搜档网
当前位置:搜档网 › 化学选修3第一章 原子结构与性质--教案

化学选修3第一章 原子结构与性质--教案

化学选修3第一章  原子结构与性质--教案
化学选修3第一章  原子结构与性质--教案

第一章原子结构与性质

教材分析:

一、本章教学目标

1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。

2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一定条件下会发生跃迁产生原子光谱。 3.了解原子核外电子的运动状态,知道电子云和原子轨道。

4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。

5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。

6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理论分析的过程中逐步形成科学的价值观。

本章知识分析:

本章是在学生已有原子结构知识的基础上,进一步深入地研究原子的结构,从构造原理和能量最低原理介绍了原子的核外电子排布以及原子光谱等,并图文并茂地描述了电子云和原子轨道;在原子结构知识的基础上,介绍了元素周期系、元素周期表及元素周期律。总之,本章按照课程标准要求比较系统而深入地介绍了原子结构与元素的性质,为后续章节内容的学习奠定基础。尽管本章内容比较抽象,是学习难点,但作为本书的第一章,教科书从内容和形式上都比较注意激发和保持学生的学习兴趣,重视培养学生的科学素养,有利于增强学生学习化学的兴趣。

通过本章的学习,学生能够比较系统地掌握原子结构的知识,在原子水平上认识物质构成的规律,并能运用原子结构知识解释一些化学现象。

注意本章不能挖得很深,属于略微展开。

相关知识回顾(必修2)

1.原子序数:含义:

(1)原子序数与构成原子的粒子间的关系:

原子序数====。(3)原子组成的表示方法

a. 原子符号:A z X A z

b. 原子结构示意图:

c.电子式:

d.符号表示的意义: A B C D E (4)特殊结构

微粒汇总:

无电子微粒无中子微粒

2e-微粒8e-微粒

10e-微粒

18e-微粒

2.元素周期表:(1)编排原则:把电子层数相同的元素,按原子序数递增的顺序从左到右排成横行叫周

期;再把不同横行中最外层电子数相同的元素,按电子层数递增的顺序有上到下排成纵行,叫族。

(2)结构:各周期元素的种数 0族元素的原子序数

2 2

8 10

8 18

18 36

18 54

32 86

不完全周期第七周期 26 118

②族族序数罗马数字用表示;主族用 A 表示;副族用 B 表示。

主族 7个

副族 7 个

VIII族是第8、9、10纵行

零族是第 18 纵行

阿拉伯数字:1 2 3 4 5 6 7 8

罗马数字: I II III IV V VI VII VIII

(3)元素周期表与原子结构的关系:

①周期序数=电子层数②主族序数=原子最外层电子数=元素最高正化合价数

(4)元素族的别称:①第ⅠA族:碱金属第ⅠIA族:碱土金属②第ⅦA 族:卤族元素

③第0族:稀有气体元素

3、有关概念:

(2)质量数()=()+()

(3)元素:具有相同的原子的总称。

(4)核素:具有一定数目的和一定数目的原子。

(5)同位素:相同而不同的同一元素的原子,互称同位素。

(6)同位素的性质:①同位素的化学性质几乎完全相同②在天然存在的某种元素里,无论是游离态还是化合态,各种元素所占的百分比是不变的。

(7)元素的相对原子质量:

a、某种核素的相对原子质量=

b、元素的相对原子质量=

练习:用A质子数B中子数C核外电子数D最外层电子数E电子层数填下列空格。

①原子种类由决定②元素种类由决定

③元素有无同位素由决定④同位素相对原子质量由决定

⑤元素原子半径由决定⑥元素的化合价由决定

⑦元素的化学性质由决定

4、元素周期律:

(1)原子核外电子的排布:电子层。

分别用n=或来表示从内到外的电子层。

(2)排布原理:核外电子一般总是尽先从排起,当一层充满后再填充。

5、判断元素金属性或非金属性的强弱的依据

6、比较微粒半径的大小

(1)核电荷数相同的微粒,电子数越多,则半径越

如: H+<H<H-; Fe > Fe2+> Fe3+ Na+ Na; Cl Cl-

(2)电子数相同的微粒,核电荷数越多则半径越.如:

①与He电子层结构相同的微粒: H->Li+>Be2+

②与Ne电子层结构相同的微粒:O2->F->Na+>Mg2+>Al3+

③与Ar电子层结构相同的微粒: S2->Cl->K+>Ca2+

7、电子数和核电荷数都不同的微粒:

(1)同主族的元素,半径从上到下

(2)同周期:原子半径从左到右递减.如:Na Cl Cl- Na+

(3)比较Ge、P、O的半径大小

8、核外电子排布的规律:

(1)

(2)

(3)

第一章原子结构与性质

第一节原子结构:(第一课时)

知识与技能:

1、进一步认识原子核外电子的分层排布

2、知道原子核外电子的能层分布及其能量关系

3、知道原子核外电子的能级分布及其能量关系

4、能用符号表示原子核外的不同能级,初步知道量子数的涵义

5、了解原子结构的构造原理,能用构造原理认识原子的核外电子排布

6、能用电子排布式表示常见元素(1~36号)原子核外电子的排布

方法和过程:复习和沿伸、类比和归纳、能层类比楼层,能级类比楼梯。

情感和价值观:充分认识原子结构理论发展的过程是一个逐步深入完美的过程。

教学过程:

1、原子结构理论发展

从古代希腊哲学家留基伯和德谟克利特的朴素原子说到现代量子力学模型,人类思想中的原子结构模型经过多次演变,给我们多方面的启迪。

现代大爆炸宇宙学理论认为,我们所在的宇宙诞生于一次大爆炸。大爆炸后约两小时,诞生了大量的氢、少量的氦以及极少量的锂。其后,经过或长或短的发展过程,氢、氦等发生原子核的熔合反应,分期分批地合成其他元素。

〖复习〗必修中学习的原子核外电子排布规律:

核外电子排布的尸般规律

(1)核外电子总是尽量先排布在能量较低的电子层,然后由里向外,依次

排布在能量逐步升高的电子层(能量最低原理)。

(2)原子核外各电子层最多容纳29’个电子。

(3)原于最外层电子数目不能超过8个(K层为最外层时不能超过2个电子

(4)次外层电子数目不能超过18个(K层为次外层时不能超过2个),倒

说明:以上规律是互相联系的,不能孤立地理解。例如;当M层是最外层

时,最多可排8个电子;当M层不是最外层时,最多可排18个电子

〖思考〗这些规律是如何归纳出来的呢?

2、能层与能级

由必修的知识,我们已经知道多电子原子的核外电子的能量是不同的,由内而外可以分为:第一、二、三、四、五、六、七……能层

符号表示 K、 L、 M、 N、 O、 P、 Q……

能量由低到高

例如:钠原子有11个电子,分布在三个不同的能层上,第一层2个电子,第二层8个电子,第三层1个电子。由于原子中的电子是处在原子核的引力场中,电子总是尽可能先从内层排起,当一层充满后再填充下一层。理论研究证明,原子核外每一层所能容纳的最多电子数如下:

能层一二三四五六七……

符号 K L M N O P Q……

最多电子数 2 8 18 32 50……

即每层所容纳的最多电子数是:2n2(n:能层的序数)

但是同一个能层的电子,能量也可能不同,还可以把它们分成能级(S、P、d、F),就好比能层是楼层,能级是楼梯的阶级。各能层上的能级是不一样的。

能级的符号和所能容纳的最多电子数如下:

能层 K L M N O ……

能级 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f ……

最多电子数 2 2 6 2 6 10 2 6 10 14 ……

各能层电子数 2 8 18 32 50 ……

(1)每个能层中,能级符号的顺序是ns、np、nd、nf……

(2)任一能层,能级数=能层序数

(3)s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍

3、构造原理

根据构造原理,只要我们知道原子序数,就可以写出几乎所有元素原子的电子排布。

即电子所排的能级顺序:1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s……

氢 H 1s1

……

钠 Na 1s22s22p63s1

……

钾 K 1s22s22p63s23p64s1【Ar】4s1

……

有少数元素的基态原子的电子排布对于构造原理有一个电子的偏差,如:

铬24Cr [Ar]3d54s1

铜29Cu [Ar]3d104s1

[课堂练习]

1、写出17Cl(氯)、21Sc(钪)、35Br(溴)的电子排布

氯:1s22s22p63s23p5

钪:1s22s22p63s23p63d14s2

溴:1s22s22p63s23p63d104s24p5

根据构造原理只要我们知道原子序数,就可以写出元素原子的电子排布,这样的电子排布是基态原子的。

2、写出1—36号元素的核外电子排布式。

3、写出1—36号元素的简化核外电子排布式。

总结并记住书写方法。

4、画出下列原子的结构示意图:Be、N、Na、Ne、Mg

回答下列问题:

在这些元素的原子中,最外层电子数大于次外层电子数的有,最外层电子数与次外层电子数相等的有,最外层电子数与电子层数相等的有;

L层电子数达到最多的有,K层与M层电子数相等的有。

5、下列符号代表一些能层或能级的能量,请将它们按能量由低到高的顺序排列:

