搜档网
当前位置:搜档网 › 高数上册归纳公式篇(完整)

高数上册归纳公式篇(完整)

高数上册归纳公式篇(完整)
高数上册归纳公式篇(完整)

公式篇

目录

一、函数与极限

1.常用双曲函数

2.常用等价无穷小

3.两个重要极限

二、导数与微分

1.常用三角函数与反三角函数的导数公式

2.n阶导数公式

3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较

4.参数方程求导公式

5.微分近似计算

三、微分中值定理与导数的应用

1.一阶中值定理

2.高阶中值定理

3.部分函数使用麦克劳林公式展开

4.曲率

四、定积分

1.部分三角函数的不定积分

2.几个简单分式的不定积分

五、不定积分

1.利用定积分计算极限

2.积分上限函数的导数

3.牛顿-莱布尼茨公式和积分中值定理

4.三角相关定积分

5.典型反常积分的敛散性

6.Γ函数(选)

六、定积分的应用

1.平面图形面积

2.体积

3.弧微分公式

七、微分方程

1.可降阶方程

2.变系数线性微分方程

3.常系数齐次线性方程的通解

4.二阶常系数非齐次线性方程(特定形式)的特解形式

5.特殊形式方程(选)

一、函数与极限

1.常用双曲函数( sh(x).ch(x).th(x) )

2.常用等价无穷小(x →0时)

3.两个重要极限

二、导数与微分

1.常用三角函数与反三角函数的导数公式

(凡是“余”求导都带负号)

2.n 阶导数公式

特别地,若n =λ

3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较

函数的0阶导数可视为函数本身

4.参数方程求导公式

5.微分近似计算(x 很小时)

(注意与拉格朗日中值定理比较) 常用:

(与等价无穷小相联记忆)

三、微分中值定理与导数的应用

1.一阶中值定理 ()(x f 在],[b a 连续,),(b a 可导 ) 罗尔定理 ( 端点值相等)()(b f a f = )

拉格朗日中值定理

柯西中值定理 (0)('≠x g ≠0 )

2.高阶中值定理 ()(x f 在),(b a 上有直到)1(+n 阶导数 ) 泰勒中值定理

n R 为余项

(ξ在x 和0x 之间)

令00=x ,得到麦克劳林公式

3.部分函数使用麦克劳林公式展开(皮亚诺型余项)

4.曲率

四、不定积分

1.部分三角函数的不定积分

2.几个简单分式的不定积分

五、定积分

1.利用定积分计算极限

2.积分上限函数的导数

推广得

3.牛顿-莱布尼茨公式和积分中值定理(1)牛顿-莱布尼茨公式(微积分基本公式)

(2)积分中值定理 函数)(x f 在],[b a 上可积

)( f 称为)(x f 在],[b a 上的平均值

4.三角相关定积分

三角函数系的正交性

5.典型反常积分的敛散性 (1)无穷限的反常积分

推论1

(2)瑕积分(无界函数的反常积分)

推论2

Convergence:收敛,Divergence:发散

6.Γ函数(选)

(1) 递推公式:

推论:

(2)欧拉反射公式(余元公式)

六、定积分的应用 1.平面图形面积 (1)直角坐标:

由曲线0)(≥=x f y 及b x a x ==,与x 轴围成图形

(2)极坐标:

有曲线)(θφρ=及βθαθ==,围成图形

2.体积

(1)绕x 轴旋转体体积

(2)平行截面面积已知的立体的体积

平行截面(与x 轴垂直)面积为)(x A

3.弧微分公式 (1)直角坐标:

(2)极坐标:

七、微分方程 1.可降阶方程 (1))()

(x f y

n =型

n 次积分得

(2))',("y x f y =型

作换元'y p =得),('p x f p = 得通解),(1C x p ?= 则21),(C dx C x y +=?

?

(3))',("y y f y =型

作换元'y p =,),(,"p y f dx dp p dx dp p dx dp y === 得通解dx

dy

C y p ==),(1?

