搜档网
当前位置:搜档网 › 八年级数学竞赛讲座分式方程(组)附答案

八年级数学竞赛讲座分式方程(组)附答案

八年级数学竞赛讲座分式方程(组)附答案
八年级数学竞赛讲座分式方程(组)附答案

第三十四讲 分式方程(组)

本讲我们将介绍分式方程(组)的解法及其应用.

【知识拓展】 分母里含有未知数的方程叫做分式方程.解分式方程组的基本思想是:化为整式方程.通常有两种做法:一是去分母;二是换元.

解分式方程一定要验根.

解分式方程组时整体代换的思想体现得很充分.常见的思路有:取倒数法方程迭加法,换元法等.

列分式方程解应用题,关键是找到相等关系列出方程.如果方程中含有字母表示的已知数,需根据题竞变换条件,实现转化.设未知数而不求解是常见的技巧之一.

例题求解

一、分式方程(组)的解法举例

1.拆项重组解分式方程

【例1】解方程6

4534275--+--=--+--x x x x x x x x . 解析 直接去分母太繁琐,左右两边分别通分仍有很复杂的分子.考虑将每一项分拆:如

7

2175-+=--x x x ,这样可降低计算难度.经检验211=x 为原方程的解. 注 本题中用到两个技巧:一是将分式拆成整式加另一个分式;二是交换了项,避免通分后分子出现x .这样大大降低了运算量.本讲趣题引路中的问题也属于这种思路.

2.用换元法解分式方程

【例2】解方程08131

821

8111

222=--+-++-+x x x x x x .

解析 若考虑去分母,运算量过大;分拆也不行,但各分母都是二次三项式,试一试换元法.

解 令x 2+2x —8=y ,原方程可化为0151191=-+++x

y y x y 解这个关于y 的分式方程得y=9x 或y=-5x .

故当y=9x 时,x 2+2x —8=9x ,解得x 1=8,x 2=—1.

当y=-5x 时,x 2+2x —8=-5x ,解得x 3=—8,x 4=1.

经检验,上述四解均为原方程的解.

注 当分式方程的结构较复杂且有相同或相近部分时,可通过换元将之简化.

3.形如a a x x 11+=+

结构的分式方程的解法 形如a a x x 11+=+的分式方程的解是:a x =1,a

x 12=.

【例3】解方程 3

10511522=+++++x x x x . 解析 方程左边两项的乘积为1,可考虑化为上述类型的问题求解.

11=x ,22=x 均为原方程的解.

4.运用整体代换解分式方程组

【例4】解方程组????

?????=+=+=+x x x z y

y y x x 22

22

22

414414414. 解析 若用常规思路设法消元,难度极大.注意到每一方程左边分子均为单项式,为什么不试一试倒过来考虑呢?

解 显然x=y=z=0是该方程组的一组解.

若x 、y 、z 均不为0,取倒数相加得x=y=z=

21 故原方程组的解为x=y=z=0和x=y=z=

2

1. 二、含字母系数分式方程根的讨论

【例5】解关于x 的方程242241)1(2212122x a x x a x x a --=---++. 解析 去分母化简为含字母系数的一次方程,须分类讨论.

讨论:(1)当a 2

-1≠0时

①当a ≠0时,原方程解为x=212

a +; ②当a=0时,此时21±

=x 是增根. (2) 当a 2-1=0时即a=1±,此时方程的解为x ≠21±

的任意数; 综上,当a ≠±1且a ≠0时,原方程解为x=2

12

a +;当a=0时,原方程无解,;当a=1± 时,原方程的解为x ≠2

1±的任意数. 三、列分式方程解应用题

【例6】 某商场在一楼和二楼之间安装了一自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯行驶,两人也走梯).如果两人上梯的速度都是匀速的,每次只跨1级,且男孩每分钟走动的级数是女孩的2倍.已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部.

(1)扶梯露在外面的部分有多少级?

(2)现扶梯近旁有一从二楼下到一楼的楼梯道,台阶的级数与自动扶梯的级数相等,两个孩子各自到

八年级数学竞赛讲座三角形的有关概念

八年级数学竞赛讲座 三角形的有关概念 一、知识结构: 1、三角形的定义; 2、三角形的角平分线、中线、高; 3、三角形的三边之间的关系; 4、三角形的内角和定理及其推论; 5、同一个三角形中边与角之间的关系; 6、三角形的分类; 二、典型例题: 1、△ABC 三边长分别为a,b,c,且)(2 c b a bc a -=-,则这个三角形一定是( ) A.三边不相等的三角形 B.等边三角形 C.等腰三角形 D.任意三角形 2、△ABC 三边长分别为a,b,c,且,2 2 2 ca bc ab c b a ++=++则这个三角形一定是( ) A.不等边三角形 B.等边三角形 C.等腰三角形 D.任意三角形 3、已知等腰三角形的一边等于4,一边等于9,则它的周长是( ) A 、17 B 、22 C 、12或22 D 、20 4、下面四个命题中不正确的是( ) A .在△ABC 中,设三个内角中最小的角为α,则0°<α≤60° B .在△AB C 中,三个内角α:β:γ=1:2:3,则这个三角形是直角三角形; C .在△ABC 中,β为三个内角中最大的角,则60°<β<180° D .在△ABC 的内角中,锐角的个数最多; 5、等腰三角形ABC 中,AB=AC ,一腰上的中线BD 将这个等腰三角形的周长分成15和6两部分,求这个三角形的腰长及底边长; 6、如图:AF 、AD 分别是△ABC 的高和角平分线, 且∠B=36°,∠C=76°,求∠DAF 的度数; 7、△ABC 中,AB=5,AC=3,则BC 边上的中线AD 的长l 的取值范围是多少? 8、已知斜三角形ABC 中,∠A=55°,三条高所在直线交点为H ,求∠BHC 的度数; A B D F C