(1)E K E N E L E M,

(2)E E E E,

(3)E3S E3d E2P E4f。

6、A元素原子的M电子层比次外层少2个电子。B元素原子核外L层电子数比最外层多7个电子。

(1)A元素的元素符号是,B元素的原子结构示意图为________________;

(2)A、B两元素形成化合物的化学式及名称分别是__ _____

第一节原子结构:(第二课时)

知识与技能:

1、了解原子结构的构造原理,能用构造原理认识原子的核外电子排布

2、能用电子排布式表示常见元素(1~36号)原子核外电子的排布

3、知道原子核外电子的排布遵循能量最低原理

4、知道原子的基态和激发态的涵义

5、初步知道原子核外电子的跃迁及吸收或发射光谱,了解其简单应用

教学过程:

〖课前练习〗1、理论研究证明,在多电子原子中,电子的排布分成不同的能层,同一能层的电子,还可以分成不同的能级。能层和能级的符号及所能容纳的最多电子数如下:

(1)根据的不同,原子核外电子可以分成不同的能层,每个能层上所能排布的最多电子数为,

除K层外,其他能层作最外层时,最多只能有电子。

(2)从上表中可以发现许多的规律,如s能级上只能容纳2个电子,每个能层上的能级数与相等。请再写出一个规律。

2、A、B、C、D均为主族元素,已知A原子L层上的电子数是K层的三倍;B元素的原子核外K、L层上电

子数之和等于M、N层电子数之和;C元素形成的C2+离子与氖原子的核外电子排布完全相同,D原子核外比C原子核外多5个电子。则

(1)A元素在周期表中的位置是,B元素的原子序数为;

(2)写出C和D的单质发生反应的化学方程式。

〖引入〗电子在核外空间运动,能否用宏观的牛顿运动定律来描述呢?

4、电子云和原子轨道:

(1)电子运动的特点:①质量极小②运动空间极小③极高速运动。

因此,电子运动来能用牛顿运动定律来描述,只能用统计的观点来描述。我们不可能像描述宏观运动物体那样,确定一定状态的核外电子在某个时刻处于原子核外空间如何,而只能确定它在原子核外各处出现的概率。

概率分布图看起来像一片云雾,因而被形象地称作电子云。常把电子出现的概率约为90%的空间圈出来,人们把这种电子云轮廓图成为原子轨道。

S的原子轨道是球形的,能层序数越大,原子轨道的半径越大。

P的原子轨道是纺锤形的,每个P能级有3个轨道,它们互相垂直,分别以P x、P y、P z为符号。P原子轨道的平均半径也随能层序数增大而增大。

s电子的原子轨道都是球形的(原子核位于球心),能层序数,2越大,原子轨道的半径越大。这是由于1s,2s,3s……电子的能量依次增高,电子在离核更远的区域出现的概率逐渐增大,电子云越来越向更大的空间扩展。这是不难理解的,打个比喻,神州五号必须依靠推动(提供能量)才能克服地球引力上天,2s 电子比1s电子能量高,克服原子

核的吸引在离核更远的空间出现的概率就比1s大,因而2s电子云必然比1s电子云更扩散。

(2) [重点难点]泡利原理和洪特规则

量子力学告诉我们:ns能级各有一个轨道,np能级各有3个轨道,nd能级各有5个轨道,nf能级各有7个轨道.而每个轨道里最多能容纳2个电子,通常称为电子对,用方向相反的箭头“↑↓”

来表示。

一个原子轨道里最多只能容纳2个电子,而且自旋方向相反,这个原理成为泡利原理。

推理各电子层的轨道数和容纳的电子数。

当电子排布在同一能级的不同轨道时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则是洪特规则。

〖练习〗写出5、6、7、8、9号元素核外电子排布轨道式。并记住各主族元素最外层电子排布轨

道式的特点:(成对电子对的数目、未成对电子数和它占据的轨道。

〖思考〗下列表示的是第二周期中一些原子的核外电子排布,请说出每种符号的意义及从中获得的一些信

息。

〖思考〗写出24号、29号元素的电子排布式,价电子排布轨道式,阅读周期表,比较有什么不同,为什么?从元素周期表中查出铜、银、金的外围电子层排布。

它们是否符合构造原理?

2.电子排布式可以简化,如可以把钠的电子排布式写成[Ne]3S 1

。试问:上式方括号里的符号的意义是什么?你能仿照钠原子的简化电子排布式写出第8号元素氧、第14号元素硅和第26号元素铁的简化电子排布式吗?

洪特规则的特例:对于同一个能级,当电子排布为全充满、半充满或全空时,是比较稳定的。 课堂练习

1、用轨道表示式表示下列原子的价电子排布。

(1)N (2)Cl (3)O (4)Mg

2、以下列出的是一些原子的2p 能级和3d 能级中电子排布的情况。试判断,哪些违反了泡利不相容原理,

哪些违反了洪特规则。

(6)

违反泡利不相容原理的有 ,违反洪特规则的有 。 3、下列原子的外围电子排布中,那一种状态的能量较低?试说明理由。

(1)氮原子:A ..

2s 2p 2s 2p

(2)钠原子:A.3s1 B.3p1

(3)铬原子:A.3d54s1 B.3d44s2

4、核外电子排布式和轨道表示式是表示原子核外电子排布的两种不同方式。请你比较这两种表示方式的共

同点和不同点。

5、原子核外电子的运动有何特点?科学家是怎样来描述电子运动状态的? 以氮原子为例,说明原子核外电子排布所遵循的原理。

第一节原子结构:(第3课时)

知识与技能:

1、知道原子核外电子的排布遵循能量最低原理

2、知道原子的基态和激发态的涵义

3、初步知道原子核外电子的跃迁及吸收或发射光谱,了解其简单应用

[重点难点]能量最低原理、基态、激发态、光谱

教学过程:

〖引入〗在日常生活中,我们看到许多可见光如灯光、霓虹灯光、激光、焰火与原子结构有什么关系呢?

创设问题情景:利用录像播放或计算机演示日常生活中的一些光现象,如霓虹灯光、激光、节日燃放的五彩缤纷的焰火等。

提出问题:这些光现象是怎样产生的?

问题探究:指导学生阅读教科书,引导学生从原子中电子能量变化的角度去认识光产生的原因。

问题解决:联系原子的电子排布所遵循的构造原理,理解原子基态、激发态与电子跃迁等概念,并利用这些概念解释光谱产生的原因。

应用反馈:举例说明光谱分析的应用,如科学家们通过太阳光谱的分析发现了稀有气体氦,化学研究中利用光谱分析检测一些物质的存在与含量,还可以让学生在课后查阅光谱分析方法及应用的有关资料以扩展他们的知识面。

原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。

处于最低能量的原子叫做基态原子。

当基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。电子从较高能量的激发态跃迁到较低能量的激发态乃至基态时,将释放能量。光(辐射)是电子释放能量的重要形式之一。

不同元素的原子发生跃迁时会吸收或释放不同的光,可以用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,总称原子光谱。许多元素是通过原子光谱发现的。在现代化学中,常利用原子光谱上的特征谱线来鉴定元素,称为光谱分析。

〖阅读分析〗分析教材p8发射光谱图和吸收光谱图,认识两种光谱的特点。

阅读p8科学史话,认识光谱的发展。

〖课堂练习〗

1、同一原子的基态和激发态相比较()

A、基态时的能量比激发态时高

B、基态时比较稳定

C、基态时的能量比激发态时低

D、激发态时比较稳定

2、生活中的下列现象与原子核外电子发生跃迁有关的是()

A、钢铁长期使用后生锈

B、节日里燃放的焰火

C、金属导线可以导电

D、卫生丸久置后消失

3、比较多电子原子中电子能量大小的依据是()

A.元素原子的核电荷数 B.原子核外电子的多少

C.电子离原子核的远近 D.原子核外电子的大小

4、当氢原子中的电子从2p能级,向其他低能量能级跃迁时( )

A. 产生的光谱为吸收光谱

B. 产生的光谱为发射光谱

C. 产生的光谱线的条数可能是2 条

D. 电子的势能将升高.

第一章原子结构与性质

第二节原子结构与元素的性质(第1课时)

知识与技能

1、进一步认识周期表中原子结构和位置、价态、元素数目等之间的关系

2、知道外围电子排布和价电子层的涵义

3、认识周期表中各区、周期、族元素的原子核外电子排布的规律

4、知道周期表中各区、周期、族元素的原子结构和位置间的关系

〖复习〗必修中什么是元素周期律?元素的性质包括哪些方面?元素性质周期性变化的根本原因是什么?〖课前练习〗写出锂、钠、钾、铷、銫基态原子的简化电子排布式和氦、氖、氩、氪、氙的简化电子排布式。

一、原子结构与周期表

1、周期系:

随着元素原子的核电—荷数递增,每到出现碱金属,就开始建立一个新的电子层,随后最外层上的电子逐渐增多,最后达到8个电子,出现稀有气体。然后又开始由碱金属到稀有气体,如此循环往复——这就是元素周期系中的一个个周期。例如,第11号元素钠到第18号元素氩的最外层电子排布重复了第3号元素锂到第10号元素氖的最外层电子排布——从1个电子到8个电子;再往后,尽管情形变得复杂一些,但每个周期的第1个元素的原子最外电子层总是1个电子,最后一个元素的原子最外电子层总是8个电子。可见,元素周期系的形成是由于元素的原子核外屯子的排布发生周期性的重复。

2、周期表

我们今天就继续来讨论一下原子结构与元素性质是什么关系?所有元素都被编排在元素周期表里,那么元素原子的核外电子排布与元素周期表的关系又是怎样呢?

