网站(http://primerexplorer.jp/e/),只要导入靶基因就能自动生成成组引物。 以某一微生物的鞭毛基因为例讲解一下LAMP引物设计的过程: 首先单击浏览按钮选择靶基因序列文件,靶序列默认的是小于22 kbp。支持三个类型的文件,普通文本格式(仅含序列), FASTA格式和GenBank 格式文件。

引物合成的详解1引物是如何合成的目前引物合成基本采用固相亚

引物合成的详解 1.引物是如何合成的? 目前引物合成基本采用固相亚磷酰胺三酯法。DNA合成仪有很多种, 主要都是由ABI/PE 公司生产,无论采用什么机器合成,合成的原理都相同,主要差别在于合成产率的高低,试剂消耗量的不同和单个循环用时的多少。 亚磷酰胺三酯法合成DNA片段,具有高效、快速的偶联以及起始反应物比较稳定的特点。亚磷酰胺三酯法是将DNA固定在固相载体上完成DNA链的合成的,合成的方向是由待合成引物的3′端向5′端合成的,相邻的核苷酸通过3′→5′磷酸二酯键连接。 第一步是将预先连接在固相载体CPG上的活性基团被保护的核苷酸与三氯乙酸反应,脱去其5′-羟基的保护基团DMT,获得游离的5′-羟基。 第二步,合成DNA的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3′端被活化,5′-羟基仍然被DMT保护,与溶液中游离的5′-羟基发生缩合反应。 第三步,带帽(capping)反应,缩合反应中可能有极少数5′-羟基没有参加反应(少于2%),用乙酸酐和1-甲基咪唑终止其后继续发生反应,这种短片段可以在纯化时分离掉。 第四步,在氧化剂碘的作用下,亚磷酰形式转变为更稳定的磷酸三酯。 经过以上四个步骤,一个脱氧核苷酸被连接到固相载体的核苷酸上。再以三氯乙酸脱去它的5′-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。合成过程中可以观察TCA处理阶段的颜色判定合成效率。 通过氨水高温处理,连接在CPG上的引物被切下来,通过OPC, PAGE等手段纯化引物,成品引物用C18浓缩,脱盐,沉淀。沉淀后的引物用水悬浮,测定OD260定量,根据定单要求分装。 2.引物纯化方式有哪些,如何选择? ◆C18柱脱盐:有人称其为简易反相柱,它对DNA有特异性的吸附,可以被有机溶解洗脱,但不会被水洗脱,所以能有效地去除盐分。它不能有效去除比目的片段短的小片段。实际上,它是一种脱盐的作用。这种方法一般不会对普通PCR反应产生影响。对于需要用于测序、克隆的引物不能使用这个级别。 ◆OPC纯化:OPC纯化是根据DNA保护基(DMTr基)和Cartridge柱中树脂间的亲合力作用的原理进行纯化目的DNA片段。OPC法纯化的DNA纯度大于95%。适用于40mer以下引物的纯化。 ◆PAGE纯:PAGE纯化法是使用变性聚丙烯酰胺凝胶电泳,对DNA片段进行分离,然后从凝胶中回收目的DNA的方法。PAGE纯化法也是一种非常有效的DNA纯化方法,纯化后的DNA纯度大于95%,对长链Oligo DNA (大于50mer)的纯化特别有效。 ◆HPLC纯化:HPLC纯化是使用高效液相色谱的原理,对DNA片段进行纯化。纯度可以大于99%。主要用于短链和修饰引物的纯化。该法的弱点是成本较高,批量生产效率不高。 3.引物的OD数如何定量? 答:引物合成引物OD数是这样测定的:用紫外分光光度计,波长260nm,石英比色杯,光程为1厘米,测定溶液的光密度。测定时溶液的光密度最好稀释到0.2-1.0之间。DNA干粉用一定体积的水充分振荡溶解以后,用1ml水稀释测OD值。需要根据稀释倍数换算出母液的OD值。 4.需要什么级别的引物? 答:引物常用的纯化方式C18脱盐,OPC纯化,PAGE纯化,HPLC纯化。根据实验需要,确定订购引物的纯度级别。 应用引物长度要求纯度级别要求 一般PCR扩增<45 base OPC 一般PCR扩增>45 base PAGE