21),(C x C y dy

+=??

2.变系数线性微分方程

(1)一阶线性微分方程:)()('x Q y x P y =+

对应齐次方程: 0)('=+y x P y 的通解为dx

x P Ce Y ?=-)(

原方程)()('x Q y x P y =+的通解为

dx

x P dx

x P e C dx e x Q y ?+?

=-?)()())((

一阶线性非齐次方程的通解等于相应齐次方程的通解和非齐次方程一个特解的和

(2)高阶线性微分方程

)()(')()(1)

1(1

)(x Q y x P y x P y x P y n n n n =++++-- 对应齐次方程为0)(')()(1)1(1)(=++++--y x P y x P y

x P y n n n n 若)(,),(),(21x y x y x y n 为齐次方程n 个线性无关解

则齐次方程的通解为)()()()(2211x y C x y C x y C x Y n n +++= 若)(*x y 为非齐次方程的一个特解 则非齐次方程的通解为)(*)(x y x Y y +=

3.常系数齐次线性方程的通解 (1)二阶方程0"=++q py y 特征方程为02

=++q pr r

①0>?,两个不等实根a

b r a b r 2,221?

+-=?--= 通解为x

r x

r e C e C y 2121+=

②0=?,两个相等实根2

21p r r -== 通解为x

r e x C C y 1)(21+=

③0

,2,,21?

-=-=-=+=βαβαβαp

i r i r 通解为)sin cos (21x C x C e y x ββα+=

(2)高阶方程0'1)1(1)(=++++--y p y p y p y n n n n 特征方程为0111=++++--n n n n p r p r p r 对于其中的根r 的对应项 ①实根r 一个单实根:rx

Ce

一个k 重实根: rx k k e x C x C C )(121-+++ ②复根i r βα±=2,1

一对单复根:)sin cos (21x C x C e x ββα+

一对k 重复根: ]sin )(cos )[(121121x x D x D D x x C x C C e k k k k x ββα--+++++++ 通解为对应项之和

4.二阶常系数非齐次线性方程(特定形式)的特解形式

)('"x f qy py y =++,对应的特征方程为02=++q pr r

(1))()(x P e x f m x λ= )(x P m 为x 的m 次多项式 特解形式为x m k e x Q x y λ)(*=

)2( )(1 )(0为特征重根为特征单根非特征根λλλ=k

)(x Q m 是x 的m 次多项式

(2)]sin )(cos )([)()

2()1(x x P x x P e x f n l x ωωλ+= )(),()2()1(x P x P n l 分别为x 的n l ,次多项式

特解形式为x

m m k e x x R x x Q x y λωω]sin )(cos )([*+=

},max{n l m =,)(),(x R x Q m m 为x 的m 次多项式

记i z ωλ+=

)(1 )(0为特征复根非特征根z z k =

5.特殊形式方程(选) (1)伯努利方程

n y x Q y x P dx

dy

)()(=+ (1,0≠n ) )()(1x Q y x P dx dy y n n =+--

令n y z -=1,dx dy y n dx dz n --=)1( )()1()()1(x Q n z x P n dx

dz

-=-+ 得通解),(C x z ?=

n

C x y -=11)]

,([?