初二数学分式方程练习题(含答案)

分式方程精华练习题 1.在下列方程中,关于x 的分式方程的个数(a 为常数)有( ) ①0432212=+-x x ②.4=a x ③.;4=x a ④. ;13 9 2=+-x x ⑤;621=+x ⑥211=-+-a x a x . A.2个 B.3个 C.4个 D.5个 2. 关于x 的分式方程 15 m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数 C .5m <-时,方程的解为负数 D .无法确定 3.方程x x x -=++-1315112 的根是( )A.x =1 B.x =-1 C.x =83 D.x =2 4.,04412=+-x x 那么x 2的值是( ) A.2 B.1 C.-2 D.-1 5.下列分式方程去分母后所得结果正确的是( ) A. 112 11-++=-x x x 去分母得,1)2)(1(1-+-=+x x x ; B. 1255 52=-+-x x x ,去分母得,525-=+x x ; C.242222-=-+-+-x x x x x x ,去分母得,)2(2)2(2 +=+--x x x x ; D. ,1 1 32-=+x x 去分母得,23)1(+=-x x ; 6. .赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半书时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下面所列方程中,正确的是( ) A.21140140-+x x =14 B.21280280++x x =14 C.21140140++x x =14 D.21 10 10++x x =1 7.若关于x 的方程 01 11=----x x x m ,有增根,则m 的值是( )A.3 B.2 C.1 D.-1 8.若方程 ,) 4)(3(1243+-+=++-x x x x B x A 那么A 、B 的值为( ) A.2,1 B.1,2 C.1,1 D.-1,-1 9.如果,0,1≠≠= b b a x 那么=+-b a b a ( )A.1-x 1 B.11+-x x C.x x 1- D.1 1+-x x 10.使分式442-x 与6 52 6322+++-+x x x x 的值相等的x 等于( ) A.-4 B.-3 C.1 D.10 二、填空题(每小题3分,共30分) 11. 满足方程: 22 11-=-x x 的x 的值是________. 12. 当x =________时,分式x x ++51的值等于21. 13.分式方程 02 22=--x x x 的增根是 . 14. 一汽车从甲地开往乙地,每小时行驶v 1千米,t 小时可到达,如果每小时多行驶v 2千米,那么可提前到达________小时. 15. 农机厂职工到距工厂15千米的某地检修农机,一部分人骑自行车先走40分钟后,其余人乘汽车出发,结果他们同时到达,已知汽车速度为自行车速度的3倍,若设自行车的速度为x 千米/时,则所列方程为 . 16.已知,54=y x 则=-+2 22 2y x y x .17.=a 时,关于x 的方程53221+-=-+a a x x 的解为零. 18.飞机从A 到B 的速度是,1v ,返回的速度是2v ,往返一次的平均速度是 . 19.当=m 时,关于x 的方程 3 1 3292 -=++-x x x m 有增根. 20. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 . 三、解答题(共5大题,共60分) 21. .解下列方程 (1) x x x --=+-34231 (2) 21 23442+-=-++-x x x x x (3)21124 x x x -=--. 22. 有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天? 24.小兰的妈妈在供销大厦用12.50元买了若干瓶酸奶,但她在百货商场食品自选室内发现,同样的酸奶,这里要比供销大厦每瓶便宜0.2元钱,因此,当第二次买酸奶时,便到百货商场去买,结果用去18.40元钱,买的瓶数比第一次买的瓶数多 5 3 倍,问她第一次在供销大厦买了几瓶酸奶?

数学竞赛专题讲座七年级第1讲_跨越—从算术到代数(含答案)

第一讲跨越——从算术到代数 “加里宁曾经说过:数学是锻炼思维的体操,体操能使你身体健康,动作敏捷;数学能使你的思想正确敏捷,有了正确的思想,你们才有可能爬上科学的大山.” _______华罗庚。 华罗庚,我国现代有世界声誉的数学家,初中毕业后,靠自学成才,在数论、矩阵几何等许多领域中做出过卓越贡献. 纵观历史,数学的发展创造了数学符号,新的数学符号的使用又反过来促进了数学的发展.历史是这样一步一步走过来的,并将这样一步一步地继续走下去,数学的每一个进步都必须伴随着新的数学符号的产生.在文明和科学的发展过程中,人类创造用符号代替语言、文字的方法,这是因为符号比语言、文字更简练、更直观、更具一般性.“算术”可以理解为“计算的方法”,而“代数”可以理解为“以符号替代数字”,即“数学符号化”.著名数学教育家玻利亚曾说:“代数是一种不用词句而只用符号所构成的语言.” 用字母表示数是数学发展史上的一件大事,是由算术跨越到代数的桥梁,是人类发展史上的一个飞跃,也是代数与算术的最显著的区别. 字母表示数使得数学具有简洁的语言,能更普遍地说明数量关系,在列代数式、求代数式的值、形成公式等方面有广泛的应用. 例题讲解 【例1】观察下列等式9—l=8,16—4=12,25—9=16,36—16=20,…… 这些等式反映出自然数间的某种规律,设n表示自然数,用关于n的等式表示出来: .(河南省中考题) 思路点拨在观察给定的等式基础上,寻找数字特点,等式的共同特征,发现一般规律.链接:从个别事物中发现一般性规律.这种研究问题的方法叫“归纳法”,是由特殊到一般的思维过程,是发明创造的基础. 【例2】某商品2002年比2001年涨价5%,2003年又比2002年涨价10%,2004年比2003年降价12%,则2004年比2001年( ). A.涨价3%B.涨价1.64%C涨价1.2%D.降价1.2% 思路点拨设此商品2001年的价格为a元,把相应年份的价格用a的代数式表示,由计算作出判断.