简并引物设计原则

The central role of UDPGDH played in capsule and other polysaccharides synthesis. KPS, capsule polysaccharide; LPS,lipopolysaccharide 简并引物设计方法 (1)利用NCBI搜索不同物种中同一目的基因的蛋白质或cDNA编码的氨基酸序列因为密码子的关系,不同的核苷酸序列可能表达的氨基酸序列是相同的,所以氨基酸序列才是真正保守的。首先利用NCBI的Entrez检索系统,查找到一条相关序列即可。随后利用这一序列使用BLASTP(通过蛋白查蛋白),在整个NR数据库中查找与之相似的氨基酸序列。 (2)对所有的序列进行多序列比对将搜索到的同一基因的不同氨基酸序列进行多序列比对,可选工具有Clustal W/X,也可在线分析。所有序列的共有部分将会显示出来。“*”表示保守,“:”表示次保守。 (3)确定合适的保守区域设计简并引物至少需要上下游各有一个保守区域,且两个保守区域相距50~400个氨基酸残基为宜,使得PCR产物在150~1200bp 之间,最重要的是每一个保守区域至少有6个氨基酸的保守区,因为每条引物至少18bp左右。 若比对结果保守性不是很强很可能找不到6个氨基酸序列的保守区,这时可以根据物种的亲缘关系,选择亲缘关系近的物种进行二次比对,若保守性仍达不到要求,则需进行三次比对,总之,究竟要选多少序列来比对,要根据前一次的结果反复调整。最终目的就是有两个6个氨基酸且两者间距离合适的保守区域。 (4)利用软件设计引物当得到保守区域后,就可以利用专业的软件来设计引物了,其中Primer 5.0 支持简并引物的设计,将参与多序列比对的序列中的任一条导入Primer 5.0 中,将其翻译成核苷酸序列,该序列群可用一条有简并性的核苷酸链来表示(其中R=A/G,Y=C/T,M=A/C,K=G/T,S=C/G,W=A/C/T,B=C/G/T,V=A/C/G,D=A/G/T,N=A/C/G/T,该具有简并性的核苷酸链必然包含上一步中找到的氨基酸保守区域的对应部分,在Primer 5.0 中修改参数,令其在两个距离合适的保守的nt区域内寻找引物对,总之要保证上下游引物都落在该简并链的保守区域内,结果会有数对,分数越高越好。 (5)对引物的修饰若得到的引物为: 5-NAGSGNGCDTTANCABK-3 则简并度=4×2×4×3×4×3×2=2304,很明显该条引物的简并度很高不利于PCR,可以通过次黄嘌呤代替N(因为次黄嘌呤可以很好的和4种碱基配对)和根据物种密码子偏好这两种方法来降低简并度。 这样设计出来的简并引物对,适用于比对的氨基酸序列所属物种及与这些物种分类地位相同的其他物种。 简并引物设计原则

引物设计1

1-2890(引物1) #1: Product of length 640 (rating: 171) Contains region of the molecule from 1 to 640 Tm: 72.1 C TaOpt: 48.8 C GC: 32.3 Sense Primer: CCTGGTTAATCCAAATCAC Similarity: 100.0% Length: 19 Tm: 44.1 C GC: 42.1 dH: -142.0 kcal/mol dS: -372.4 cal/mol dG: -29.2 kcal/mol Antisense Primer: GACAGGCCCTAATTAAGTT Similarity: 100.0% Length: 20 Tm: 45.0 C GC: 42.1 dH: -158.0 kcal/mol dS: -418.4 cal/mol dG: -31.5 kcal/mol Tm Difference: 0.9 GC Difference: 0 #1: Product of length 540 (rating: 171) Contains region of the molecule from 1 to 540 Tm: 72.2 C TaOpt: 49.4 C GC: 33.1 Sense Primer: CCTGGTTAATCCAAATCACT Similarity: 100.0% Length: 20 Tm: 45.8 C GC: 40.0 dH: -149.8 kcal/mol dS: -393.2 cal/mol dG: -30.8 kcal/mol Antisense Primer: ATAAGATTTGAGGTCAGCCA Similarity: 100.0% Length: 20 Tm: 46.4 C GC: 40.0 dH: -147.7 kcal/mol dS: -386.3 cal/mol dG: -30.7 kcal/mol Tm Difference: 0.6 GC Difference: 0.0 1-2890(引物2) #1: Product of length 603 (rating: 171) Contains region of the molecule from 514 to 1116 Tm: 73.9 C TaOpt: 50.3 C GC: 37.0 Sense Primer: TTGAAGATGGCTGACCT Similarity: 100.0% Length: 18 Tm: 42 C GC: 47.1 dH: -129.6 kcal/mol dS: -335.0 cal/mol dG: -27.9 kcal/mol Antisense Primer: GGAGGCCCTTTAACTTAA

