搜档网
当前位置:搜档网 › 表面张力的测量方法

表面张力的测量方法

表面张力的测量方法
表面张力的测量方法

表面张力的测量方法

英才学院 1236305 张雍淋 6121810519

液体表面张力测量在化学、医药、生物工程等领域具有重要意义, 根据液体表面张力的大小可以确定表面活性并计算表面活性剂在溶液表面的吸附量;在合金液体体系中,借助于表面张力还可以评价金相组织及孕育效果等重要参数。目前,测量液体表面张力系数有毛细上升法、最大气泡压力法、液滴法等。

1. 毛细上升法

这个方法,研究的比较早,在理论和实际上都比较成熟。如图 1所示,干净的毛细管浸入液体内部时,如果液体间的分子力小于液体与管壁间的附着力,则液体表面呈凹形。此时表面张力产生的附加力为向上的拉力,并使毛细管内的液面上升, 直到液柱的重力与表面张 力相平衡。

图 1

212cos ()g r r gh πσθπρρ=-

1()2cos g ghr

ρρσθ-=

其中:σ—液体的表面张力;r-毛细管的内径;θ-接触角;

ρ

1ρ-液体和气体的密度;h-液柱的高度;g-当地的重力加速度。在

g

实际应用中一般用透明的玻璃管,如果玻璃被液体完全润湿,可以近似的认为θ= 0。

毛细上升法是测定表面张力最准确的一种方法,国际上也一直用此方法测得的数据作为标准。应用此方法时,要注意选择管径均匀, 透明干净的毛细管,并对毛细管直径进行仔细的标定;毛细管要经过仔细彻底的清洗,毛细管浸入液体时要与液面垂直。

2.最大气泡压力法

如图 2 所示,向插入液体的毛细管轻轻的吹入惰性气体(如

N

2等)。如果选用的毛细管半径很小,在管口形成的气泡基本上是球形的。并且当气泡为半球时,球的半径最小等于毛细管半径 r ;在其前后曲率半径都比r大,如图2 所示。当气泡为半球时,泡内的压力最大,管内外最大压差可由差压计测量得到。

图2

由于毛细管口位于液面下一定位置,气泡内外最大压差P ?应该等于差压计的读数减去毛细管端面液位静压值。当气泡进一步长大,气泡内的压力逐渐减小直到气泡逸出。利用最大压差和毛细管半径即可计算表面张力:

2r P σ?=

此方法与接触角无关,装置简单,测定快速;经过适当的设计可以用于熔融金属和熔盐的表面张力测量。气泡的生成速度以每秒钟一个为宜,如果选用管径较大,气泡不能近似为球形,则必须进行修正, 可以用标准液体对仪器常数进行标定。

3. 滴重法

如图 3 所示,对于液体从很细的管口中缓慢滴出的过程,液滴在表面张力的支撑下缓慢长大,当重量比表面张力稍大时,液滴就将落下来。

图 3

设管口的半径为 r , 落下的液滴质量为 m ,其表面张力为 σ ,

当地重力加速度为g ,加上对于模型的修正量,可得:

mg F r

σ= 其中F 为与r 有关的一个修正量,可以通过查表得到。

此方法不仅可以测量气-液界面张力,也可以测量液-液界面张力。应用时常常用标准液体进行标定。在实验过程中可以利用一个测微计使液滴缓慢生长,然后测定落下液滴的质量;并且此方法只能应用于液滴很小的情况。

4. 表面波法

存在于液体表面的波动称为表面波。表面波非常常见,其波长从毫米(毛细波)到千米(潮涌波),振幅从零点几毫米到几十米。表面波的性质受到表面张力和重力的影响。当表面波的波长比较大(λ> 1 0mm) 时,重力起主要作用;当表面波的波长比较小时(λ< 10mm ), 表面张力起主要作用。由流体力学的知识可以知道:

232f λρσπ=

其中,f 是表面波的频率,λ是表面波的波长,ρ是液体密度。 这种方法测量时间短、自动化程度高,可以实现在线测量和用于实时监控的测量。其表面张力的测量精度主要取决于波长和频率的测 量精度。

本文介绍了一些具有代表性的表面张力测量方法,并对其特点和

应用进行了分析。从文中可以看到,随着电子以及激光技术的发展越来越多的电子和激光技术被引入了表面张力的测试中,这不但提高了测试的精度和自动化程度, 同时也大大拓宽了测量范围。

参考文献

[1]郭瑞. 表面张力测量方法综述[J]. 计量与测试技术,2009,04:62-64.