八年级数学竞赛讲座四边形

八年级数学竞赛讲座四 边形 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-

八年级数学竞赛讲座 四边形(2) 一、 知识要点: 1、梯形的定义、判定; 2、等腰梯形的定义、性质、判定; 3、三角形、梯形的中位线定理; 二、 例题: 1、用长为1,4,4,5的线段为边作梯形,求其中面积最小的那个梯形的两条对角线的长度之和; 2、已知:如图,等腰梯形ABCD 中,AB ∥DC ,且AB >CD ,两对角线AC 、BD 相互垂直,若BC=213,AB+CD=34,求AB ,CD 的长; 3、如图:在梯形ABCD 中,AD ∥BC ,∠BAC=90°,AB=AC ,BD=BC ,AC 与BD 相交于点E ,求∠DCE 的度数; 4、已知:如图,在四边形ABCD 中,AB=CD ,E 、F 分别 是BC 、AD 的中点,BA 、CD 的延长线分别与EF 的延长线交于点M 、N 求证:∠AMF=∠CNE 5、已知:如图,梯形ABCD 中,AD ∥BC ,E 、F 分别是 两底AD 、BC 的中点,且EF=2 1(BC -AD ), 求证:∠B+∠C=90°;

6、已知:如图,在△ABC 中,∠ACB=90°,D 为BC 的中点, G 为AD 的中点,CG 的延长线交AB 于点E ,EF ∥AC 交AD 于 点F ,求证:BE=2CF ; 7、已知:如图,M 是AB 的中点,C 是AB 上任意一点,N 、P 分别是DC 、DB 的中点,Q 是MN 的中点,PQ 的延长线交AC 于点E , 求证:E 是AC 的中点; 8、如图:四边形ABCD 中,∠BAD=∠BCD ,∠ABC ≠∠ADC , ∠ABC ,∠BCD ,∠CDA ,∠DAB 的平分线两两相交于E 、F 、G 、H , 求证:四边形EFGH 为等腰梯形; 9、已知:梯形ABCD 中,AD ∥BC ,AD <BC ,E 为AB 的中点,DE ⊥CE ,求证:AD+BC=DC ; 10、已知,如图,梯形ABCD 中,AD ∥BC ,E 为CD 中点, EF ⊥AB 于F , 求证:AB EF S ABCD ?=梯形 11、在直角梯形ABCD 中,AB ⊥AD ,CD ⊥AD ,将BC 按逆时针方向绕点B 旋转90°,得到线段BE ,连接AE 、CE ,(如图(1))。 ①若AB=2厘米,DC=3厘米,求证:1=?ABE S 平方厘米; A D F E B C

新人教版八年级数学分式方程

分式方程(1) 【学习目标】 1.了解分式方程的概念, 和产生无解的原因。 2.掌握分式方程的解法,会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的解。 【重点】会解可化为一元一次方程的分式方程,会检验一个数是不是原方程的解。 【自主学习】 1、预习内容:自学教材第149页 2、预习检测: 1) 中含有 的方程叫做分式方程。 2)你能再写出几个分式方程吗? 3)下列式子中,属于分式方程的是 ,属于整式方程的是 。 ①1213=-+x x ②21412x x -=- ③12312=+x x ④51≥x 【合作探究】 探究点一 类比学习探究分式方程的解法 1、解下列方程: (1)415-=x x (2)1 45-=x x ; 解:去分母(各项乘以公分母 ) 解:去分母(各项乘以最简 公分母________ _) ?-=?415 x x 约分得:()()54?=? 约分得:()()x x ?=-?)1( 去括号: 去括号: 移项: 移项: 合并同类项: 合并同类项: 系数化为1: 归纳:解分式方程的思路是将分式方程转化成 ,基本的方法是 (一般是方程两边同乘 )。且解分式方程必须 。 例1解方程 x x 332=- 例2解方程2)(1(311+-=--x x x x ?-=?145x x

2、解分式方程 1223x x =+ 2510512-=-x x 22411x x =-- 21133x x x x =+++ 例3、若关于x 的方程 021 1=--+x ax 无解,求a 的值 3、课后作业 1、=a 时,关于x 的方程 53221+-=-+a a x x 的解为零; 2、若关于x 的方程 3232-+=--x m x x 无解,则m 的值为 。 3、若代数式11 2--x 的值为零,则=x 4、若11-x 与1 2+x 互为相反数,则可得方程 ,解得=x 5、解方程: (1)1332+=-a a (2)88122-=--m m m (3) 22510x x x x -=+-