引物纯化方法介绍

武汉安基生物科技有限公司 引物纯化方法介绍 1) RPC 纯化,它对DNA 有特异性的吸附,可以被有机溶液洗脱,但不会被水洗脱,所以能有效地去除盐分,但是它不能有效去除比目的片段短的小片段。这种方法处理的产物中虽然含有比目的片段少5'端一个或两个或多个碱基的产物,却一般不会对普通PCR 反应产生影响。但是对于需要用于测序、用于克隆的引物不能使用这个级别。 2) OPC 柱纯化,OPC 柱中装有对DMT 具有亲和力的树脂,合成DNA 片段时保留5'端最后一个碱基上的DMT,所有合成产物吸附在O PC 柱上以后,用稀的有机溶剂洗柱,带有DMT 的片段吸附能力强,不易被洗脱,不带有DMT 的片段吸附能力弱,被洗脱。然后用三氟乙酸TFA 或三氯乙酸TCA 脱去DMT 基团,再用浓一点的有机溶剂洗脱DNA。这种方法的优点是快速,简易。但是其专一性吸附DMT 能力有限,不免仍然有短片段带入的可能,而且负载量小。特别是对长于25碱基以上的片段纯化效果不好。 3) HPLC 纯化,这是国外厂家常常使用的办法。它是依据不同大小的片段带有的净荷多少来分离产物的。合成粗产物中不同长度的DNA 片段决定了它带有不同的净电荷,较长的片段带有高电荷比带电荷低的短片段在离子交换柱中流动得慢。先将粗产物检测主峰位置,再增加加样量,回收主峰位置的部分。它的优点是自动化程度高、省人力;缺点是纯化量小、不能纯化长片段(对于长于40碱基的片段,无法纯化)。 4) PAGE 纯化,几乎所有专业书籍上介绍的最佳纯化方法。 它是依据DNA 片段在变性聚丙烯酰胺凝胶中电泳时的迁移率不同来分离大小片段的。由于各分子所带电荷和大小不同,综合影响其在凝胶中的迁移速度,大片段迁移得慢,经过一定时间的电泳,大小片段会分开,然后停止电泳,剥离凝胶,置于荧光TLC 板上在紫外灯下切割目的条带,浸泡碎胶,并从泡胶的盐溶液中回收目的DNA。优点是纯化效果很好、尤其是纯化长链效果更好、而且是可以直观看见DNA 片段合成情况的质控环节。通常认为的缺点是实验室水平的PAGE 纯化实验步骤多费人工、电泳及后处理过程样品损失量大、电泳装置局限或电泳时间如果不够会影响纯化效果。但这些缺点完全可以克服。我们通过扩大规模流水作业使实验过程便于掌握和节

分子生物学--引物设计

PCR引物设计与分析 摘要:本文简单的介绍了PCR技术以及PCR引物设计原则和技巧,并以一段序列为例,介绍两种引物设计软件的使用方法。一般性引物自动搜索可采用“Premier Primer 5”软件,而引物的评价则可采用“Oligo 6”软件。 关键词:PCR;引物设计;软件; 1PCR 聚合酶链式反应(英文全称:Polymerase Chain Reaction),简称PCR。聚合酶链式反应(PCR)是体外酶促合成特异DNA片段的一种方法,由高温变性、低温退火(复性)及适温延伸等几步反应组成一个周期,循环进行,使目的DNA 得以迅速扩增,具有特异性强、灵敏度高、操作简便、省时等特点。它不仅可用于基因分离、克隆和核酸序列分析等基础研究,还可用于疾病的诊断或任何有DNA,RNA的地方。 PCR又称无细胞分子克隆或特异性DNA序列体外引物定向酶促扩增技术。 类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。PCR由变性--退火(复性)--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至90~95℃一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55~60℃,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在DNA聚合酶的作用下,于70~75℃,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。 参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+。引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。 2引物设计原则及注意

PCR引物设计原则

PCR引物设计原则 引物(Primer)是人工合成的两段寡核苷酸序列。 1、引物的长度一般为15-30bp,常用的是18-27bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。 2、G十C含量:应在40%-60%之间,PCR扩增中的复性温度一般是较低Tm 值引物的Tm值减去5-10度。引物长度小于20时,其Tm恒等于4(G十C)十2(A十T)。 3、碱基分布的随机性:应避免连续出现4个以上的单一碱基。尤其是不应在其3’端出现超过3个的连续G或C,否则会使引物在G十C富集序列区错误引发. 4、引物自身:不能含有自身互补序列,否则会形成发夹样二级结构. 5、引物之间:两个引物之间不应有多于4个的互补或同源碱基,不然会形成引物二聚体,尤应避免3’端的互补重叠。引物3’端最好选T,错配的几率与A 相比大大的降低了。G、C之间错配的概率小于A、T. 6、引物的5’端可以修饰,而3’端不能进行修饰。5’端的修饰包括:加酶切位点,标记生物素,荧光,地高辛、Eu3+等,引入蛋白质结合的DNA序列,引入点突变,插入突变、缺失突变序列、引入启动子序列。因为引物的延伸是从3’端开始的,因而3’端不能进行任何修饰,另外3’端也不能有形成任何二