[2]李艳红,王升宝,常丽萍. 表(界)面张力测定方法的研究进展[J]. 日用化学工业,2007,02:102-106.

[3]庄其仁,龚冬梅,陶海敏,范金友. 液体表面张力激光快速测量法[J]. 光学精密工程,2007,05:662-667.

[4]章新友. 液体表面张力系数测量的误差分析与方法改进[J]. 大学物理实验,2014,01:83-87.

[5]韩众. 插板法测表面张力公式的新证明[J]. 忻州师范学院学报,2014,02:8-13.

表面张力的测量方法

表面张力的测量方法 英才学院 1236305 张雍淋 6121810519 液体表面张力测量在化学、医药、生物工程等领域具有重要意义, 根据液体表面张力的大小可以确定表面活性并计算表面活性剂在溶液表面的吸附量;在合金液体体系中,借助于表面张力还可以评价金相组织及孕育效果等重要参数。目前,测量液体表面张力系数有毛细上升法、最大气泡压力法、液滴法等。 1. 毛细上升法 这个方法,研究的比较早,在理论和实际上都比较成熟。如图 1所示,干净的毛细管浸入液体内部时,如果液体间的分子力小于液体与管壁间的附着力,则液体表面呈凹形。此时表面张力产生的附加力为向上的拉力,并使毛细管内的液面上升, 直到液柱的重力与表面张 力相平衡。 图 1 212cos ()g r r gh πσθπρρ=- 1()2cos g ghr ρρσθ-=

其中:σ—液体的表面张力;r-毛细管的内径;θ-接触角; ρ 1ρ-液体和气体的密度;h-液柱的高度;g-当地的重力加速度。在 和 g 实际应用中一般用透明的玻璃管,如果玻璃被液体完全润湿,可以近似的认为θ= 0。 毛细上升法是测定表面张力最准确的一种方法,国际上也一直用此方法测得的数据作为标准。应用此方法时,要注意选择管径均匀, 透明干净的毛细管,并对毛细管直径进行仔细的标定;毛细管要经过仔细彻底的清洗,毛细管浸入液体时要与液面垂直。 2.最大气泡压力法 如图 2 所示,向插入液体的毛细管轻轻的吹入惰性气体(如 N 2等)。如果选用的毛细管半径很小,在管口形成的气泡基本上是球形的。并且当气泡为半球时,球的半径最小等于毛细管半径 r ;在其前后曲率半径都比r大,如图2 所示。当气泡为半球时,泡内的压力最大,管内外最大压差可由差压计测量得到。 图2

溶液中的吸附作用和表面张力的测定

溶液中的吸附作用和表面张力的测定 ——最大气泡压力法 【摘要】本实验采用最大气泡压力法测定了一系列不同浓度的正丁醇溶液的表面张力,并根据Gibbs吸附公式和Langmuir等温方程式的到了表面张力与溶液吸附作用的关系,用作图法求出了正丁醇分子横截面积,从实验上进一步了解表面张力的性质以及表面张力和吸附的关系,并得到了一个测量表面张力的简单有效而又精确的方法。 【关键词】最大气泡法表面张力吸附作用 一、前言 正丁醇是一种表面活性物质,可以使溶液表面张力下降。利用最大气泡压力法,可以测量出正丁醇溶液的表面张力。根据表面张力与气泡压力的关系,由σ-c曲线可以求出溶液界面上的吸附量和单个正丁醇分子的横截面积(S)。 1、物体表面的分子和内部分子能量也不同,表面层的分子受到向内的拉力,有自动缩小的趋势,表面分子的能量比内部分子大。体系产生新的表面(A)所需耗费功(W)的量,其大小应与A成正比。在等温下形成1m2新的表面所需的可逆功为,称为单位表面的表面能,其单位为N·m-1,通常称为表面张力。 2、纯液体情形下,表面层的组成与内部的组成相同,因此液体降低体系表面自由能的途径是缩小其表面积。对于溶液,溶质会影响表面张力,调节溶质在表面层的浓度来降低表面自由能。根据能量最低