说到元素周期表,同学们应该还是比较熟悉的。第一张元素周期表是由门捷列夫制作的,至今元素周期表的种类是多种多样的:电子层状、金字塔式、建筑群式、螺旋型(教材p15页)到现在的长式元素周期表,还待进一步的完善。

首先我们就一起来回忆一下长式元素周期表的结构是怎样的?在周期表中,把能层数相同的元素,按原子序数递增的顺序从左到右排成横行,称之为周期,有7个;在把不同横行中最外层电子数相同的元素,按能层数递增的顺序由上而下排成纵行,称之为族,共有18个纵行,16 个族。16个族又可分为主族、副族、0族。

〖思考〗元素在周期表中排布在哪个横行,由什么决定?什么叫外围电子排布?什么叫价电子层?什么叫价电子?要求学生记住这些术语。元素在周期表中排在哪个列由什么决定?

阅读分析周期表着重看元素原子的外围电子排布及价电子总数与族序数的联系。

〖总结〗元素在周期表中的位置由原子结构决定:原子核外电子层数决定元素所在的周期,原子的价电子总数决定元素所在的族。

〖分析探索〗每个纵列的价电子层的电子总数是否相等?按电子排布,可把周期表里的元素划分成5个区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。s区、d区和p区分别有几个纵列?为什么s区、d区和ds区的元素都是金属?

[基础要点]分析图1-16

区全是金属元素,非金属元素主要集中区。主族主要含区,副族主要含区,过渡元素主要含区。

[思考]周期表上的外围电子排布称为“价电子层”,这是由于这些能级上的电子数可在化学反应中发生变化。元素周期表的每个纵列上是否电子总数相同?

〖归纳〗S区元素价电子特征排布为nS1~2,价电子数等于族序数。d区元素价电子排布特征为(n-1)d1~10ns1~2;价电子总数等于副族序数;ds区元素特征电子排布为

(n-1)d10ns1~2,价电子总数等于所在的列序数;p区元素特征电子排布为

ns2np1~6;价电子总数等于主族序数。原子结构与元素在周期表中的位置是有一定的关系的。

(1)原子核外电子总数决定所在周期数

周期数=最大能层数(钯除外)

10,最大能层数是4,但是在第五周期。

46Pd [Kr]4d

(2)外围电子总数决定排在哪一族

如:29Cu 3d104s1

10+1=11尾数是1所以,是IB。

元素周期表是元素原子结构以及递变规律的具体体现。

原子结构与元素的性质(第2课时)

知识与技能:

1、掌握原子半径的变化规律

2、能说出元素电离能的涵义,能应用元素的电离能说明元素的某些性质

3、进一步形成有关物质结构的基本观念,初步认识物质的结构与性质之间的关系

4、认识主族元素电离能的变化与核外电子排布的关系

5、认识原子结构与元素周期系的关系,了解元素周期系的应用价值

教学过程:

二、元素周期律

(1)原子半径

〖探究〗观察下列图表分析总结:

元素周期表中同周期主族元素从左到右,原子半径的变化趋势如何?应如何理解这种趋势?元素周期表中,同主族元素从上到下,原子半径的变化趋势如何?应如何理解这种趋势?

〖归纳总结〗原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个是核电荷数。显然电子的能层数越大,电子间的负电排斥将使原子半径增大,所以同主族元素随着原子序数的增加,电子层数逐渐增多,原子半径逐渐增大。而当电子能层相同时,核电荷数越大,核对电子的吸引力也越大,将使原子半径缩小,所以同周期元素,从左往右,原子半径逐渐减小。

(2)电离能

[基础要点]概念

1、第一电离能I1;态电性基态原子失去个电子,转化为气态基态正离子所需要的

叫做第一电离能。第一电离能越大,金属活动性越 。同一元素的第二电离能 第一电离能。 2、如何理解第二电离能I 2、第三电离能I 3 、I 4、I 5…… ?分析下表:

〖科学探究〗1、原子的第一电离能有什么变化规律呢?碱金属元素的第一电离能有什么变化规律呢?为什么Be 的第一电离能大于B ,N 的第一电离能大于O ,Mg 的第一电离能大于Al ,Zn 的第一电离能大于Ga ?第一电离能的大小与元素的金属性和非金属性有什么关系?碱金属的电离能与金属活泼性有什么关系? 2、阅读分析表格数据:

为什么原子的逐级电离能越来越大?这些数据与钠、镁、铝的化合价有什么关系? 数据的突跃变化说明了什么? 〖归纳总结〗

1、递变规律

2、第一电离能越小,越易失电子,金属的活泼性就越强。因此碱金属元素的第一电离能越小,金属的活泼性就越强。

3.气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能(用I1表示),从一价气态基态正离子中再失去一个电子所需消耗的能量叫做第二电离能(用I2表示),依次类推,可得到I3、I4、I5……同一种元素的逐级电离能的大小关系:I1

4、Be有价电子排布为2s2,是全充满结构,比较稳定,而B的价电子排布为2s22p1,、比Be不稳定,因此失去第一个电子B比Be容易,第一电离能小。镁的第一电离能比铝的大,磷的第一电离能比硫的大,为什么呢?

Mg:1s22s22p63s2

P:1s22s22p63s23p3

那是因为镁原子、磷原子最外层能级中,电子处于半满或全满状态,相对比较稳定,失电子较难。如此相同观点可以解释N的第一电离能大于O,Mg的第一电离能大于Al,Zn的第一电离能大于Ga。

5、Na的I1,比I2小很多,电离能差值很大,说明失去第一个电子比失去第二电子容易得多,所以Na容易失去一个电子形成+1价离子;Mg的I1和I2相差不多,而I2比I3小很多,所以Mg容易失去两个电子形成十2价离子;Al的I1、I2、I3相差不多,而I3比I4小很多,所以A1容易失去三个电子形成+3价离子。而电离能的突跃变化,说明核外电子是分能层排布的。

〖课堂练习〗

1、某元素的电离能(电子伏特)如下:

此元素位于元素周期表的族数是

A. IA

B. ⅡA

C. ⅢA D、ⅣA E、ⅥA F、ⅤA G、ⅦA

2、某元素的全部电离能(电子伏特)如下:

回答下列各问:

(1)由I1到I8电离能值是怎样变化的?___________________。

为什么?______________________________________

(2)I1为什么最小?________________________________

(3) I7和I8为什么是有很大的数值__________________________

(4)I6到I7间,为什么有一个很大的差值?这能说明什么问题?

_________________________________________________________

(5)I1到I6中,相邻的电离能间为什么差值比较小?

______________________________________________

(6)I4和I5间,电离能为什么有一个较大的差值

__________________________________________________

(7)此元素原子的电子层有 __________________层。最外层电子构型为

______________,电子轨道式为________________________________,此元素的周期位置为________________________ 周期___________________族。

2、讨论氢的周期位置。为什么放在IA的上方?还可以放在什么位置,为什么?

答:氢原子核外只有一个电子(1s1),既可以失去这一个电子变成+1价,又可以获得一个能。电子变成一l价,与稀有气体He的核外电子排布相同。根据H的电子排布和化合价不难理解H在周期表中的位置既可以放在IA,又可以放在ⅦA。

3、概念辩析:

(1)每一周期元素都是从碱金属开始,以稀有气体结束

(2)f区都是副族元素,s区和p区的都是主族元素

(3)铝的第一电离能大于K的第一电离能

(4)B电负性和Si相近

(5)已知在200C 1mol Na失去1 mol电子需吸收650kJ能量,则其第一电离能为650KJ/mol

(6)Ge的电负性为1.8,则其是典型的非金属

(7)气态O原子的电子排布为:,测得电离出1 mol电子的能量约为1300KJ,则其第一电离能约为1300KJ/mol

(9)酸性 HClO>H2SO4,碱性:NaOH > Mg(OH)2

(10)第一周期有2*12=2,第二周期有2*22=8,则第五周期有2*52=50种元素

元素的最高正化合价=其最外层电子数=族序数

4、元素的电离能与原子的结构及元素的性质均有着密切的联系,根据下列材料回答问题。气态原子失去1

个电子,形成+1价气态离子所需的最低能量称为该元素的第一电离能,+l价气态离子失去1个电子,形成+2价气态离子所需要的最低能量称为该元素的第二电离能,用I2表示,以此类推。下表是钠和镁的第一、二、三电离能(KJ·mol-1)。

(1)分析表中数据,请你说明元素的电离能和原子结构的关系是:

元素的电离能和元素性质之间的关系是:

(2)分析表中数据,结合你已有的知识归纳与电离能有关的一些规律。

(3)请试着解释:为什么钠易形成Na+,而不易形成Na2+?