新课标八年级数学竞赛讲座:第七讲 二次根式的运算

第七讲 二次根式的运算 式子a (a ≥0)叫二次根式,二次根式的运算是以下列运算法则为基础. (1)c b a c b c a )(±=± (≥0); (2)ab b a =? (0,0≥≥b a ); (3) b a b a = (0,0>≥b a ); (4)22)(a a =(≥a 0). 同类二次根式,有理化是二次根式中重要概念,它们贯穿于二次根式运算的始终,因为二次根式的加减实质就是合并同类二次根式,二次根式除法、混合运算常用到有理化概念. 二次根式的运算是在有理式(整式、分式)运算的基础上发展起来的,常常用到有理式运算的方法与技巧,如换元、字母化、拆项相消、分解相约等. 例题求解 【例1】 已知2542 4 52 22+-----= x x x x y ,则22y x += . (重庆市竞赛题) 思路点拨 因一个等式中含两个未知量,初看似乎条件不足,不妨从二次根式的定义入手. 注: 二次根式有如下重要性质: (1)0≥a ,说明了a 与a 、n a 2一样都是非负数; (2) a a =2)( (≥a 0),解二次根式问题的途径——通过平方,去掉根号有理化; (3) a a =2)(,揭示了与绝对值的内在一致性. 著名数学教育家玻利亚曾说,“回到定义中去”,当我们面对条件较少的问题时,记住玻利亚的忠告,充分运用概念解题. 【例2】 化简2 2 ) 1(111++ + n n ,所得的结果为( ) A .1111++ + n n B .1111++-n n C .1111+-+n n D .1 1 11+--n n (武汉市选拔赛试题) 思路点拔 待选项不再含根号,从而可预见被开方数通过配方运算后必为完全平方式形式. 注 特殊与一般是能相互转化的,而一般化是数学创造的基本形式,数学的根本目的就是要揭示更为普遍、更为深刻的事实和规律.

(人教版)八年级数学分式方程测试题及答案

16.3.1 分式方程 同步测试 ◆知能点分类训练 知能点1 分式方程 1.下列方程中分式方程有( )个. (1)x 2-x+1x (2)1a 2010 3(4) x x y x y x -=-+-=1 A .1 B .2 C .3 D .以上都不对 2.下列各方程是关于x 的分式方程的是( ). A .x 2 +2x-3=0 B .2221 5(0). 5x x x a C a x --=≠=-3 D .ax 2+bx+c=0 3.观察下列方程: 2111 43882(1) 1.6;(2)1;(3)1;(4).0.30.51132 x x x x x x x x x +--++-=+=-==-- 其中是关于x 的分式方程的有( ) A .(1) B .(2) C .(2)(3) D .(2)(4) 知能点2 分式方程的解法 4.解方程:(1) 21;2 x x =- 15(2) 1 x x x x ++ + (3)22122563 x x x x x x x --=--+-。 5.解下列分式方程: (1) 22 14236 1;(2)11111 x x x x x x +-=+=--+--. 6.解方程:4578 5689 x x x x x x x x -----=- ----. 7.解下列关于x 的方程:

(1) 1(1);(2)1 a m n b b x a x x +=≠- -+=0(m ≠0). 8.解方程:2155 ()14x x x x ---= . 9.在式子50 s s a a b +=+中,s>0,b>0,求a . ◆规律方法使用 10.已知关于x 的方程 4433x m m x x ---= --无解,求m 的值. 11.a 为何值时,关于x 的方程223 242 ax x x x += --+会产生错误? 12.已知分式方程21 x a x +-=1的解为非负数,求a 的取值范围. ◆开放探索创新 13.阅读并完成下列问题:通过观察,发现方程x+1x =2+12 的解是x 1=2, x 2=12;x+1 x =3+13 的解是x 1=3,x 2=13;x+1x =4+14 的解是x 1=4, x 2=1 4 ,… (1)观察上述方程的解,猜想关于x 的方程x+1x =5+15 的解是_______. (2)根据上面的规律,猜想关于x 的方程x+1x =c+1c 的解是______. (3)根据上面的规律,可将关于x 的方程2221 111 x x a x a -+=-+--变形为_______,方程的解是_________,?解决这个问题的数学思想是_________. ◆中考真题实战 14.解方程: 31144x x x --=--; 15.解方程:54 1x x -+=0. 16.解方程:21133x x x -=---; 17.解方程:53 11x x = -+. 18.解方程:25 2112x x x + --=3. 答案:

高中数学竞赛专题讲座---竞赛中的数论问题

竞赛中的数论问题的思考方法 一. 条件的增设 对于一道数论命题,我们往往要首先排除字母取零值或字母取相等值等“平凡”的情况,这样,利用字母的对称性等条件,往往可以就字母间的大小顺序、整除性、互素性等增置新的条件,从而便于运用各种数论特有手段。 1. 大小顺序条件 与实数范围不同,若整数x ,y 有大小顺序x m ,而令n =m +u 1,n >u 1≥1,得-2 (m -1mu 1)(22112=--u mu m 。同理,又可令m = u 1+ u 2,m >u 2≥1。如此继续下去将得u k+1= u k =1,而11+-+=i i i u u u ,i ≤k 。故n m u u u u k k ,,,,,,121 +是不大于1981的裴波那契数,故m =987,n =1597。 例2. (匈牙利—1965)怎样的整数a ,b ,c 满足不等式?233222c b ab c b a ++<+++ @ 解:若直接移项配方,得01)1()12(3)2(222<--+-+-c b b a 。因为所求的都是整数,所以原不等 式可以改写为:c b ab c b a 234222++≤+++,变形为:0)1()12 (3)2(222≤-+-+-c b b a ,从而只有a =1, b =2, c =1。 2. 整除性条件 对于整数x ,y 而言,我们可以讨论其整除关系:若x |y ,则可令y =tx ;若x ?y ,则可令y =tx +r ,0,则q a b +≥。结合高斯函数,设n 除以k ,余数为r ,则有r k k n n +?? ????=。还可以运用抽屉原理,为同余增设一些条件。整除性与大小顺序结合,就可有更多的特性。 例3. 试证两相继自然数的平方之间不存在自然数a q )由p ,q 的互素性易知必有q |a ,q |b 。这样,由b >a 即得q a b +≥。(有了三个不等式,就可对 q p 的范围进行估计),从而q n n q a d b d q p q q q ++<+≤=<+=+22)1(111。于是将导致矛盾的结果:0)(2<-q n 。这里,因为a ,b 被q 整除,我们由b >a 得到的不仅是b ≥a +1,而是更强的条件b ≥a +q 。 例4. (IMO-25)设奇数a ,b ,c ,d 满足0