原理,溶质能降低溶液的表面张力时,表面层中溶质的浓度应比溶液内部大。反之同理 。这种表面浓度与溶液里面浓度不同的现象叫“吸附”。 Gibbs 用热力学的方法推导出吸附与溶液的表面张力及溶液的浓度间的关系式 =T c RT c ??? ??- ??σ 当( )?σ ?c T <0时, >0,称为正吸附。反之,( )?σ ?c T >0时, <0,称 为负吸附。 正丁醇溶液浓度极小时,溶质分子平躺在溶液表面上,当浓度增加到一定程度时,被吸附了的表面活性物质分子占据了所有表面形成了单分子的饱和吸附层。 在一定温度下,吸附量与溶液浓度之间的关系由Langmuir 等温方程式表示:ΓΓ=?+?∞K C K C 1 或 C C K ΓΓΓ=+ ∞∞ 1 以 C Γ ~C 作图可得一直线,由直线斜率即可求出Γ∞。在饱和吸附情况下,正丁醇分子在气-液界面上铺满一单分子层,则可求得正丁醇分子的横截面积S N 01 = ∞Γ~ 3、最大气泡压力法:当表面张力仪中的毛细管截面与欲测液面相齐时,液面沿毛细管上升。当此压力差在毛细管端面上产生的作用 力稍大于毛细管口溶液的表面张力时,气泡就从毛细管口逸出。 张力与浓度的关系图

液体表面张力系数的测定报告

.. . . .. 南昌大学物理实验报告 课程名称:大学物理实验 实验名称:液体表面张力系数的测定 学院:管理学院专业班级: 学生姓名:学号: 实验地点:基础实验大楼608 座位号: 实验时间:第三周星期天下午四点开始 学习参考. .. . .. .

液体表面张力系数的测定实验报告【实验目的】1.了解水的表面性 质,用拉脱法测定室温下水的表面张力系数。.学会使用焦利氏秤测量微小力的原理和方法。2【实验仪器】焦利秤,砝码,烧杯,温度计,镊子,水,游标卡尺等。 【实验原理】 液体表面层内分子相互作用的结果使得液体表面自然收缩.犹如紧张的弹性薄膜。由于液面收缩而产生的沿着切线方向的力称为表面张力。设想在液面上作长为L 的线段,线段两侧液面便有张力f相互作用,其方向与L垂直,大小与线段长度L成正比。即有: ???LF f α称为液体表面张力系数,单位:N/m。 将一表面洁净的长为L、宽为d的矩形金属片(或金属丝)竖直浸入水中,然后慢慢提起一张水膜,当金属片将要脱离液面,即拉起的水膜刚好要破裂时,则有 F=mg+f。其中,F为拉出时所用的力,mg为金属片和带起的水膜的总质量,f 为表面张力。实验中利用金属圆环,则: f=F-mg 【实验步骤】 1.安装好仪器,挂好弹簧.调节底板的三个水平调节螺丝,使焦利秤立柱竖直。在主尺顶部挂入吊钩再安装弹簧和配重圆柱体.使小指针被夹在两个配重圆柱中间,配重圆柱体下端通过吊钩钩住砝码托盘。调整小游标的高度使小游标左侧的基准线大致对准指针,锁紧固定小游标的锁紧螺钉.然后调节微调螺丝使指针与镜子框边的刻线重合.当镜子边框上刻线、指针和指针的像重合时(即称为“三 线对齐”),读出游标0线对应刻度的数值L. 02.测母弹簧的倔强系数K:依次增加1.0g砝码.即将质量为1.0g,2.0g.3.0g,…,9.0g的砝码加在下盘内。调整小游标的高度.每次都重新使三线对齐,分别记下游标0线所指示的读数L1.L2,…,L9;再逐次减少1.0g砝码.调整小游标的高度.每次都重新使三线对齐,分别记下游标。线所指示的读数L9',L8',….L0',取二者平均值,用逐差法求出弹簧的倔强系数。即 ?L L-ii?L i241? (L-?L)?L i5?i5i?05g?K L?学习参考. .. . . .. 值。将洁净的金属圆环挂在弹簧下端的小钩子上,调整小游标的mg)3.测(F一。把装有蒸馏水的烧杯置于焦S高度使三线对齐.记下此时游标0线指示读数0利平台上,调节平台位置,使金属片浸入水中,转动平台旋钮使平台缓缓下降,下降的过程中金属圆环底部会拉成水膜,在水膜还没有破裂时需调节三线对齐,金属圆环刚好脱直到平台稍微下降,然后再使平台下降一点,重复刚才的调节,的值,即为在S,算出△S=S—出液面为止,记下此时游标0线所指示的读数