原子结构与元素的性质(第3课时)

知识与技能:

1、能说出元素电负性的涵义,能应用元素的电负性说明元素的某些性质

2、能根据元素的电负性资料,解释元素的“对角线”规则,列举实例予以说明

3、能从物质结构决定性质的视角解释一些化学现象,预测物质的有关性质

4、进一步认识物质结构与性质之间的关系,提高分析问题和解决问题的能力

教学过程:

〖复习〗1、什么是电离能?它与元素的金属性、非金属性有什么关系?

2、同周期元素、同主族元素的电离能变化有什么规律?

(3)电负性:

〖思考与交流〗1、什么是电负性?电负性的大小体现了什么性质?阅读教材p20页表

同周期元素、同主族元素电负性如何变化规律?如何理解这些规律?根据电负性大小,判断氧的非金属性与氯的非金属性哪个强?

[科学探究]

1.根据数据制作的第三周期元素的电负性变化图,请用类似的方法制作IA、VIIA元素的电负性

变化图。

2.电负性的周期性变化示例

〖归纳志与总结〗

1、金属元素越容易失电子,对键合电子的吸引能力越小,电负性越小,其金属性越强;非金属元素越容易得电子,对键合电子的吸引能力越大,电负性越大,其非金属性越强;故可以用电负性来度量金属性与非金属性的强弱。周期表从左到右,元素的电负性逐渐变大;周期表从上到下,元素的电负性逐渐变小。电负性的大小可以作为判断元素金属性和非金属性强弱的尺度。金属的电负性一般小于 1.8,非金属

人教版化学选修三原子的结构教案

教案 课题:第一节原子结构(2)授课班级 课时 教学目的 知识 与 技能 1、了解原子结构的构造原理,能用构造原理认识原子的核外电子排布 2、能用电子排布式表示常见元素(1~36号)原子核外电子的排布 3、知道原子核外电子的排布遵循能量最低原理 4、知道原子的基态和激发态的涵义 5、初步知道原子核外电子的跃迁及吸收或发射光谱,了解其简单应用 过程 与 方法 复习和沿伸、动画构造原理认识核外电子排布,亲自动手书写,体会原理情感 态度 价值观 充分认识原子构造原理,培养学生的科学素养,有利于增强学生学习化学 的兴趣。 重点电子排布式、能量最低原理、基态、激发态、光谱难点电子排布式 知识结构与板书设计三、构造原理 1.构造原理:绝大多数基态原子核外电子的排布的能级顺序都遵循下列顺序:1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s…… 2、能级交错现象(从第3电子层开始):是指电子层数较大的某些轨道的能量反低于电子层数较小的某些轨道能量的现象。 电子先填最外层的ns,后填次外层的(n-1)d,甚至填入倒数第三层的(n-2)f的规律叫做“能级交错” 3.能量最低原理:原子核外电子遵循构造原理排布时,原子的能量处于最低状态。即在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。 4、对于同一电子亚层(能级)(等价轨道),当电子排布为全充满、半充满或全空时,原子是比较稳定的。 5、基态原子核外电子排布可简化为:[稀有气体元素符号]+外围电子(价电子、最外层电子) 四、基态与激发态、光谱 1、基态—处于最低能量的原子。

高一化学 第一节 原子结构教案

第一节原子结构 教学目标: 知识目标: 1.复习原子构成的初步知识,使学生懂得质量数和A Z X的含义,掌握构成原子的粒子间的关系。 2.了解关于原子核外电子运动特征和常识。 3.理解电子云的描述和本质。 4.了解核外电子排布的初步知识,能画出1~号元素的原子结构示意图。 能力目标: 培养自学能力、归纳总结能力、类比推理能力。 教学重点:原子核外电子的排布规律。 教学难点:原子核外电子运动的特征,原子核外电子的排布规律。 (第一课时) 教学过程: [复习]原子的概念,原子的构成,原子为什么显电中性? [板书]一、原子核 1。原子结构 质子: 1.6726×10-27kg 原子核 原子中子: 1.6748×10-27kg 电子: 1.6726×10-27kg/1836 注意:核电荷数=质子数=电子数近似原子量=质子数+中子数原子的粒子间的关系: 决定元素种类的是:,决定原子质量的 是: 决定元素化学性质的主要是:,决定原子种类的是: 1.6726×10-27kg 1.66×10-27kg 2.质量数 质子的相对质量= =1.007≈1 1.6748×10-27kg 1.66×10-27kg 中子的相对质量= =1.008≈1 将原子核内所有的质子和中子的相对质量取近似值整数加起来,所得的数值叫质量数(A) 质量数(A)=质子数(Z)+中子数(N) N = A – Z 练习:用A Z X表示原子: (1)求中性原子的中子数:N= (2)求阳离子的中子数,A X n+共有x个电子,则N=

(3)求阴离子的中子数,A X n-共有x个电子,则N= (4)求中性分子或原子团的中子数,12C16O2分子中, N= (5) A2-原子核内有x个中子,其质量数为m,则n g A2-离子所含电子的物质的量为 : . 二、核外电子运动的特征 请一位同学讲述宏观物体的运动的特征。 比较电子的运动和宏观物体的运动。 1.核外电子运动的特征: (1)带负电荷,质量很小。 (2)运动的空间范围小。 (3)高速运动。 学生阅读课本P91,播放电子云形成的动画。 2.电子云 电子在原子核外空间一定范围内出现,可以想象为一团带负电荷的云雾笼罩在原子核的周围,所以人们形象地把它叫做“电子云”。 注意:(1)图中的每个小黑点并不代表一个电子,小黑点的疏密表示电子在核外单位体积内出现机会的多少。 (2)“电子云”是核外电子运动的一种形象化表示。 1.已知一种碳原子(质子数、中子数均为6)的一个原子的质量为m kg,若一个铁原子的质量为n kg ,则铁的原子量是 2.以下有关电子云的描述,正确的是() A 电子云示意图的小黑点疏密表示电子在核外空间出现机会的多少 B 电子云示意图中的每一个小黑点表示一个电子 C 小黑点表示电子,黑点愈多核附近的电子就愈多 D 小黑点表示电子绕核作圆周运动的轨道 第二课时 [复习]1。原子的结构。 2.电子云的概念及核外电子运动的特征。 对于多电子的原子,核外电子的运动要复杂一些,通常,能量低的在离核较近的区域运动,能量高的在离核较远的区域运动。 三、原子核外电子的排布 1.电子层 层序数 1 2 3 4

最新高中化学选修3 原子结构及习题

第一章原子结构与性质 一.原子结构 1、能级与能层 电子云:用小黑点的疏密来描述电子在原子核外空间出现的机会大小所得的图形叫电子云图.离核越近,电子出现的机会大,电子云密度越大;离核越远,电子出现的机会小,电子云密度越小. 电子层(能层):根据电子的能量差异和主要运动区域的不同,核外电子分别处于不同的电子层.原子由里向外对应的电子层符号分别为K、L、M、N、O、P、Q. 原子轨道(能级即亚层):处于同一电子层的原子核外电子,也可以在不同类型的原子轨道上运动,分别用s、p、d、f表示不同形状的轨道,s轨道呈球形、p轨道呈哑铃形 2、原子轨道 3、原子核外电子排布规律 (1)构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按下图顺序填入核外电子运动轨道(能级),叫做构造原理。 原子核外电子的运动特征可以用电子层、原子轨道(亚层)和自旋方向来进行描述.

能级交错:由构造原理可知,电子先进入4s轨道,后进入3d轨道,这种现象叫能级交错。 (2)能量最低原理:电子先占据能量低的轨道,再依次进入能量高的轨道. (3)泡利(不相容)原理:一个轨道里最多只能容纳两个电子,且自旋方向相反(用“↑↓”表示),这个原理称为泡利原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特规则。比如,p3的轨道式为,而不是。 洪特规则特例:在等价轨道的全充满(p6、d10、f14)、半充满(p3、d5、f7)、全空时(p0、d0、f0)的状态,具有较低的能量和较大的稳定性.如24Cr [Ar]3d54s1、29Cu [Ar]3d104s1。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4、基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K:1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以相应稀有气体的元素符号外加方括号表示,例如K:[Ar]4s1。 (2)电子排布图(轨道表示式) 每个方框或圆圈代表一个原子轨道,每个箭头代表一个电子。 如基态硫原子的轨道表示式为 二、原子结构与元素周期表 ↑↓↑ ↑↑↑

高中化学原子结构必修

原子结构(必修) 近代原子结构模型的演变 ⑤ 质子数(Z )= 阴离子核外电子数 — 阴离子的电荷数 一、原子结构模型的演变 公元前5世纪,古希腊哲学家德谟克利特提出古代原子学说,认为万物都是由间断的、 不可分的原子构成的。 模型 道尔顿(英) 汤姆生(英) 卢瑟福(英) 玻尔(丹麦) 海森伯 年代 1803年 1904年 1911年 1913年 1926年 依据 元素化合时 的质量比例关系 发现电子 ɑ粒子散射 氢原子光谱 近代科学实验 主要内容 原子是不可 再分的实心小球 葡萄干布丁式 核式模型 行星轨道式原子模型 量子力学原子结构模型 模型 (微观粒子具有波粒二象性) 存在问题 不能解释电子的存在 不能解释ɑ粒 子散射时的现 象 不能解释氢 原子光谱 二、原子的构成 1. 得 电 失 子 阳离子 X n+ (核外电子数= ) 离子 阴离子 X n- (核外电子数= ) 2. 原子、离子中粒子间的数量关系: ① 质子数=核电荷数=核外电子数=原子序数 ② 质量数(A )=质子数(Z )+ 中子数(N ) ③ 离子电荷=质子数—核外电子数 ④ 质子数(Z )= 阳离子核外电子数 + 阳离子的电荷数 ⑥ 质量数≈相对原子质量 原子核 原子A Z X 中子(A-Z 个,电中性,决定原子种类→同位素) 质子(Z 个,带正电,决定元素的种类) 核外电子(Z 个,带负点,核外电子排布决定元素的化学性质)