八年级数学竞赛讲座由中点想到什么附答案

第十八讲由中点想到什么 线段的中点是几何图形中一个特殊的点,它关联着三角形中线、直角三角形斜边中线、中心对称图形、三角形中位线、梯形中位线等丰富的知识,恰当地利用中点,处理中点是解与中点有关问题的关键,由中点想到什么?常见的联想路径是: 1.中线倍长; 2.作直角三角形斜边中线; 3.构造中位线; 4.构造中心对称全等三角形等. 熟悉以下基本图形,基本结论: 例题求解 【例1】如图,在△ABC中,∠B=2∠C,AD⊥BC于D,M为BC的中点, AB=10cm,则MD的长为.(“希望杯”邀请赛试题) 思路点拨取AB中点N,为直角三角形斜边中线定理、三角形中位线定理的运用创造条件. 注证明线段倍分关系是几何问题中一种常见题型,利用中点是一个有效途径,基本方法有: (1)利用直角三角斜边中线定理; (2)运用中位线定理; (3)倍长(或折半)法. 【例2】如图,在四边形ABCD中,一组对边AB=CD,另一组对边AD≠BC,分别取AD、BC的中点M、N,连结MN.则AB与MN的关系是( ) A.AB=MN B.AB>MN C.AB

思路点拨 中点M 、N 不能直接运用,需增设中点,常见的方法是作对角线的中点. 【例3】如图,在△ABC 中,AB=AC ,延长AB 到D ,使BD =AB ,E 为AB 中点,连结CE 、CD ,求证:C D=2EC . (浙江省宁波市中考题) 思路点拨 联想到与中位线相关的丰富知识,将线段倍分关系的证明转化为线段相等关系的证明,解题的关键是恰当添辅助线. 【例4】 已知:如图l ,BD 、CE 分别是△ABC 的外角平分线,过点A 作AF ⊥BD ,AG ⊥ CE ,垂足分别为F 、G ,连结FG ,延长AF 、AG ,与直线BC 相交,易证FG= 21(AB+BC+AC). 若(1)BD 、CF 分别是△ABC 的内角平分线(如图2); (2)BD 为△ABC 的内角平分线,CE 为△ABC 的外角平分线(如图3),则在图2、图3两种情况下,线段FG 与△ABC 三边又有怎样的数量关系?请写出你的猜想,并对其中的一种情况给予证明. (2003年黑龙江省中考题) 思路点拨 图1中FG 与△ABC 三边的数量关系的求法(关键是作辅助线),对寻求后两个图形中线段FG 与△ABC 三边的数量关系起着重要作用,而由平分线、垂线发现中点,这是解题的基础. 注 三角形与梯形的中位线.在位置上涉及到平行,在数量上是上下底和的一半,它起着传递角的位置关系和线段长度的功能,在证明线段倍分关系、两直线位置关系、线段长度的计算等方面有着广泛的应用.

数学竞赛专题讲座七年级第2讲创造的基石—

第二讲 创造的基石——观察、归纳与猜想 当代著名科学家波普尔说过:我们的科学知识,是通过未经证明的和不可证明的预言,通过猜测,通过对问题的尝试性解决,通过猜想而进步的. 从某种意义上说,一部数学史就是猜想与验证猜想的历史.20世纪数学发展中巨大成果是,1995年英国数学家维尔斯证明了困扰数学界长达350多年的“费尔马大猜想”,而著名的哥德巴赫猜想,已经历经了两个半世纪的探索,尚未被人证实猜想的正确性. 当一个问题涉及相当多的乃至无穷多的情形时,我们可以从问题的简单情形或特殊情况人手,通过对简单情形或特殊情况的试验,从中发现一般规律或作出某种猜想,从而找到解决问题的途径或方法,这种研究问题的方法叫归纳猜想法,是创造发明的基石. “要想成为一个好的数学家,你必须是一个好的猜想家,数学家的创造性工作的结果是论证推理,是一个证明,但证明是由合情推理、由猜想来发现的.”______G .波利亚 链接:G .波利亚,美籍匈牙利人,现代著名数学家,他的《怎样解题》等著作,被誉为第二次世界大战后的数学经典著作之一. 观察、实验、猜想是科学技术创造过程中一个重要方法,通过观察和实验提出问题,再提出猜想和假设,最后通过推理去证明假设和猜想. 举世瞩目的“数学皇冠上的明珠”——哥德巴赫(德国数学家)猜想,就是从下面这些等式:6=3+3,8=3+5,10=3+7,12=5+7,14=3+11.归纳得出:“任何不小于6的偶数均可以表示成两个奇质数的和.”我国数学家陈景润于1973年证明了“1+2”,离解决哥德巴赫问题,即“1+1”仅一步之遥. 例题讲解 【例1】 (1)用●表示实圆,用○表示空心圆,现有若干实圆与空心圆按一定规律排列如下: ●○●●○●●●○●○●●○●●●○●○●●○●●●○…… 问:前2001个圆中,有 个空心圆. (江苏省泰州市中考题) (2)古希腊数学家把数1,3,6,10,15,2l ,…叫做三角形数,它有一定的规律性,则第24个三角形数与第22个三角形数的差为 . (舟山市中考题) 思路点拨 (1)仔细观察,从第一个圆开始,若干个圆中的实圆数循环出现,而空心圆的个数不变;(2)每个三角形数可用若干个数表示. 【例2】观察下列图形,并阅读图形下面的相关文字: 像这样,10条直线相交,最多交点的个数是( ). A .40个 B .45个 C .50个 D .55个 (湖北省荆门市中考题) 思路点拨 随着直线数的增加,最多交点也随着增加,从给定的图形中,探讨每增加一条直线,最多交点的增加数与原有直线数的关系.是解本例的关键. ......四条直线相交,最多有六个交点 三条直线相交,最多有三个交点两条直线相交,最多只有一个交点