溶液表面张力测定实验报告

学号:201114120222 基础物理化学实验报告 实验名称:溶液表面张力的测定 应用化学二班班级 03 组号 实验人姓名: xx 同组人姓名:xxxx 指导老师:杨余芳老师 实验日期: 2013-11-12 湘南学院化学与生命科学系 一、实验目的

1、测定不同浓度正丁醇(乙醇)水溶液的表面张力; 2、了解表面张力的性质,表面自由能的意义及表面张力和吸附的关系; 3、由表面张力—浓度曲线(σ—c 曲线)求界面上吸附量和正丁醇分子的横截面积S ; 4、掌握最大气泡法测定表面张力的原理和技术。 二、实验原理 测定液体表面张力的方法很多,如毛细管升高法、滴重法、环法、滴外形法等等。本实验采用最大泡压法,实验装置如图一所示。 图一中A 为充满水的抽气瓶;B 为直径为0.2~0.3mm 的毛细管;C 为样品管;D 为U 型压力计,内装水以测压差;E 为放空管;F 为恒温槽。 图一 最大泡压法测液体表面张力仪器装置图 将毛细管竖直放置,使滴口瓶面与液面相切,液体即沿毛细管上升,打开抽气瓶的活栓,让水缓缓滴下,使样品管中液面上的压力渐小于毛细管内液体上的压力(即室压),毛细管内外液面形成一压差,此时毛细管内气体将液体压出,在管口形成气泡并逐渐胀大,当压力差在毛细管口所产生的作用力稍大于毛细管口液体的表面张力时,气泡破裂,压差的最大值可由U 型压力计上读出。 若毛细管的半径为r ,气泡从毛细管出来时受到向下的压力为: 式中,△h 为U 型压力计所示最大液柱高度差,g 为重力加速度,ρ为压力计所贮液体的密度。 气泡在毛细管口所受到的由表面张力引起的作用力为2πr?γ,气泡刚脱离管口时,上述二力相等: 若将表面张力分别为和的两种液体用同一支毛细管和压力计用上法测出各 g h p p p ρ?=-=系统大气m ax r g h r p rr πρππ22m ax 2=?=γπρππr g h r p r 22m ax 2 =?=g h r ργ?=2

液体表面张力系数的测量1

实验报告 班级微电子101姓名贺鸿浩学号10105110 日期2011.10.24 室温26.2℃气压102.29kpa成绩教师 实验名称液体表面张力系数的测量 【实验目的】 1.了解液体表面性质 2.学习采用液体表面张力系数测定仪的使用方法 3.学习用拉脱法测表面张力系数的原理和方法 【实验仪器】 液体表面张力测定装置、砝码盘和砝码、圆环型吊片、卡尺、温度计 图1液体表面张力测定装置 【实验原理】 1. 拉脱法 测量一个已知周长的金属圆环或金属片从待测液体表面脱离时所需的拉力,从而求得该液体表面张力系数的方法称为拉脱法。所需的拉力是由液体表面张力、环的内外径及液体材质、纯度等因素决定。 2. 吊环法和吊片法比较 (1)吊环法:使用金属细线制成吊环时,在液膜被拉破的瞬间接触角不接近于零,此时所测得的力是表面张力向下的分量,因而所得表面张力系数误差较大,必须用修正公式对测量结果进行修正。 (2)吊片法:虽然液膜被拉破的瞬间接触角趋近于零,但在具体测量时,由于吊片在拉脱