①核外电子总是尽先排布在能量较低的电子层,然后由里向外,依次排布在能量逐步升高的 电子层(能量最低原理); ②每个电子层最多容纳2n2个电子(n为电子层数); ③最外层电子数目不能超过8个(K层为最外层时不能超过2个); ④次外层电子数目不能超过18个(K层为次外层时不能超过2个); ⑤倒数第三层电子数目不能超过32个(K层为倒数第三层时不能超过2个)。 (2)阳离子:核电荷数=核外电子数+电荷数(如图乙所示) (3)阴离子:核电荷数=核外电子数—电荷数(如图丙所示) M电子层 微粒符号(原子或离子) L电子层原子核 K电子层核电荷数 (1)原子核中无中子的原子1 1H 3.核外电子排布的一般规律 (1) 电子层数(n) 1 2 3 4 5 6 7 符号K L M N O P Q 电子层能量的关系从低到高 电子层离核远近的关系由近到远 (2)在含有多个电子的原子里,电子依能量的不同是分层排布的,其主要规律是: 4.原子、离子的结构示意 (1)原子中:核电荷数=核外电子数(如图甲所示) 5.常见等电子粒子 (1)2电子粒子:H—、Li+、Be2+;H2、He (2)10电子粒子:分子Ne、HF、H20、NH3、CH4 ;阳离子Na+、Mg2+、Al3+、NH4+、H30+; 阴离子N3-、O2-、F-、OH-、NH2-。 (3)18电子粒子:分子Ar、HCl、H2S、PH3、SiH4、F2、H2O2、C2H6、CH3OH、N2H4; 阳离子K、Ca ;阴离子P3—、S2—、Cl—、HS—、O22—。 (4)14电子粒子:Si、N2、CO、C2H2;16电子粒子:S、O2、C2H4、HCH0 。 6.1~20号元素原子结构的特点

(完整版)高中化学选修3知识点总结

高中化学选修3知识点总结 二、复习要点 1、原子结构 2、元素周期表和元素周期律 3、共价键 4、分子的空间构型 5、分子的性质 6、晶体的结构和性质 (一)原子结构 1、能层和能级 (1)能层和能级的划分 ①在同一个原子中,离核越近能层能量越低。 ②同一个能层的电子,能量也可能不同,还可以把它们分成能级s、p、d、f,能量由低到高依次为s、p、d、f。 ③任一能层,能级数等于能层序数。 ④s、p、d、f……可容纳的电子数依次是1、3、5、7……的两倍。 ⑤能层不同能级相同,所容纳的最多电子数相同。 (2)能层、能级、原子轨道之间的关系 每能层所容纳的最多电子数是:2n2(n:能层的序数)。 2、构造原理 (1)构造原理是电子排入轨道的顺序,构造原理揭示了原子核外电子的能级分布。 (2)构造原理是书写基态原子电子排布式的依据,也是绘制基态原子轨道表示式的主要依据之一。

(3)不同能层的能级有交错现象,如E(3d)>E(4s)、E(4d)>E(5s)、E(5d)>E(6s)、E(6d)>E(7s)、E(4f)>E(5p)、E(4f)>E(6s)等。原子轨道的能量关系是:ns<(n-2)f <(n-1)d <np (4)能级组序数对应着元素周期表的周期序数,能级组原子轨道所容纳电子数目对应着每个周期的元素数目。 根据构造原理,在多电子原子的电子排布中:各能层最多容纳的电子数为2n2 ;最外层不超过8个电子;次外层不超过18个电子;倒数第三层不超过32个电子。 (5)基态和激发态 ①基态:最低能量状态。处于最低能量状态的原子称为基态原子。 ②激发态:较高能量状态(相对基态而言)。基态原子的电子吸收能量后,电子跃迁至较高能级时的状态。处于激发态的原子称为激发态原子。 ③原子光谱:不同元素的原子发生电子跃迁时会吸收(基态→激发态)和放出(激发态→较低激发态或基态)不同的能量(主要是光能),产生不同的光谱——原子光谱(吸收光谱和发射光谱)。利用光谱分析可以发现新元素或利用特征谱线鉴定元素。 3、电子云与原子轨道 (1)电子云:电子在核外空间做高速运动,没有确定的轨道。因此,人们用“电子云”模型来描述核外电子的运动。“电子云”描述了电子在原子核外出现的概率密度分布,是核外电子运动状态的形象化描述。 (2)原子轨道:不同能级上的电子出现概率约为90%的电子云空间轮廓图称为原子轨道。s电子的原子轨道呈球形对称,ns能级各有1个原子轨道;p电子的原子轨道呈纺锤形,n p能级各有3个原子轨道,相互垂直(用p x、p y、p z表示);n d能级各有5个原子轨道;n f能级各有7个原子轨道。 4、核外电子排布规律 (1)能量最低原理:在基态原子里,电子优先排布在能量最低的能级里,然后排布在能量逐渐升高的能级里。 (2)泡利原理:1个原子轨道里最多只能容纳2个电子,且自旋方向相反。 (3)洪特规则:电子排布在同一能级的各个轨道时,优先占据不同的轨道,且自旋方向相同。 (4)洪特规则的特例:电子排布在p、d、f等能级时,当其处于全空、半充满或全充满时,即p0、d0、f0、p3、d5、f7、p6、d10、f14,整个原子的能量最低,最稳定。 能量最低原理表述的是“整个原子处于能量最低状态”,而不是说电子填充到能量最低的轨道中去,泡利原理和洪特规则都使“整个原子处于能量最低状态”。 电子数 (5)(n-1)d能级上电子数等于10时,副族元素的族序数=n s能级电子数 (二)元素周期表和元素周期律 1、元素周期表的结构 元素在周期表中的位置由原子结构决定:原子核外的能层数决定元素所在的周期,原子的价电子总数决定元素所在的族。 (1)原子的电子层构型和周期的划分 周期是指能层(电子层)相同,按照最高能级组电子数依次增多的顺序排列的一行元素。即元素周期表中的一个横行为一个周期,周期表共有七个周期。同周期元素从左到右(除稀有气体外),元素的金属性逐渐减弱,非金属性逐渐增强。 (2)原子的电子构型和族的划分 族是指价电子数相同(外围电子排布相同),按照电子层数依次增加的顺序排列的一列元素。即元素周期表中的一个列为一个族(第Ⅷ族除外)。共有十八个列,十六个族。同主族周期元素从上到下,元素的金属性逐渐增强,非金属性逐渐减弱。 (3)原子的电子构型和元素的分区 按电子排布可把周期表里的元素划分成5个区,分别为s区、p区、d区、f区和ds区,除ds区外,区的名称来自按构造原理最后填入电子的能级的符号。 2、元素周期律

高中化学选修三 原子结构与性质知识总结

原子结构与性质 一 原子结构 1、原子的构成 中子N (核素) 原子核 近似相对原子质量 质子Z (带正电荷) → 核电荷数 元素 → 元素符号 原子结构 决定原子呈电中性 电子数(Z 个) 化学性质及最高正价和族序数 体积小,运动速率高(近光速),无固定轨道 核外电子 运动特征 电子云(比喻) 小黑点的意义、小黑点密度的意义。 排布规律 → 电子层数 周期序数及原子半径 表示方法 → 原子(离子)的电子式、原子结构示意图 2、三个基本关系 (1)数量关系:质子数 = 核电荷数 = 核外电子数(原子中) (2)电性关系: ①原子中:质子数=核电荷数=核外电子数 ②阳离子中:质子数>核外电子数 或 质子数=核外电子数+电荷数 ③阴离子中:质子数<核外电子数 或 质子数=核外电子数-电荷数 (3)质量关系:质量数 = 质子数 + 中子数 二 原子核外电子排布规律 决定 X) (A Z

三相对原子质量 定义:以12C原子质量的1/12(约1.66×10-27kg)作为标准,其它原子的质量跟它比较所得的值。其国际单位制(SI)单位为1,符号为1(单位1一般不写) 原子质量:指原子的真实质量,也称绝对质量,是通过精密的实验测得的。 如:一个氯原子的m(35Cl)=5.81×10-26kg。 核素的相对原子质量:各核素的质量与12C的质量的1/12的比值。一种元素有几种同位素,就应 有几种不同的核素的相对原子质量, 相对诸量如35Cl为34.969,37Cl为36.966。 原子比较核素的近似相对原子质量:是对核素的相对原子质量取近似整数值,数值上与该质量 核素的质量数相等。如:35Cl为35,37Cl为37。 元素的相对原子质量:是按该元素各种天然同位素原子所占的原子个数百分比算出的平均值。如: Ar(Cl)=Ar(35Cl)×a% + Ar(37Cl)×b% 元素的近似相对原子质量:用元素同位素的质量数代替同位素相对原子质量与其原子个数百分比 的乘积之和。