(2)欧拉方程

)('1)1(11)(x f y p xy p y x p y x n n n n n n =++++---

作变换t

e x =或x t ln =,记dt

d D =

y

k D D D y x y D D dt dy dt

y d dx y d x y x Dy dt

dy dx dt dt dy x dx dy x

xy k k )1()1()1("')(222

2

22+--=-=-====== 将上各式代入原方程得到

)(111t f y a Dy a y D a y D n n n n =++++--

此为常系数线性微分方程 可得通解),,,,(21n C C C t y ?=

即可得原方程通解),,,,(21n C C C x y Φ=

高等数学上公式

学姐偷懒直接从网上下了一份公式总结,然后按照咱们的考试要求改了一下,特别诡异的那些公式我都删掉了,剩下的都是可能会出现的,哪些必须记哪些可以记也都写在后面了,有的出题形式我也加在知识点后面了,可以做个参考。这上面的知识点不很全,但应付考试差不多了,上面没有的学霸们可以自己再看看书哈。重点关注黑体字!!!电子版已发各部长,可以找部长要。祝大家都能考个好成绩~ ——魏亚杰 高等数学(一)上 公式总结 第一章 一元函数的极限与连续 1、一些初等函数公式:(孩子们。没办法,背吧) sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1cot()cot cot αβαβαβ αβαβαβαβ αβαβ αβαββα±=±±=±±= ??±=±和差角公式: sin sin 2sin cos 22 sin sin 2cos sin 22 cos cos 2cos cos 22 cos cos 2sin sin 22 αβ αβ αβαβαβ αβαβαβαβαβαβαβ+-+=+--=+-+=+--=和差化积公式: 1 sin cos [sin()sin()] 21 cos sin [sin()sin()] 21 cos cos [cos()cos()] 21 sin sin [cos()cos()] 2 αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式: 222222sin 22sin cos cos 22cos 1 12sin cos sin 2tan tan 21tan cot 1 cot 22cot αααααααα α ααααα ==-=-=-= --= 倍角公式:

(完整版)同济大学高等数学上第七版教学大纲(64学时)

福建警察学院 《高等数学一》课程教学大纲 课程名称:高等数学一 课程编号: 学分:4 适用对象: 一、课程的地位、教学目标和基本要求 (一)课程地位 高等数学是各专业必修的一门重要的基础理论课程,它具有高度的抽象性、严密的逻辑性和应用的广泛性,对培养和提高学生的思维素质、创新能力、科学精神、治学态度以及用数学解决实际问题的能力都有着非常重要的作用。高等数学课程不仅仅是学习后继课程必不可少的基础,也是培养理性思维的重要载体,在培养学生数学素养、创新意识、创新精神和能力方面将会发挥其独特作用。 (二)教学目标 通过本课程的学习,逐步培养学生使其具有数学运算能力、抽象思维能力、空间想象能力、科学创新能力,尤其具有综合运用数学知识、数学方法结合所学专业知识去分析和解决实际问题的能力,一是为后继课程提供必需的基础数学知识;二是传授数学思想,培养学生的创新意识,逐步提高学生的数学素养、数学思维能力和应用数学的能力。 (三)基本要求 1、基本知识、基本理论方面:掌握理解极限和连续的基本概念及其应用;熟悉导数与微分的基本公式与运算法则;掌握中值定理及导数的应用;掌握不定积分的概念和积分方法;掌握定积分的概念与性质;掌握定积分在几何上的应用。 2、能力、技能培养方面:掌握一元微积分的基本概念、基本理论、基本运算技能和常用的数学方法,培养学生利用微积分解决实际问题的能力。

二、教学内容与要求 第一章函数与极限 【教学目的】 通过本章学习 1、理解函数的概念,了解函数的几种特性(有界性),掌握复合函数的概念及其分 解,掌握基本初等函数的性质及其图形,理解初等函数的概念。 2、理解数列极限的概念、掌握数列极限的证明方法、了解收敛数列的性质。 3、理解函数极限和单侧极限的概念,掌握函数极限的证明方法、理解极限存在与 左、右极限之间的关系,了解函数极限的性质。 4、理解无穷小和无穷大的概念、掌握无穷大和无穷小的证明方法。 5、掌握极限运算法则。 6、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极 限的方法。 7、掌握无穷小的比较方法,会用等价无穷小求极限。 8、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 9、了解连续函数的运算和初等函数的连续性, 10、了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理), 并会应用这些性质。 【教学重点与难点】 本章重点是求函数极限的方法(极限运算法则、两个重要极限、无穷小的比较、初等函数的连续性)。难点是数列、函数极限的证明方法。 【教学内容】 第一节映射与函数 一、映射 1.映射概念