级结构的可能。 如何设计引物 不同的核苷酸序列表达的氨基酸氨基酸序列是相同的,所以氨基酸序列才是真正保守的。 引物最好在模板cDNA的保守区域内设计(DNA的保守区是通过物种间相似序列的比较确定的,在NCBI上搜索不同物种的同一基因,通过序列分析软件比对(Alignment),各基因相同的序列就是该基因的保守区)。 PCR引物设计 PCR反应中有两条引物,即5′端引物和3′引物。设计引物时以一条DNA单链为基准(常以信息链为基准),5′端引物与位于待扩增片段5′端上的一小段DNA序列相同;3′端引物与位于待扩增片段3′端的一小段DNA序列互补。 引物设计软件 Primer Premier5.0 (自动搜索)* vOligo6 (引物评价) vVector NTI Suit vDNAsis vOmiga vDNAstar vPrimer3 (在线服务)

DNA测序结果分析比对(实例)

DNA测序结果分析比对(实例) 关键词:dna测序结果2013-08-22 11:59来源:互联网点击次数:14423 从测序公司得到的一份DNA测序结果通常包含.seq格式的测序结果序列文本和.ab1格式的测序图两个文件,下面是一份测序结果的实例: CYP3A4-E1-1-1(E1B).ab1 CYP3A4-E1-1-1(E1B).seq .seq文件可以用系统自带的记事本程序打开,.ab1文件需要用专门的软件打开。软件名称:Chromas 软件Chromas下载 .seq文件打开后如下图: .ab1文件打开后如下图: 通常一份测序结果图由红、黑、绿和蓝色测序峰组成,代表不同的碱基序列。测序图的两端(下图原图的后半段被剪切掉了)大约50个碱

基的测序图部分通常杂质的干扰较大,无法判读,这是正常现象。这也提醒我们在做引物设计时,要避免将所研究的位点离PCR序列的两端太近(通常要大于50个碱基距离),以免测序后难以分析比对。 我的课题是研究基因多态性的,因此下面要介绍的内容也主要以判读测序图中的等位基因突变位点为主。 实际上,要在一份测序图中找到真正确实的等位基因多态位点并不是一件容易的事情。一般认为等位基因位点假如在测序图上出现像套叠的两个峰,就是杂合子位点。实际比对后才知道,情况并非那么简单,下面测序图中标出的两个套峰均不是杂合子位点,如图并说明如下:

说明: 第一组套峰,两峰的轴线并不在同一位置,左侧的T峰是干扰峰;第二组套峰,虽两峰轴线位置相同,但两峰的位置太靠近了,不是杂合子峰,蓝色的C峰是干扰峰通常的杂合子峰由一高一略低的两个轴线相同的峰组成,此处的序列被机器误判为“C”,实际的序列应为“A”,通常一个高大碱基峰的前面 1~2个位点很容易产生一个相同碱基的干扰峰,峰的高度大约是高大碱基峰的1/2,离得越近受干扰越大。 一个摸索出来的规律是:主峰通常在干扰峰的右侧,干扰峰并不一定比主峰低。最关键的一点是一定要拿疑似为杂合子峰的测序图位点与测序结果的文本序列和基因库中的比对结果相比较;一个位点的多个样本相比较;你得出的该位点的突变率与权威文献或数据库中的突变率相比较。 通常,对于一个疑似突变位点来说,即使是国际上权威组织大样本的测序结果中都没有报道的话,那么单纯通过测序结果就判定它是突变点,是并不严谨的,因一份 PCR产物中各个碱基的实际含量并不相同,很难避免不产生误差的。对于一个未知突变位点的发现,通常还需要用到更精确的酶切技术。 (责任编辑:大汉昆仑王)

引物设计注意事项

引物设计 首先引物与模板的序列要紧密互补, 其次引物与引物之间避免形成稳定的二聚体或发夹结构, 再次引物不能在模板的非目的位点引发DNA聚合反应(即错配)。 引物设计应注意如下要点: 1. 引物的长度一般为15-30 bp,常用的是18-27 (22)bp,但不应大于 38,因为过长会导致其延伸温度大于74℃,不适于Taq DNA聚合酶进行反应。 2. 碱基要随机分布。 引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(False priming)。降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,如GGG或CCC,因这样会使引物在GC富集序列区错误引发。 3. 引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。不同 的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。而当末位链为T时,错配的引发效率大大降低,G、C错配的引发效率介于A、T之间,所以3′端最好选择T。 非配对结构最好出现在引物中间。 另外,引物二聚体或发夹结构也可能导致PCR反应失败,3’端尽量不含互补碱基。 5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。 4. 引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。 上下游引物的GC含量不能相差太大。 5. 引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。 Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo 软件中使用的是最邻近法。 6. ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱 基对的相对稳定性。应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG值相对较高的引物。引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。 7. 引物二聚体及发夹结构的能值过高(超过 4.5kcal/mol)易导致产 生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。

相关主题