高二化学选修3 原子结构与性质

高二化学选修3 原子结构与性质 教材分析: 一、本章教学目标 1.了解原子结构的构造原理,知道原子核外电子的能级分布,能用电子排布式表示常见元素(1~36号)原子核外电子的排布。 2.了解能量最低原理,知道基态与激发态,知道原子核外电子在一定条件下会发生跃迁产生原子光谱。 3.了解原子核外电子的运动状态,知道电子云和原子轨道。 4.认识原子结构与元素周期系的关系,了解元素周期系的应用价值。 5.能说出元素电离能、电负性的涵义,能应用元素的电离能说明元素的某些性质。 6.从科学家探索物质构成奥秘的史实中体会科学探究的过程和方法,在抽象思维、理论分析的过程中逐步形成科学的价值观。 本章知识分析: 本章是在学生已有原子结构知识的基础上,进一步深入地研究原子的结构,从构造原理和能量最低原理介绍了原子的核外电子排布以及原子光谱等,并图文并茂地描述了电子云和原子轨道;在原子结构知识的基础上,介绍了元素周期系、元素周期表及元素周期律。总之,本章按照课程标准要求比较系统而深入地介绍了原子结构与元素的性质,为后续章节内容的学习奠定基础。尽管本章内容比较抽象,是学习难点,但作为本书的第一章,教科书从内容和形式上都比较注意激发和保持学生的学习兴趣,重视培养学生的科学素养,有利于增强学生学习化学的兴趣。 通过本章的学习,学生能够比较系统地掌握原子结构的知识,在原子水平上认识物质构成的规律,并能运用原子结构知识解释一些化学现象。 注意本章不能挖得很深,属于略微展开。 相关知识回顾(必修2)

1.原子序数:含义: (1)原子序数与构成原子的粒子间的关系: 原子序数====。(3) 原子组成的表示方法 a. 原子符号:A z X A z b. 原子结构示意图: c.电子式: d.符号表示的意义: A B C D E (4) 特殊结构微粒汇总: 无电子微粒无中子微粒 2e-微粒8e-微粒 10e-微粒 18e-微粒 2.元素周期表:(1)编排原则:把电子层数相同的元素,按原子序数递增的顺序从左到右排 成横行叫周期;再把不同横行中最外层电子数相同的元素,按电子层数递增的顺序有上到 下排成纵行,叫族。 (2)结构:各周期元素的种数 0族元素的原子序数 第一周期 2 2 第二周期 8 10 第三周期 8 18 第四周期 18 36 第五周期 18 54 第六周期 32 86

高中化学《原子结构与元素的性质》教案14 新人教版选修3

1.2.1 原子结构与元素的性质(第2课时) 知识与技能: 1、掌握原子半径的变化规律 2、能说出元素电离能的涵义,能应用元素的电离能说明元素的某些性质 3、进一步形成有关物质结构的基本观念,初步认识物质的结构与性质之间的关系 4、认识主族元素电离能的变化与核外电子排布的关系 5、认识原子结构与元素周期系的关系,了解元素周期系的应用价值 教学过程: 【复习】元素周期表结构,核外电子排布式书写。 【板书】二、元素周期律 【提问】思考回答元素周期表中,同周期的主族元素从左到右,最高化合价和最低化合价、金属性和非金属性的变化有什么规律? 【回答】同周期的主族元素从左到右,最高化合价从+1~+7,最低化合价从-4~-1价,金属性逐渐减弱,非金属性逐渐增强。 【讲解】元素的性质随核电荷数递增发生周期性的递变,称为元素周期律。元素周期律的内涵丰富多样,下面,我们来讨论原子半径、电离能和电负性的周期性变化。 【板书】元素周期律:元素的性质随核电荷数递增发生周期性的递变。 1、原子半径 【讨论】原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个因素是核电荷数。这两个因素怎样影响原子半径? 【总结】电子的能层越多,电子之间的负电排斥将使原子的半径增大;而核电荷数越大,核对电子的引力也就越大,将使原子的半径缩小。这两个因素综合的结果使各种原子的半径发生周期性的递变。 【板书】影响因素:能层数、核电荷数。 【投影】主族元素的原子半径如图l—20所示。 【学与问】元素周期表中的同周期主族元素从左到右,原子半径的变化趋势如何?应如何理解这种趋势?周期表中的同主族元素从上到下,原子半径的变化趋势如何?应如何理解这种趋势? 【回答】原子半径的大小取决于两个相反的因素:一是电子的能层数,另一个是核电荷数。显然电子的能层数越大,电子间的负电排斥将使原子半径增大,所以同主族元素随着原子序数的增加,电子层数逐渐增多,原子半径逐渐增大。而当电子能层相同时,核电荷数越大,核对电子的吸引力也越大,将使原子半径缩小,所以同周期元素,从左往右,原子半径逐渐减小。 【板书】2、电离能 【讲解】气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能。上述表述中的“气态”“基态”“电中性”“失去一个电子”等都是保证“最低能量”的条件。 【板书】(1)电离能:气态电中性基态原子失去一个电子转化为气态基态正离子所需要的最低能量叫做第一电离能。

高中化学选修三原子结构与性质

第四讲原子结构与性质 一、原子核外电子排布原理 1.能层、能级与原子轨道 (1)能层(n):在多电子原子中,核外电子的能量是不同的,按照电子的能量差异将其分成不同能层。通常用K、L、M、N、P、Q表示,能量依次升高。 (2)能级 同一能层里电子的能量也可能不同,又将其分成不同的能级,通常用等表示,同一能层里,各能级的能量按的顺序依次升高。 (3)原子轨道:电子云轮廓图给出了电子在核外经常出现的区域。这种电子云轮廓图称为原子轨道。 【提醒】第一能层(K),只有s能级;第二能层(L),有s、p两种能级,p能级上有三个原子轨道p x、p y、p z,它们具有相同的能量;第三能层(M),有s、p、d三种能级。 2.基态原子的核外电子排布 (1)能量最低原理:即电子尽可能地先占有能量低的轨道,然后进入能量高的轨道,使整个原子的能量处于最低状态。如图为构造原理示意图,即基态原子核外电子在原子轨道上的排布顺序图: 注意:所有电子排布规则都需要满足能量最低原理。 (2)泡利原理:每个原子轨道里最多只能容纳个电子,且自旋状态。如2s轨道上的电子 排布为,不能表示为。 (3)洪特规则:当电子排布在同一能级的不同轨道时,基态原子中的电子总是占据一个轨 道,且自旋状态相同。如2p3的电子排布为,不能表示为或。洪特规则特例:当能量相同的原子轨道在全满(p6、d10、f14)、半满(p3、d5、f7)和全空(p0、d0、f0)状态时,体系的能量最低,如:24Cr的电子排布式为1s22s22p63s23p63d54s1或[Ar]3d54s1。 3.基态、激发态及光谱示意图

4.表示微粒结构的常用化学用语 (1)原子(离子)结构示意图:表示核外电子的分层排布和原子核内的质子数。 (2)核组成式:如168O,侧重于表示原子核的结构,它能告诉我们该原子核内的质子数和核外电子数以及质量数,并不能反映核外电子的排布情况。 (3)电子排布式:如O原子的电子排布式为1s22s22p4,它能告诉我们氧原子核外的电子分为2个电子层,3个能级,并不能告诉我们原子核的情况,也不能告诉我们它的各个电子的运动状态。 (4)电子排布图:如这个式子,对氧原子核外电子排布的情况表达得就更加详细。 (5)简化电子排布式:将电子排布式中上一周期稀有气体的电子排布改用原子实表示 (6)价电子排布式(图):对于主族和零族元素,价电子是指;对于过渡性元素,价电子是指; 【例1】判断正误 (1)p能级的能量一定比s能级的能量高( ) (2)同一原子中,2p、3p、4p能级的轨道数依次增多( ) (3)2p和3p轨道形状均为哑铃形,能量也相等( ) (4)2p x、2p y、2p z的能量相等( ) (5)铁元素基态原子的电子排布式为1s22s22p63s23p64s23d6( ) (6)Cr的基态原子的简化电子排布式为[Ar]3d44s2 ( ) (7)基态原子电子能量的高低顺序为E(1s)<E(2s)<E(2p x)<E(2p y)<E(2p z) ( ) (8)电子排布式(22Ti)1s22s22p63s23p10违反了能量最低原则( ) (9)磷元素基态原子的电子排布图为( ) 【例2】某元素的原子序数为29 (1)写出该元素的名称及元素符号 (2)画出该元素原子的电子排布式 (3)它有个能层,有个能级 (4)它的价电子排布图是 (5)它属于第周期,第族,属于区。 (6)它有个未成对电子 (7)它的原子核外有种不同运动状态的电子,占据了个轨道,核外电子占有的空间运动状态有____种。 【例3】按要求书写化学用语 1、书写下列微粒的电子式 HCN N2H4CaC2Na2O2