同济高数上册公式大全

第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次

) ()! 12()1(...!5!3sin ) (! ...!3!211 2125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! )) 1()...(1(...! 2) 1(1)1(2n n x o x n n x x x +---+ +-+ +=+ααααααα )(1 2)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则 定理1 设函数)(x f 、)(x F 满足下列条件: (1)0)(lim 0 =→x f x x ,0)(lim 0 =→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3)) ()(lim x F x f x x ''→存在(或为无穷大),则 这个定理说明:当) ()(lim x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)() (lim 0x F x f x x ''→;当 ) ()(lim x F x f x x ''→为无穷大时,)() (lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则. ∞ ∞ 型未定式 定理2 设函数)(x f 、)(x F 满足下列条件: (1)∞=→)(lim 0 x f x x ,∞=→)(lim 0 x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; )() (lim )()(lim 00x F x f x F x f x x x x ''=→→) ()(lim )()(lim 00x F x f x F x f x x x x ''=→→

高数公式大全(全)

精心整理 高数公式大全 1.基本积分表: 三角函数的有理式积分: ·诱导公式: ????+-==+==C ctgx xdx x dx C tgx xdx x dx csc sin sec cos 2 22 2C tgx x xdx C x ctgxdx C x tgxdx ++=+=+-=???sec ln sec sin ln cos ln

·和差角公式: 2 sin 2 sin 2 cos cos 2 cos 2 cos 2 cos cos 2 sin 2 cos 2 sin sin 2 cos 2 sin 2 sin sin β α β α β α β α β α β α β α β α β α β α β α β α - + = - - + = + - + = - - + = + α β β α β α β α β α β α β α β α β α β α β α β α ctg ctg ctg ctg ctg tg tg tg tg tg ± ? = ± ? ± = ± = ± ± = ± 1 ) ( 1 ) ( sin sin cos cos ) cos( sin cos cos sin ) sin(

·倍角公式: ·半角公式: ·正弦定理: R C c B b A a 2sin sin sin ===·余弦定理: C ab b a c cos 2222-+= ·反三角函数性质:arcctgx arctgx x x -= -= 2 arccos 2 arcsin π π 高阶导数公式——莱布尼兹(Leibniz )公式: 中值定理与导数应用: 曲率: 定积分的近似计算: 定积分应用相关公式: 30 21),,(z y x F M z y x =?? ? ??=曲面在点空间曲线方向 曲线积分: 曲面积分: 高斯公式:

高数上册归纳公式篇(完整)

公式篇 目录 一、函数与极限 1.常用双曲函数 2.常用等价无穷小 3.两个重要极限 二、导数与微分 1.常用三角函数与反三角函数的导数公式 2.n阶导数公式 3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较 4.参数方程求导公式 5.微分近似计算 三、微分中值定理与导数的应用 1.一阶中值定理 2.高阶中值定理 3.部分函数使用麦克劳林公式展开 4.曲率 四、定积分 1.部分三角函数的不定积分 2.几个简单分式的不定积分 五、不定积分 1.利用定积分计算极限 2.积分上限函数的导数 3.牛顿-莱布尼茨公式和积分中值定理 4.三角相关定积分 5.典型反常积分的敛散性 6.Γ函数(选) 六、定积分的应用 1.平面图形面积 2.体积 3.弧微分公式 七、微分方程 1.可降阶方程 2.变系数线性微分方程 3.常系数齐次线性方程的通解 4.二阶常系数非齐次线性方程(特定形式)的特解形式 5.特殊形式方程(选)

一、函数与极限 1.常用双曲函数( sh(x).ch(x).th(x) ) 2.常用等价无穷小(x →0时) 3.两个重要极限 二、导数与微分 1.常用三角函数与反三角函数的导数公式 (凡是“余”求导都带负号) 2.n 阶导数公式 特别地,若n =λ