八年级数学竞赛讲座数形互助附答案

第三十讲 数形互助 数和形是数学研究的基本对象,是数学产生和发展的两块基石,在数学发展的过程中,数和形常常结合在一起,在方法上互相渗透,在内容上互相联系. 以数助形,即恰当地引参或设元,把一些几何量如角度的大小、线段的长度等用字母或代数式表示,利用图形的性质,寻找几何图形元素之间的关系,通过解方程、等式变形、等式运算等代数方法解证几何题. 用形辅数,即把一个代数问题转化为一个图形,问题中的条件与结论直观地、整体地表示出来,借助图形的直观性辅助解题,在代数的学习中,我们广泛地使用了用形辅数的方法,如用数轴赋予抽象的代数概念以直观的形象、乘法公式的几何表示、解应用题时常借助直线图、图表帮助分析等. 例题求解 【例1】 若a 、b 均为正数,且22b a +,242b a +,224b a +是一个三角形的三 条边的长,那么这个三角形的面积等于 . ( “希望杯”邀请赛试题) 思路点拨 直接用三角形面积公式求面积较为复杂,利用22n m +的几何意义(表示直角边分别为m ,n 的直角三角形斜边长),构造图形求面积. 注 古埃及,在长期土地测量、划分界限的过程中形成了最初的几何学.“Geometry(几何)”一词在希腊文中意为“测量”,我国宋元时期巳将某些几何问题代数化,把图形之间的几何关系,表示成代数式之间的代数关系. 17世纪笛卡尔的解析几何引进坐标,用“数”研究“形”,为18、19世纪数学的空前发展作了准备. 【例2】 如图,在△ABD 中,C 为AD 上一点,AB=CD=1,∠ABC=90°,∠CBD=30°,则AC=( ) A .1 B .32 C .2 D .3 (武汉市选拔赛试题) 思路点拨 过D 作DE ⊥AB 交AB 延长线于E ,设AC=x ,BE=y ,运用平行线分线段成比例、直角三角形边角关系、勾股定理等知识建立方程组,通过解方程组求AC 的值. 【例3】 如图,E 、F 分别是边长为4的正方形ABCD 的边BC 、CD 上的点,CE=1,CF=3 4,直线FC 交AB 的延长线于G ,过线段FG 上的动点H 作HM ⊥AG ,HN ⊥AD ,垂足分别为M ,N ,设HM=x ,矩形AMHN 的面 积为y . (1)用x 的代数式表示y ;

八年级数学分式方程11

16.3 分式方程(1) 一、教学目标 1.使学生理解分式方程的意义. 2.使学生掌握可化为一元一次方程的分式方程的一般解法. 3.了解解分式方程解的检验方法. 4.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧.5.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未知问题转化成已知问题,从而渗透数学的转化思想. 二、教学重点和难点 1.教学重点: (1)可化为一元一次方程的分式方程的解法. (2)分式方程转化为整式方程的方法及其中的转化思想. 2.教学难点:检验分式方程解的原因 3.疑点及分析和解决办法: 解分式方程的基本思想是将分式方程转化为整式方程(转化思想),基本方法是去分母(方程左右两边同乘最简公分母),而正是这一步有可能使方程产生增根.让学生在学习中讨论从而理解、掌握. 三、教学方法 启发式设问和同学讨论相结合,使同学在讨论中解决问题,掌握分式方程解法. 四、教学手段 演示法和同学练习相结合,以练习为主. 五、教学过程 (一)复习及引入新课 1.提问:什么叫方程?什么叫方程的解? 答:含有未知数的等式叫做方程. 使方程两边相等的未知数的值,叫做方程的解. 解:(1)当x=0时, 右边=0, ∴左边=右边,

这个方程和我们以前所见过的方程不同,它的主要特点是:分母中含有未知数,这种方程就是我们今天要研究的分式方程. (二)新课 板书课题: 板书:分式方程的定义. 分母里含有未知数的方程叫分式方程.以前学过的方程都是整式方程. 练习:判断下列各式哪个是分式方程. 在学生回答的基础上指出(1)、(2)是整式方程,(3)是分式,(4)是分式方程. 先由同学讨论如何解这个方程. 在同学讨论的基础上分析:由于我们比较熟悉整式方程的解法,所以要把分式方程转化为整式方程,其关键是去掉含有未知数的分母. 解:两边同乘以最简公分母2(x+5)得 2(x+1)=5+x 2x+2=5+x x=3. 如果我们想检验一下这种方法,就需要检验一下所求出的数是不是方程的解. 检验:把x=3代入原方程 左边=右边 ∴x=3是原方程的解. (三)应用 一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用