人教版高中化学选修三《原子结构》教案设计

电子云原子轨道泡利原理洪特规则 【教学目标】 了解电子云、原子轨道、泡利原理、洪特规则 【重点难点】 电子云、原子轨道、泡利原理、洪特规则 【教学过程】 一、引言: 01.20世纪初,丹麦科学家玻尔把原子类比为太阳系,提出了原子的行星模型,认为核外电子像行星绕着太阳运行那样绕着原子核运动,玻尔还因此于1916年获得诺贝尔物理奖,然而在后来的十年里,玻尔的行星模型却被彻底否定了,你知道为什么吗? 02.那是因为电子是一种质量极小的微观粒子,电子在核外的运动速度又接近光速,因此电子的运动和光一样,具有波粒二相性。此时,不可能像描述宏观物体那样,确定一定状态的核外电子在某个时刻处于原子核外空间何处。而只能用统计的方法,确定它在原子中某一区域内出现的概率。 03.就以最简单的原子氢原子为例,这种概率统计的结果如何?有 何规律? 二、指导阅读: 01.假想给电子拍照,然后把照片叠加在一起得到电子云图像(右图)。 02.把电子出现的概率约为90%的空间圈出来,即为电子云轮廓图,该 轮廓图即为原子轨道。

03.s能级的原子轨道和p能级的原子轨道图分别如下,由此可见:s电子的原子轨道都是球形的,p电子的原子轨道是纺锤形的,每个p能级的3个原子轨道相互垂直。 三、基态原子电子排布图: 01.描述核外电子的运动状态,你已经了解了哪几个方面? 02.写出原子序数为3-10的电子排布式,到此,你能解释下列电子排布图吗? 03.阅读:泡利原理、洪特规则、电子自旋。 四、小结: 01.描述电子运动状态应从哪几方面着手? 02.构造原理解决了哪些方面的问题?其余问题靠什么解决的?

03.可见,学习原子结构的方法如何? 五、课后作业: 01.图1和图2分别表示1s电子的概率分布和原子轨道。下列说 法正确的是() A.图1中的每个小黑点表示1个电子 B.图2表示1s电子只能在球体内出现 C.图2表明1s轨道呈圆形,有无数对称轴 D.图1中的小黑点表示某一时刻,电子在核外所处的位置 02.各能级最多容纳的电子数是该能级原子轨道数的二倍,其理论依据是()A.构造原理B.泡利原理 C.洪特规则 D.能量最低原理 03.电子排布在同一能级时,总是()A.优先单独占据不同轨道,且自旋方向相同 B.优先单独占据不同轨道,且自旋方向相反 C.自由配对,优先占据同一轨道,且自旋方向相同 D.自由配对,优先占据同一轨道,且自旋方向相反 04.基态原子的4s能级中只有1个电子的元素共有()A.1种 B.2种C.3种 D.8种 05.下图中,能正确表示基态硅原子的是() A B C D

(完整版)【人教版】高中化学选修3知识点总结:第一章原子结构与性质

第一章原子结构与性质 课标要求 1.了解原子核外电子的能级分布,能用电子排布式表示常见元素的(1~36号)原子核外电子的排布。了解原子核外电子的运动状态。 2.了解元素电离能的含义,并能用以说明元素的某种性质 3.了解原子核外电子在一定条件下会发生跃迁,了解其简单应用。 4.了解电负性的概念,知道元素的性质与电负性的关系。 要点精讲 一.原子结构 1.能级与能层 2.原子轨道 3.原子核外电子排布规律 ⑴构造原理:随着核电荷数递增,大多数元素的电中性基态原子的电子按右图顺序填入核外电子运动轨道(能级),叫做构造原理。

能级交错:由构造原理可知,电子先进入4s 轨道,后进入3d 轨道,这种现象叫能级交错。 说明:构造原理并不是说4s 能级比3d 能级能量低(实际上4s 能级比3d 能级能量高),而是指这样顺序填充电子可以使整个原子的能量最低。也就是说,整个原子的能量不能机械地看做是各电子所处轨道的能量之和。 (2)能量最低原理 现代物质结构理论证实,原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 构造原理和能量最低原理是从整体角度考虑原子的能量高低,而不局限于某个能级。 (3)泡利(不相容)原理:基态多电子原子中,不可能同时存在4个量子数完全相同的电子。换言之,一个轨道里最多只能容纳两个电子,且电旋方向相反(用“↑↓”表示),这个原理称为泡利(Pauli )原理。 (4)洪特规则:当电子排布在同一能级的不同轨道(能量相同)时,总是优先单独占据一个轨道,而且自旋方向相同,这个规则叫洪特(Hund )规则。比如,p3的轨道式为 或,而不是。 洪特规则特例:当p 、d 、f 轨道填充的电子数为全空、半充满或全充满时,原子处于较稳定的状态。即p0、d0、f0、p3、d5、f7、p6、d10、f14时,是较稳定状态。 前36号元素中,全空状态的有4Be 2s22p0、12Mg 3s23p0、20Ca 4s23d0;半充满状态的有:7N 2s22p3、15P 3s23p3、24Cr 3d54s1、25Mn 3d54s2、33As 4s24p3;全充满状态的有10Ne 2s22p6、18Ar 3s23p6、29Cu 3d104s1、30Zn 3d104s2、36Kr 4s24p6。 4. 基态原子核外电子排布的表示方法 (1)电子排布式 ①用数字在能级符号的右上角表明该能级上排布的电子数,这就是电子排布式,例如K :1s22s22p63s23p64s1。 ②为了避免电子排布式书写过于繁琐,把内层电子达到稀有气体元素原子结构的部分以↑↓ ↑ ↓ ↓ ↓ ↑ ↑ ↑

高中化学《原子结构》教案2 新人教版选修3

第一章第一节原子结构(第二课时) 教学目标: 1、知道原子核外电子的排布遵循能量最低原理 2、知道原子的基态和激发态的涵义 3、初步知道原子核外电子的跃迁及吸收或发射光谱,了解其简单应用 重点难点:能量最低原理、基态、激发态、光谱 教学过程: 〖引入〗在日常生活中,我们看到许多可见光如灯光、霓虹灯光、激光、焰火与原子结构有什么关系呢? 创设问题情景:利用录像播放或计算机演示日常生活中的一些光现象,如霓虹灯光、激光、节日燃放的五彩缤纷的焰火等。 提出问题:这些光现象是怎样产生的? 问题探究:指导学生阅读教科书,引导学生从原子中电子能量变化的角度去认识光产生的原因。 问题解决:联系原子的电子排布所遵循的构造原理,理解原子基态、激发态与电子跃迁等概念,并利用这些概念解释光谱产生的原因。 应用反馈:举例说明光谱分析的应用,如科学家们通过太阳光谱的分析发现了稀有气体氦,化学研究中利用光谱分析检测一些物质的存在与含量,还可以让学生在课后查阅光谱分析方法及应用的有关资料以扩展他们的知识面。 〖总结〗 原子的电子排布遵循构造原理能使整个原子的能量处于最低状态,简称能量最低原理。 处于最低能量的原子叫做基态原子。 当基态原子的电子吸收能量后,电子会跃迁到较高能级,变成激发态原子。电子从较高能量的激发态跃迁到较低能量的激发态乃至基态时,将释放能量。光(辐射)是电子释放能量的重要形式之一。 不同元素的原子发生跃迁时会吸收或释放不同的光,可以用光谱仪摄取各种元素的电子的吸收光谱或发射光谱,总称原子光谱。许多元素是通过原子光谱发现的。在现代化学中,常利用原子光谱上的特征谱线来鉴定元素,称为光谱分析。 〖阅读分析〗分析教材p8发射光谱图和吸收光谱图,认识两种光谱的特点。 阅读p8科学史话,认识光谱的发展。 〖课堂练习〗 1、同一原子的基态和激发态相比较() A、基态时的能量比激发态时高 B、基态时比较稳定 C、基态时的能量比激发态时低 D、激发态时比较稳定 2、生活中的下列现象与原子核外电子发生跃迁有关的是() A、钢铁长期使用后生锈 B、节日里燃放的焰火 C、金属导线可以导电 D、卫生丸久置后消失 3、比较多电子原子中电子能量大小的依据是() A.元素原子的核电荷数 B.原子核外电子的多少 C.电子离原子核的远近 D.原子核外电子的大小 4、当氢原子中的电子从2p能级,向其他低能量能级跃迁时 ( ) A. 产生的光谱为吸收光谱 B. 产生的光谱为发射光谱 C. 产生的光谱线的条数可能是2 条 D. 电子的势能将升高.