3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较 函数的0阶导数可视为函数本身 4.参数方程求导公式 5.微分近似计算(x 很小时) (注意与拉格朗日中值定理比较) 常用: (与等价无穷小相联记忆)

三、微分中值定理与导数的应用 1.一阶中值定理 ()(x f 在],[b a 连续,),(b a 可导 ) 罗尔定理 ( 端点值相等)()(b f a f = ) 拉格朗日中值定理 柯西中值定理 (0)('≠x g ≠0 ) 2.高阶中值定理 ()(x f 在),(b a 上有直到)1(+n 阶导数 ) 泰勒中值定理 n R 为余项 (ξ在x 和0x 之间) 令00=x ,得到麦克劳林公式 3.部分函数使用麦克劳林公式展开(皮亚诺型余项)

高数公式大全(全)

高数公式大全 1.基本积分表: 三角函数的有理式积分: 2 22212211cos 12sin u du dx x tg u u u x u u x += =+-=+=, , ,  一些初等函数: 两个重要极限: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππx x arthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x x x x x x x -+=-+±=++=+-==+= -=----11ln 21)1ln(1ln(:2 :2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e x x x x x x

高数上册归纳公式篇 完整

公式篇 目录 一、 1.常用双曲函数 2.常用等价无穷小 3.两个重要极限 二、 1.常用三角函数与反三角函数的导数公式 2.n阶导数公式 3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较 4.参数方程求导公式 5.微分近似计算 三、 1.一阶中值定理 2.高阶中值定理 3.部分函数使用麦克劳林公式展开 4.曲率 四、 1.部分三角函数的不定积分 2.几个简单分式的不定积分 五、 1.利用定积分计算极限 2.积分上限函数的导数 3.牛顿-莱布尼茨公式和积分中值定理 4.三角相关定积分 5.典型反常积分的敛散性 6.Γ函数(选) 六、 1.平面图形面积 2.体积 3.弧微分公式 七、 1.可降阶方程 2.变系数线性微分方程 3.常系数齐次线性方程的通解 4.二阶常系数非齐次线性方程(特定形式)的特解形式 5.特殊形式方程(选) 一、函数与极限 1.常用双曲函数( sh(x).ch(x).th(x) ) 2.常用等价无穷小(x→0时)

3.两个重要极限 二、导数与微分 1.常用三角函数与反三角函数的导数公式 (凡是“余”求导都带负号) 2.n阶导数公式 特别地,若n λ = 3.高阶导数的莱布尼茨公式与牛顿二项式定理的比较 函数的0阶导数可视为函数本身 4.参数方程求导公式 5.微分近似计算(x?很小时) (注意与拉格朗日中值定理比较) 常用: (与等价无穷小相联记忆) 三、微分中值定理与导数的应用 1.一阶中值定理 () a连续,) a可导 ) (b , [b f在] (x , 罗尔定理 ( 端点值相等) a f f= ) ( (b ) 拉格朗日中值定理 柯西中值定理 (0 ) x g≠0 ) ('≠ 2.高阶中值定理 () (+ a上有直到)1 n阶导数 ) (x f在) , (b

同济大学___高数上册知识点

高等数学上册复习要点 一、 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数; 4、 函数的连续性与间断点; 函数)(x f 在0x 连续)()(lim 00 x f x f x x =→ 第一类:左右极限均存在. 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定 理及其推论. (二) 极限 1、 定义 1) 数列极限 εε<->?N ∈?>??=∞ →a x N n N a x n n n , , ,0lim 2) 函数极限 εδδε<-<-?>??=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00 时,当 左极限:)(lim )(0 0x f x f x x -→-= 右极限:)(lim )(0 0x f x f x x + →+=

)()( )(lim 000 + -→=?=x f x f A x f x x 存在 2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2) a z y n n n n ==→∞ →∞lim lim a x n n =∞→lim 2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量 1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=?; Th2 αβαβαβββαα' ' =''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→x x x b) e x x x x x x =+=++∞→→)11(lim )1(lim 1 0 5) 无穷小代换:(0→x ) a) x x x x x arctan ~arcsin ~tan ~sin ~ b) 2 2 1~cos 1x x -