数学竞赛专题讲座共35讲全套

竞赛讲座01 -奇数和偶数 整数中,能被2整除的数是偶数,反之是奇数,偶数可用2k表示,奇数可用2k+1表示,这里k是整数. 关于奇数和偶数,有下面的性质: (1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数; (2)奇数个奇数和是奇数;偶数个奇数的和是偶数;任意多个偶数的和是偶数; (3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数; (4)若a、b为整数,则a+b与a-b有相同的奇数偶; (5)n个奇数的乘积是奇数,n个偶数的乘积是2n的倍数;顺式中有一个是偶数,则乘积是偶数. 以上性质简单明了,解题时如果能巧妙应用,常常可以出奇制胜. 1.代数式中的奇偶问题 例1(第2届“华罗庚金杯”决赛题)下列每个算式中,最少有一个奇数,一个偶数,那么这12个整数中,至少有几个偶数? □+□=□,□-□=□, □×□=□□÷□=□. 解因为加法和减法算式中至少各有一个偶数,乘法和除法算式中至少各有二个偶数,故这12个整数中至少有六个偶数. 例2 (第1届“祖冲之杯”数学邀请赛)已知n是偶数,m是奇数,方程组 是整数,那么 (A)p、q都是偶数. (B)p、q都是奇数. (C)p是偶数,q是奇数(D)p是奇数,q是偶数 分析由于1988y是偶数,由第一方程知p=x=n+1988y,所以p是偶数,将其代入第二方程中,于是11x也为偶数,从而27y=m-11x为奇数,所以是y=q奇数,应选(C)

例3 在1,2,3…,1992前面任意添上一个正号和负号,它们的代数和是奇数还是偶数. 分析因为两个整数之和与这两个整数之差的奇偶性相同,所以在题设数字前面都 添上正号和负号不改变其奇偶性,而1+2+3+…+1992==996×1993为偶数于是题设的代数和应为偶数. 2.与整除有关的问题 例4(首届“华罗庚金杯”决赛题)70个数排成一行,除了两头的两个数以外,每个数的3倍都恰好等于它两边两个数的和,这一行最左边的几个数是这样的:0,1,3,8,21,….问最右边的一个数被6除余几? 解设70个数依次为a1,a2,a3据题意有 a1=0, 偶 a2=1 奇 a3=3a2-a1, 奇 a4=3a3-a2, 偶 a5=3a4-a3, 奇 a6=3a5-a4, 奇 ……………… 由此可知: 当n被3除余1时,a n是偶数; 当n被3除余0时,或余2时,a n是奇数,显然a70是3k+1型偶数,所以k必须是奇数,令k=2n+1,则 a70=3k+1=3(2n+1)+1=6n+4. 解设十位数,五个奇数位数字之和为a,五个偶数位之和为 b(10≤a≤35,10≤b≤35),则a+b=45,又十位数能被11整除,则a-b应为0,11,22(为什么?).由于a+b与a-b有相同的奇偶性,因此a-b=11即a=28,b=17. 要排最大的十位数,妨先排出前四位数9876,由于偶数位五个数字之和是17,现在8+6=14,偶数位其它三个数字之和只能是17-14=3,这三个数字只能是2,1,0.

八年级数学竞赛讲座整体的方法附答案

第二十五讲 整体的方法 我们知道成语“一叶障目”和“只见树木,不见森林”,它们的意思是说,如果过分关注细节,而忽视全局,我们就不会真正理解一个问题. 解数学题也是这样,在加强对局部的研究与分析的基础上,从整体上把握问题.所谓整体方法就是从问题的整体性质出发,突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的、有意识的整体处理. 整体方法在代数式的化简与求值、解方程(组)、几何解证等方面有广泛的应用,整体代人、叠加叠乘处理、整体运算、整体设元、整体处理、设而不求、几何中的补形等都是整体方法在解数学问题中的具体运用. 例题求解 【例1】 若x 、y 、z 满足3x+7y+z=1和4x+10y+z=2001,则分式 y x z y x 3200020002000+++的值为 .(安庆市竞赛题) 思路点拨 原式=y x z y x 3)(2000+++,视x+3 y 与x+y+z 为两个整体,对方程组进行整体改造. 【例2】 若△ABC 的三边长是a 、b 、c 且满足22444c b c b a -+=,22444c a a c b -+=,22444b a b a c -+=,则△ABC 是( ) A .钝角三角形 B .直角三角形 C .等腰直角三角形 D .等边三角形 ( “希望杯”邀请赛试题) 思路点拨 三个等式结构一样,孤立地从一个等式入手,都导不出a 、b 、c 的关系,不妨从整体叠加入手. 【例3】 已知2 19941+=x ,求多项式20023)199419974(--x x 的值. 思路点拨 直接代入计算繁难,由已知条件得199412=-x ,两边平方有理化,可得到零值多项式,整体代入求值. 【例4】如图,凸八边形A l A 2A 3A 4A 5A 6A 7A 8中,∠A l =∠A 5,∠A 2 =∠A 6 ,∠A 3 =∠A 7 ,∠A 4=∠A 8,试证明:该凸八边形内任意一点到8条边的距离之和是一个定值. (山东省竞赛题)