高中化学练习-原子结构_word版含解析

课练15原子结构 基础练 1.下列有关化学用语正确的是() A.甲烷分子的球棍模型: B.NH4I的电子式: C.F原子的结构示意图: D.中子数为20的氯原子:3717Cl 2.131 53I是常规核裂变产物之一,可以通过测定大气或水中131 53I的含量变化来监测核电站是否发生放射性物质泄漏。下列有关13153I的叙述中错误的是() A. 131 53I的化学性质与127 53I相同 B. 131 53I的原子序数为53 C. 131 53I的原子核外电子数为78 D. 131 53I的原子核内中子数多于质子数 3.已知氢有3种核素(1H、2H、3H),氯有2种核素(35Cl、37Cl)。则HCl的相对分子质量可能有() A.1种B.5种 C.6种D.1 000种 4.两种微粒含有相同的质子数和电子数,这两种微粒可能是() ①两种不同的原子;②两种不同元素的原子;③一种原子和一种分子;④一种原子和一种离子;⑤两种不同分子;⑥一种分子和一种离子;⑦两种不同阳离子;⑧两种不同阴离子;⑨一种阴离子和一种阳离子 A.①③⑤⑥⑦⑧B.①③⑤⑦⑧ C.①③④⑤⑦D.全部都是 5.下列说法中正确的是() A.原子中,质量数一定大于质子数 B.电子层多的原子半径一定大于电子层少的原子半径 C.由两种元素组成的化合物,若含有离子键,就没有共价键 D.自然界中有多少种核素,就有多少种原子 6.镨(Pr)、钕(Nd)都属于稀土元素,在军事和国防工业上有广泛应用,下列有关说法中正确的是()

A.镨(Pr)和钕(Nd)可能互为同位素 B.140 59Pr是镨的一种新元素 C.140 59Pr核内有59个质子,核外有81个电子 D.140 59Pr质量数为140,原子序数为59,核内有81个中子 7.据报道,在火星和金星大气层中发现了一种非常特殊的能导致温室效应的气态化合物,它的结构式为16O===C===18O。下列说法正确的是() A.16O与18O为同种核素 B.16O===C===18O与16O===C===16O互为同位素 C.16O===C===18O与16O===C===16O的化学性质几乎完全相同 D.目前提出的“低碳经济”的目标是向空气中增加CO2,促进碳的平衡 8.六种粒子的结构示意图分别为 A B C D E F 请回答下列问题: (1)依次写出6种粒子的符号:_____________________________________________________________________ ___。 (2)A、B、C、D、E、F共表示________种元素、________种原子、________种阳离子、________种阴离子。 (3)上述微粒中,阴离子与阳离子可构成两种化合物,这两种化合物的化学式为________、________。 9.用A+、B-、C2-、D、E、F、G和H分别表示含有18个电子的八种微粒(离子或分子)。请回答: (1)A元素是________,B元素是________,C元素是________。(用元素符号表示) (2)D是由两种元素组成的双原子分子,其分子式是________。 (3)E是所有含18个电子的微粒中氧化能力最强的单质分子,其分子式是________。 (4)F是由两种元素组成的三原子分子,其分子式是________,电子式是________。 (5)G分子中含有4个原子,其分子式是________。 (6)H分子中含有8个原子,其分子式是________。 10.已知A、B、C、D是中学化学中常见的四种不同微粒。它们之间存在如图所示的转化关系。 (1)如果A、B、C、D均是10电子的微粒,则A的结构式为________;D的电子式为________。 (2)如果A和C是18电子的微粒,B和D是10电子的微粒。

高中化学1.1原子结构教案鲁科版必修2

第一章 原子结构与元素周期律 第一节 原子结构 一.教材分析 (一) 知识脉络 通过初中的化学学习,同学们已经知道原子是由原子核和核外电子构成的。本节教材,就是要在已有经验的基础上继续深入地探讨原子核的结构以及核外电子的排布的规律,并利用原子结构的知识解释某些元素的部分性质,使学生初步了解原子的最外层电子排布与元素的性质(得失电子能力、化合价等)的关系。同时,通过原子结构知识的学习,为后阶段学习元素周期律、元素周期表和分子结构打下基础。 (二)知识框架 (三)新教材的主要特点: 新教材(必修)与旧教材相比,删掉了描述核外电子运动特征的电子云;降低了核外电子排布规律的要求;增加了原子结构示意图,元素的部分化学性质与原子的最外层电子排布的关系;调整了核素、同位素在教材中出现的位置。使得它更符合知识的逻辑关系,符合学生认识规律。同时,新教材更注重了让学生参与学习,提高了学生学习的主动性,更注重了学生能力的培养。 二.教学目标 (一) 知识与技能目标 1.引导学生认识原子核的结构,懂得质量数和 A Z X 的含义,掌握构成原子的微粒间的关系;知道元素、核素、同位素的涵义;掌握核电荷数、质子数、中子数、质量数之间的相互关系。 2.引导学生了解原子核外电子的排布规律,使他们能画出1~18号元素的原子结构示意图;了解原子的最外层电子排布与元素的原子得、失电子能力和化合价的关系。

(二)过程与方法目标 通过对构成原子的微粒间的关系和氢元素核素等问题的探讨,培养学生分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。 (三)情感态度与价值观目标 1.通过构成物质的基本微粒的质量、电性的认识,了解微观世界的物质性,从而进一步认识物质世界的微观本质;通过原子中存在电性不同的两种微粒的关系,认识原子是矛盾的对立统一体。 2.通过人类探索原子结构的历史的介绍,使学生了解假说、模型等科学研究方法和科学研究的历程,培养他们的科学态度和科学精神,体验科学研究的艰辛与喜悦。 3.通过“化学与技术----放射性同位素与医疗”,引导学生关注化学知识在提高人类生活质量中所起的作用。 4.通过“未来的能源----核聚变能”,引导他们关注与化学有关的热点问题,形成可持续发展的思想。 三.教学重点、难点 (一)知识上重点、难点:构成原子的微粒间的关系和核外电子排布规律。 (二)方法上重点、难点:培养分析、处理数据的能力,尝试运用比较、归纳等方法对信息进行加工。了解假说、模型等科学研究方法和科学研究的历程。 四.教学准备 (一)学生准备:上网查阅,14 6C在考古上的应用;核素、同位素在生产和生活中的应用。搜集有关原子结构模型的资料。 (二)教师准备:教学媒体、课件、相关资料。 五.教学方法 问题推进法、讨论法。 六.课时安排 2课时 七.教学过程 第1课时 【提问】化学变化中的最小微粒是什么? 【学生回答】原子是化学变化中的最小微粒。 【引出课题】这一节就从探讨原子的结构开始我们的学习。 【点评】开头简洁,直截了当,由初中相关知识提出问题,过渡到原子结构的学习。 【板书】第一节原子结构 【提出问题】原子是化学变化中的最小微粒。同种原子的性质和质量都相同。那么原子能不能再分?原子又是如何构成的呢? 【学生思考、回答】

高中化学第一章原子结构与性质第一节原子结构教学案苏教版选修

第一章原子结构与性质 引言 【知识要点】 组成和性质 化学研究 性质和变化 1、分子的组成不同——结构不同——性质不同 元素种类一样 2、分子组成相同——结构不同——性质不同 化学式 3、分子组成不同,但结构相似——性质相似 4、无机物中,化学组成相同,但晶体结构不同,从而导致性质不同。 第一章原子结构与性质 第一节原子结构 【学习重点】 1、根据构造原理写出1~36号元素原子的电子排布式; 2、核外电子的运动状态,电子云与原子轨道; 3、泡利原理、洪特规则。 【学习难点】 1、电子云和原子轨道; 2、基态、激发态和光谱。 (第1课时) 【知识要点】 一、原子的诞生 1932年勒梅特首次提出了现代宇宙大爆炸理论:整个宇宙最初聚集在一个“原始原子”中,后来发生了大爆炸,碎片向四面八方散开,形成了我们的宇宙。大爆炸后两小时,诞生了大量的、少量的及极少量的Li,然后经过长或短的发展过程,以上元素发生原子核的熔合反应,分期分批的合成了其它元素。 元素宇宙中最丰富的元素占88.6%(氦1/8),地球上的元素大多数是金属,非金属元素(包括稀有气体)仅种。 二、原子结构模型(人类对原子结构的认识历史) 古希腊哲学家德谟克利特是原子学说的奠基人,他认为原子是构成物质的粒子。万物都是由间断的、不可分的粒子即原子构成的,原子的结合和分离是万物变化的根本原因。 1、道尔顿原子模型(1803年)英国科学家道尔顿是近代原子学说的创始人。他认为原子是组成物质的基本粒子,它们是坚实、不可再分的实心球,同种原子的质量和性质都相同。 2、汤姆生原子模型(1904年)英国科学家汤姆生发现了电子。他认为原子是一个平均分布着正电荷的粒子,其中镶嵌着许多电子,中和了正电荷,从而形成了中性原子。(也称“枣糕”模型或“葡萄干布丁”模型) 3、卢瑟福原子模型(1911年)英国物理学家卢瑟福根据α—粒子散射实验提出:在原子的中心有一个带正电荷的核,它的质量几乎等于原子的全部质量,电子在它的周围沿着不同的轨道运转,就象行星环绕太阳运转一样。(电子绕核旋转的原子结构模型) 4、玻尔原子模型(1913年)丹麦物理学家玻尔通过光谱研究提出电子在核外空间的一定轨道内绕核做高速圆周运动的理论。(核外电子分层排布的原子结构模型) 5、电子云模型(1927年—1935年)又称现代物质结构学说。奥地利物理学家薛定谔等人

相关主题