高等数学上册公式大全

高等数学下册公式大全 第一章 一元函数的极限与连续 1、一些初等函数公式: sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan cot cot 1 cot()cot cot ()()sh sh ch ch sh ch ch ch sh sh αβαβαβαβαβαβ αβ αβαβαβαββα αβαβαβαβαβαβ ±=±±=±±=??±= ±±=±±=±m m m 和差角公式: sin sin 2sin cos 22sin sin 2cos sin 22cos cos 2cos cos 22cos cos 2sin sin 22 αβ αβ αβαβαβ αβαβαβ αβαβαβ αβ+-+=+--=+-+=+--=和差化积公式: 1 sin cos [sin()sin()] 21 cos sin [sin()sin()]21 cos cos [cos()cos()] 21 sin sin [cos()cos()] 2 αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=+--积化和差公式: 2222222222sin 22sin cos cos 22cos 1 12sin cos sin 2tan tan 21tan cot 1 cot 22cot 22212 21sh sh ch ch sh ch ch sh αααααααααααααα αααααααα ==-=-=-= --= ==+= =-=+倍角公式:

22222222sin cos 1;tan 1sec ;cot 1csc ;1sin 2 cos 2 1cos sin tan 2 sin 1cos 1cos sin cot 2 sin 1cos x x x x ch x sh x ααααααα ααααα αα +=+=+=-===-===++=== -半角公式: ::ln(2::ln(2 11::ln 21x x x x x x x x e e shx arshx x e e chx archx x shx e e x thx arthx chx e e x -----==++==±+-+===+-双曲正弦;反双曲正弦双曲余弦;反双曲余弦双曲正切;反双曲正切 3322()()()a b a b a ab b ±=±+m ,222(1)(21) 126 n n n n +++++= L 22 3 3 3 (1)124 n n n ++++=L 2、极限 ? 常用极限:1,lim 0n n q q →∞ <= ;1n a >= ;1n = ? ln(1())lim ln(1())~()() lim[()()] 1/() ()0,(),lim[1()]f x f x f x g x f x g x g x f x g x f x e e ++±→→∞±=??????→若则 ? 两个重要极限 1 00sin sin 1lim 1,lim 0;lim(1)lim(1)x x x x x x x x e x x x x →→∞→∞→==+==+ ? :常用等价无穷小 211 1cos ~ ; ~sin ~arcsin ~arctan 1~;2 1~ln ; ~1;(1)~1; ln(1)~x x a x x x x x x x n a x a e x x ax x x --++++ 3、连续: 定义:0 00 lim 0;lim ()() x x x y f x f x ?→→?==

高等数学全套公式

高等数学(1) 一、三角函数 1.公式 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α) ·商的关系: tanα=sinα/cosαcotα=cosα/sinα ·倒数关系: tanα·cotα=1; sinα·cscα=1; cosα·secα=1 三角函数恒等变形公式: ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 倍角公式: sin(2α)=2sinα·cosαcos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·半角公式: sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 2.特殊角的三角函数值 θ ) (θf 0 ) 0( 6 π ) 30 ( 4 π ) 45 ( 3 π ) 60 ( 2 π ) 90 ( θ cos 1 2/32/22/10 θ sin0 2/12/22/3 1 θ tan0 3 /1 1 3不存在θ cot不存在3 1 3 /10

高数全套公式

初等数学基础知识 一、三角函数 1.公式 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系: tanα=sinα/cosαcotα=cosα/sinα ·倒数关系: tanα·cotα=1; sinα·cscα=1; cosα·secα=1 三角函数恒等变形公式: ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] co sα·sinβ=(1/2)[sin(α+β)-sin(α-β)]