过程中容易发生倾斜,实验时吊片的长度上限为3—4cm ,而在测量力时,则希望力大 一点,有利于提高测量精确度。 (3)片状吊环:新设计有一定厚度的片状吊环。经过对不同直径吊环的多次试验,发现当 吊环直径等于或略大于 3.3cm 时,在液膜被拉破的瞬间液体与金属环之间的接触角接 近于零,此时接触面总周长约为20cm 左右。在保持接触角为零时,能得到一个 较大的待测力。 3. 实验原理 使用片状吊环,在液膜拉破前瞬间,考虑一级近似,认为液体的表面张力为: f = f 1 + f 2 = αл(D 1+ D 2) 这里α为表面张力系数,D 1、D 2分别为吊环的外径和内径。 片状吊环在液膜拉破前瞬间有: 此时传感器受到的拉力F 1和输出电压U 1成正比,有: U 1 = BF 1 片状吊环在液膜拉破后瞬间有: F 2 = mg 同样有 U 2 = BF 2 片状吊环在液膜拉破前后电压的变化值可表示为: U 1- U 2 = △U = B · △F = B (F 1- F 2)= B αл(D 1+ D 2) 由上式可以得到液体的表面张力系数为:1212() U U B D D απ-=+ 这里U 1:液膜拉断前瞬间电压表的读数,U 2:膜拉断后瞬间电压表的读数 实验内容(用拉脱法测量水的表面张力): 1.力敏传感器进行定标,用最小二乘法作直线拟合,求 出传感器灵敏度B 。 2.游标卡尺测量金属圆环的内、外直径。 3.金属环状吊片挂在传感器的小钩上,调节升降台,将 液体升至靠近环片的下沿,观察环状吊片下沿与待测液面 是否平行,将金属环状吊片取下后,调节吊片上的细丝, 使吊片与待测液面平行。(注意 :吊环中心、玻璃皿中心 最好与转轴重合。) 4.调节容器下的升降台,使其渐渐上升,将环片的下沿部分全部浸没于待测液体。然后反 向调节升降台,使液面逐渐下降。这时,金属环片和液面间形成一环形液膜,出现“浸润” 现象,继续下降液面,测出环形液膜即将拉断前一瞬间数字电压表读数值 U1和液膜拉断后 一瞬间数字电压表读数值U2。(注意 :液膜断裂应发生在转动的过程中,而不是开始转动 或转动结束时,因为此时振动较厉害,应多次重复测量。) 【实验步骤】 1.开机预热(15分钟) 2.将水盛入玻璃器皿内(1cm 左右),用双面胶与升降台面贴紧固定。 3.将砝码盘挂在力敏传感器的钩上 图2液膜的收缩

溶液表面张力的测定详解

学号:201214140123 基础物理化学实验报告 实验名称:溶液表面张测定 12届药学班级1组号 实验人姓名:李楚芳 同组人姓名:罗媛,兰婷 指导老师:邓斌 实验日期:2014-05-30

湘南学院化学与生命科学系 一、 实验目的: 1.加深理解表面张力的性质,表面吉布斯能的意义以及表面张力和吸附的关系。 2. 掌握最大气泡法测定表面张力的原理和技术。 二、 主要实验原理,实验所用定律、公式以及有关文献数据: 当加入溶质后,溶剂的表面张力要发生变化。根据能量最低原理,若溶液质能降低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的浓度大;如果所加溶质能使溶剂的表面张力增加,那么,表面层溶液质的浓度应比内部低。这种现象为溶液的表面吸附。用吉布斯公式(Gibbs )表示: T c σ )d d (RT c Γ- = (1)式 式中,Г为表面吸附量(mol.m -2);σ为表面张力(J.m -2);T为绝对温度(K);C为溶液浓度(mol/L );)(dc d σ T 表示在一定温度下表面张力随浓度的改变率。