八年级数学《分式方程》知识点

八年级数学《分式方程》知识点 一、理解定义 1、分式方程:含分式,并且分母中含未知数的方程——分式方程。 2、解分式方程的思路是: (1) 在方程的两边都乘以最简公分母,约去分母,化成整式方程。 (2) 解这个整式方程。 (3) 把整式方程的根带入最简公分母,看结果是不是为零,使最简公分母为零的根 是原方程的增根,必须舍去。 (4) 写出原方程的根。 “一化二解三检验四总结” 3、 增根:分式方程的增根必须满足两个条件: (1)增根是最简公分母为0;(2)增根是分式方程化成的整式方程的根。 4、分式方程的解法: (1)能化简的先化简(2)方程两边同乘以最简公分母,化为整式方程; (3)解整式方程; (4)验根. 注:解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。 分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。 5、分式方程解实际问题 (1)步骤:审题—设未知数—列方程—解方程—检验—写出答案,检验时要注意从方程本 身和实际问题两个方面进行检验。 (2)应用题基本类型; 二、例题讲析 例1:解方程214111 x x x +-=-- (1) 增根是使最简公分母值为零的未知数的值。 (2) 增根是整式方程的根但不是原分式方程的,所以解分式方程一定要验根。 例2:解关于x 的方程223242 ax x x x +=--+有增根,则常数a 的值。 解:化整式方程的(1)10a x -=-由题意知增根2,x =或2x =-是整式方程的根,把2,x =代入得2210a -=-,解得4a =-,把2x =-代入得-2a+2=-10,解得6a = 所以4a =-或6a =时,原方程产生增根。 方法总结:1.化为整式方程。 2.把增根代入整式方程求出字母的值。 例3:解关于x 的方程223242 ax x x x +=--+无解,则常数a 的值。 解:化整式方程的(1)10a x -=- 当10a -=时,整式方程无解。解得1a =原分式方程无解。

人教版初二数学分式方程应用题汇总

人教版初二数学分式方程应用题汇总 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

分式方程 1. 对于非零的两个实数a,b,规定a⊕b=1 b - 1 a ,若2⊕(2x-1)=1,则x的值为( ) A. 5 6 B. 5 4 C. 3 2 D. - 1 6 2. 货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是( ) A. 25 x = 35 x-20 B. 25 x-20 = 35 x C. 25 x = 35 x+20 D. 25 x+20 = 35 x 3. 分式方程 2 x-2 - 1 x =0的根是( ) A. x=1 B. x=-1 C. x=2 D. x=-2 4.方程 2x x-1 =1+ 1 x-1 的解是( ) A. x=-1 B. x=0 C. x=1 D. x=2 5. 解方程:①: 1 x-1 - 3 x2-1 =0. ②: 2 x-3 +2= x-2 x-3 . ③已知关于x的分式方程1+2-mx 3-x = 2x-3 x-3 无解,求m的值. 6把分式方程 2 x+4 = 1 x 转化为一元一次方程时,方程两边需同乘( ) A. x B. 2x C. x+4 D. x(x+4) 7分式方程 3 x+2 = 1 x 的解为________. 8解方程: 4x x-2 -1= 3 2-x ,则方程的解是________.

9阅读思考题. 解方程:2x x2-1= 3x+1 x2-1 . 解:方程两边都乘x2-1,得2x=3x+1 解这个方程,得x=-1. 所以x=-1是方程的根. 上面解题过程是否有错误?若有错误,请指出来,并改正. 10关于x的方程2x+a x-1 =1的解是正数,则a的取值范围是( ) A. a>-1 B. a>-1且a≠0 C. a<-1 D. a<-1且a≠-2 11已知关于x的分式方程a-1 x+2 =1有增根,则a=________. 12 已知关于x的分式方程2x+m x-2 =3的解是正数,则m的取值范围为________. 13某服装厂设计了一款新式夏装,想尽快制作8800件投入市场,服装厂有A,B两个制衣车间,A车间每天加工的数量是B车间的1.2倍,A,B两车间共同完成一半后,A车间出现故障停产,剩下全部由B车间单独完成,结果前后共用20天完成,求A,B两车间每天分别能加工多少件? 14某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果共用33天完成任务,问甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x个,根据题意可得方程为( ) A. 2300 x + 2300 1.3x =33 B. 2300 x + 2300 x+1.3x =33

八级数学竞赛讲座第十讲全等三角形

第十讲全等三角形 全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形等图形性质的有力工具,是解决与线段、角相关问题的一个出发点,运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题. 利用全等三角形证明问题,关键在于从复杂的图形中找到一对基础的三角形,这对基础的三角形从实质上来说,是由三角形全等判定定理中的一对三角形变位而来,也可能是由几对三角形组成,其间的关系互相传递,应熟悉涉及有公共边、公共角的以下两类基本图形: 例题求解≌△ACN;②BE=CF;③△AC,=AF,给出下列结论:①∠1=∠2E= 【例1】如图,∠∠F=90°,∠B=∠C) . (广州市中考题 (ABM;④CD=DN,其中正确的结论是把你认为所有正确结论的序号填上)对一个复杂的图形,先找出比较明显的一对全等三角形,并发现有用的条件,进而判断推出思路点拨 其他三角形全等.两个三角形的全等是指两个图形之间的一种‘对应”关系,“对应'两字,有“相当”、“相应”注 的含意,对应关系是按一定标准的一对一的关系,“互相重合”是判断其对应部分的标准.实际遇到的图形,两个全等三角形并不重合在一起,但其中一个三角形是由另一个三角形按平行移动、翻拆、旋转等方法得到,这种改变位置,不改变形状大小的图形变动叫三角形的全等变换.( ) 的取值范围是=4,则边ABAD在△2】 ABC中,AC=5,中线【例9

C.5

相关主题