高等数学(上册)基本公式、概念和方法

一.函数 1.函数定义域由以下几点确定 (1)0)(;) (1 ≠= x f x f y (2)0)(;)(2≥=x f x f y n (其中n 为正整数) (3)0)(:)(log >=x f x f y a 。 (4)函数代数和的定义域,取其定义域的交集. (5)对具有实际意义的函数,定义域由问题特点而定. 2.判断函数的奇偶性,依据以下两点确定,否则函数为非奇非偶的. (1) 若)(),()(x f x f x f =-是偶函数,若)(),()(x f x f x f -=-是奇函数. (2) 若)(x f y =的图象关于y 轴对称,则函数是偶函数.如 x y x y cos ..2==等。 若)(x f y =的图象关于坐标原点对称,则函数是奇函数.如 x y x y x y sin ....3=== 3. 将函数分解成几个简单函数的合成. 由六类基本初等函数的形式,对要分解的函数,由外层到内层,分别设出关系.函数与常数的四则运算,不必另设一层关系. 二.极限与连续 1.主要概念和计算方法: (1).A x f x f A x f x x x x x x ==?=+ -→→→)(lim )(lim )(lim 0 (2).若0)(lim 0 =→x f x x (极限过程不限),则当0x x →时)(x f 为无穷小量。 (3).若)()(lim 00 x f x f x x =→,则函数在0x 处是连续的。 即(1)函数值存在、(2)极限存在、(3)极限值和函数值相等。 若上述三条至少一条不满足,则0x 是函数的间段点。 (4).间断点的分类:设0x 是函数的间断点 若左、右极限均存在,则0x 称为第一类间断点。

关于高等数学常用公式大全

高数常用公式 平方立方: 三角函数公式大全 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1 -cotAcotB + cot(A-B) =cotA cotB 1 cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2 - Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π -a) 半角公式 sin( 2 A )=2cos 1A - cos( 2 A )=2cos 1A + tan( 2 A )=A A cos 1cos 1+- cot(2 A )=A A cos 1cos 1-+ tan( 2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2 b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos ) sin(+ 积化和差 sinasinb = -21 [cos(a+b)-cos(a-b)] cosacosb = 21 [cos(a+b)+cos(a-b)] sinacosb = 21 [sin(a+b)+sin(a-b)] cosasinb = 2 1 [sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sina cos(-a) = cosa sin(2π -a) = cosa cos(2π -a) = sina sin(2π +a) = cosa cos(2 π +a) = -sina sin(π-a) = sina c os(π-a) = -cosa sin(π+a) = -sina cos(π+a) = -cosa tgA=tanA = a a cos sin 万能公式

大学高等数学所有公式大全.

大学高等数学公式 ·积的关系: sinα=tanα*cosα cosα=cotα*sinα tanα=sinα*secα cotα=cosα*cscα secα=tanα*cscα cscα=secα*cotα ·平方关系: sin^2(α+cos^2(α=1 tan^2(α+1=sec^2(α cot^2(α+1=csc^2(α ·倒数关系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 直角三角形ABC中, 角A的正弦值就等于角A的对边比斜边, 余弦等于角A的邻边比斜边

正切等于对边比邻边, ·三角函数恒等变形公式 ·两角和与差的三角函数: cos(α+β=cosα·cosβ-sinα·sinβ cos(α-β=cosα·cosβ+sinα·sinβ sin(α±β=sinα·cosβ±cosα·sinβ tan(α+β=(tanα+tanβ/(1-tanα·tanβ tan(α-β=(tanα-tanβ/(1+tanα·tanβ ·三角和的三角函数: sin(α+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sin γ-sinα·sinβ·sinγ cos(α+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ- sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ=(tanα+tanβ+tanγ-tanα·tanβ·tanγ/(1-tanα·tanβ- tanβ·tanγ-tanγ·tanα ·辅助角公式:

Asinα+Bcosα=(A^2+B^2^(1/2sin(α+t,其中 sint=B/(A^2+B^2^(1/2 cost=A/(A^2+B^2^(1/2 tant=B/A Asinα+Bcosα=(A^2+B^2^(1/2cos(α-t,tant=A/B ·倍角公式: sin(2α=2sinα·cosα=2/(tanα+cotα cos(2α=cos^2(α-sin^2(α=2cos^2(α-1=1-2sin^2(α tan(2α=2tanα/[1-tan^2(α] ·三倍角公式: sin(3α=3sinα-4sin^3(α cos(3α=4cos^3(α-3cosα ·半角公式: sin(α/2=±√((1-cosα/2 cos(α/2=±√((1+cosα/2 tan(α/2=±√((1-cosα/(1+cosα=sinα/(1+cosα=(1-cosα/sinα ·降幂公式

高数1全套公式

一、三角函数 1.公式 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1; tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α)·商的关系: tanα=sinα/cosαcotα=cosα/sinα ·倒数关系: tanα·cotα=1; sinα·cscα=1; cosα·secα=1 三角函数恒等变形公式: ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·半角公式: sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα ·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] ·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] ·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

大一同济上册高数(一些重要公式及知识点)

同济上册高数总结 微分公式与积分公式 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22 = '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 π π

高等数学常用公式 上海大学

高等数学公式 From:上海大学通信与信息工程学院 导数公式: 基本积分表: 三角函数的有理式积分: a x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(2 2 = '='?-='?='-='='2 2 2 2 11)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '? ?????????+±+ =±+=+=+= +-=?+=?+-== +==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 2 2 2 2 2 2 2 2 C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-= -+=++-=++=+=+-=? ?? ?????arcsin ln 21ln 21 1csc ln csc sec ln sec sin ln cos ln 2 2 2 2 2 22 2 ? ????++ -= -+-+--=-+++++=+-= == -C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 2 2 ln 2 2)ln(2 21cos sin 2 2 22 2 2 2 2 2 2 2 2 2 2 2 2 22 2 2 2 2 0ππ

同济高等数学公式大全

高等数学公式 导数公式: 基本积分表: 三角函数的有理式积分: ? ?????????+±+=±+=+=+=+-=?+=?+-==+==C a x x a x dx C shx chxdx C chx shxdx C a a dx a C x ctgxdx x C x dx tgx x C ctgx xdx x dx C tgx xdx x dx x x )ln(ln csc csc sec sec csc sin sec cos 222 22 22 2C a x x a dx C x a x a a x a dx C a x a x a a x dx C a x arctg a x a dx C ctgx x xdx C tgx x xdx C x ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=????????arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 2 2222222? ????++-=-+-+--=-+++++=+-= ==-C a x a x a x dx x a C a x x a a x x dx a x C a x x a a x x dx a x I n n xdx xdx I n n n n arcsin 22ln 22)ln(221 cos sin 22 2222222 2222222 22 2 22 2 ππa x x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22= '='?-='?='-='='2 2 22 11 )(11 )(11 )(arccos 11 )(arcsin x arcctgx x arctgx x x x x +- ='+= '-- ='-= '

高数全套公式

高数全套公式 The pony was revised in January 2021

初等数学基础知识 一、三角函数 1.公式 同角三角函数间的基本关系式: ·平方关系: sin^2(α)+cos^2(α)=1;tan^2(α)+1=sec^2(α);cot^2(α)+1=csc^2(α) ·商的关系: tanα=sinα/cosαcotα=cosα/sinα·倒数关系: tanα·cotα=1;sinα·cscα=1;cosα·secα=1 三角函数恒等变形公式: ·两角和与差的三角函数: cos(α+β)=cosα·cosβ-sinα·sinβcos(α- β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα- tanβ)/(1+tanα·tanβ) 倍角公式: sin(2α)=2sinα·cosα cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) tan(2α)=2tanα/[1-tan^2(α)] ·半角公式:

sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα·万能公式: sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式: sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式: sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 2.特殊角的三角函数值

相关主题