当 )( dc d σ T < 0,Г>0,溶质能增加溶剂的表面张力,溶液表面层的浓度大于内部的浓度,称为正吸附作用。 )( dc d σ T >0,Г<0,溶质能增加溶剂的表面张力,溶液表面层的 浓度小于内部的浓度,称为负吸附作用。 可见,通过测定溶液的浓度随表面张力的变化关系可以求得不同浓度下溶液的表面吸附量。 本实验采用最大气泡压力法测定正丁醇水溶液的表面张力值。将欲测表面张力的液体装入试管中,使毛细管的端面与液面相切,液体即沿毛细管上升,直到液柱的压力等于因表面张力所产生的上升力为止。若管内增加一个与此相等的压力,毛细管内液面就会下降,直到在毛细管端面形成一个稳定的气泡;若所增加的压力稍大于毛细管口液体的表面张力,气泡就会从毛细管口被压出。可见毛细管口冒出气泡的需要增加的压力与液体的表面张力成正比。 σ=K △p 式中K 与毛细管的半径有关,对同一支毛细管是常数,可由已知表面张力的液体求得。本实验通过蒸馏水来测得。 由实验测得不同浓度时的表面张力,以浓度为横坐标,表面张力为纵坐标,得σ-c 图,过曲线上任一点作曲线的切线和水平线交纵坐标于b1,b2两点,则曲线在该点的斜率为 c b b c 0b b d d 2121c σ--=--=

液体表面张力系数的测量

液体表面力系数的测定 表面力是液体表面的重要特性,它类似于固体部的拉伸应力,这种应力存在于极薄的表面层,是液体表面层分子力作用的结果。液体表面层的分子有从液面挤入液的趋势,从而使液体有尽量缩小其表面的趋势,整个液面如同一拉紧了的弹性薄膜,我们把这种沿着液体表面,使液面收缩的力称为表面力。作用于液面单位长度上的表面力,称为液体的表面力系数,测定液体表面力系数的方法有:拉脱法、毛细管法、最大气泡压力法等。本实验采用拉脱法测定表面力系数。实验目的: 1、了解液体表面性质。 2、熟悉用拉脱法测定表面力系数的方法。 3、熟悉用焦利弹簧秤测量微小力的方法。 实验仪器: 焦利弹簧秤,被测液体,游标卡尺,矩形金属框,烧杯,砝码及托盘等 实验原理: 1、面力的由来 假设液体表面附近分子的密度和部一样,它们的间距大体上在势能曲线的最低点,即相互处在平衡的位置上。由图(1)可以看出,分子间的距离从平衡位置拉开时,分子间的吸引力先加大后减小,在这儿只涉及到吸引力加大的一段,如图(2)所示,设想部某个分子A欲向表面迁徙,它必须排开分子1、2,并克

服两侧分子3、4和后面分子5对它的吸引力 用势能的概念来说明,就是它处在图(3)左边的势阱中,需要有大小为Ed的 激活能才能越过势垒,跑到表面去。然而表面某个分子B要想挤向部,它只需排 开分子1'、'和克服两侧分子3'、4'的吸引力即可,后面没有分子拉它。所以它所处 I 的势阱(图(3)中右边的那个)较浅,只要较小的激活能Ed就可越过势垒,潜入液体部。这样一来,由于表面分子向扩散比部分子向表面扩散来得容易,表面分子会变得稀疏了,其后果是它们之间的距离从平衡位置稍为拉开了一些,于是相互之间产生的吸引力加大了,这就是图(3)右边所示的情况。此时分子B需克服分子3'、'对它的吸引力比刚才大,从而它的势阱也变深了,直到Ed变得和E d 一样时,外扩散达到平衡。所以在平衡状态下液体表面层的分子略为稀疏,分子间距比平衡位置稍大,在它们之间存在切向的吸引力。这便是表面力的由来。 在刚才的讨论中未考虑液面外是否有气体。如果有,则分子B背后有气 体的分子拉它,这显然会使上述差距减小,从而减小表面力。事实也确实如此。

实验17液体表面张力的测定

. . 物理化学实验备课材料 实验17 液体表面张力的测定 一、基本介绍 液体的表面张力是指液体与它的蒸气成平衡时体系的界面张力。液体表面张力常常是在空气中测定的。当气相是一个处于低压或中压的惰性气体时,一般液体表面张力值与气相的组成几乎无关。液体的表面张力,源于液体相界面分子受力不平衡,意为相表面的单位长度收缩力,用“σ"表示,其单位是焦耳/平方米(J·m-2)或牛/米(N·m-1).液体表面张力的测定,不仅可以加深对表面张力这一物系热力学性质的认识,而且可以研究表面活性剂的表面活性、分子的横截面积、分子长度等。 二、实验目的1、掌握最大气泡法测定表面张力的原理,了解影响表面张力测定的因素。 2、测定不同浓度正丁醇溶液的表面张力,计算吸附量, 由表面张力的实验数据求分子的截面积及吸附层的厚度。 三、实验原理 1、溶液中的表面吸附 从热力学观点来看,液体表面缩小是一个自发过程,这是使体系总自由能减小的过程,欲使液体产生新的表面ΔA,就需对其做功,其大小应与ΔA 成正比: -W′=σ·ΔA(1) 如果ΔA为1m2,则-W′=σ是在恒温恒压下形成1m2新表面所需的可逆功,所以σ称为比表面吉布斯自由能,其单位为J·m-2。也可将σ看作为作用在界面上每单位长度边缘上的力,称为表面张力,其单位是N·m-1。在定温下纯液体的表面张力为定值,当加入溶质形成溶液时,表面张力发生变化,其变化的大小决定于溶质的性质和加入量的多少。根据能量最低原理,溶质能降低溶剂的表面张力时,表面层中溶质的浓度比溶液内部大;反之,溶质使溶剂的表面张力升高时,它在表面层中的浓度比在内部的浓度低,这种表面浓度与内部浓度不同的现象叫做溶液的表面吸附。在指定的温度和压力

液体表面张力系数的测定doc.DOC

佛山科学技术学院实验室开放基金项目 研究报告 项目名称:液体表面张力系数的测定 申请者:李京玲吕咏思朱家欢蔡小玲朱绍进刘本明所在学院:理学院 指导老师: 类别: ■自然科学类学术论文 ?哲学社会科学类社会调查报告和学术论文 ?科技发明制作A □科技发明制作B

液体表面张力系数的测定 姓名:李京玲吕咏思朱家欢蔡小玲朱绍进刘本明班级:10物理学(师范) 摘要: 关键词:液体表面张力 引言 有时候,我们会觉得很奇怪,为什么有的笑昆虫能在液体上自由自在的行走?为什么银针能在水面上浮着而不沉下去呢?为什么少量水银在干净的玻璃版上会收缩成球冠状,而水却会扩张开来?等等的这些原因,激起我们想要研究液体表面张力的动力。 【实验目的】 1.掌握用焦利秤测量微小力的原理和方法。 2.用拉脱法测量室温下水的表面张力系数。 【实验仪器】 约利弹簧秤、砝码、烧杯、金属框、游标卡尺等。 【实验原理】 液体分子之间存在分子力,其有效作用半径约10-8cm。液体表面层内的分子所处的环境和液体内部分子不同。液体内部每个分子四周都被同类的其他分子所包围,它受到周围分子的合力为零。但处于液体表面层内的分子,由于液体上方为气相,分子数很少,因而表面层内每个分子受到向上的引力比向下的引力少,合力不为零,即液体表面处于张力状态。表面分子有从液面挤入液体内部的倾向,使液面自然收缩,直到处于动态平衡,即在同一时间内脱离液面挤入液体内部的分子数和因热运动而到达液面的分子数相等为止。因而,在没有外力作用时液滴总是呈球形,即是其表面积缩到最小。 表面张力的大小可以用表面张力系数来描述。 设在液面上作一厂为L的线段,此线段两侧的液体之间存在着互相牵引的力f,这种力的方向恒与线段垂直,大小与线段长度L成正比,即 F=ɑL (1) 其比例系数ɑ为液体表面张力系数,定义为作用在单位长度上的表面张力,单位为N/m。实验证明,表面张力系数ɑ的大小与液体的种类、纯度、温度和它上方的气体成分有关,温度越高,液体中所含杂质越多,则表面张力系数越小。

液体表面张力系数的测量

液体表面张力系数的测定 表面张力是液体表面的重要特性,它类似于固体内部的拉伸应力,这种应力存在于极薄的表面层内,是液体表面层内分子力作用的结果。液体表面层的分子有从液面挤入液内的趋势,从而使液体有尽量缩小其表面的趋势,整个液面如同一张拉紧了的弹性薄膜,我们把这种沿着液体表面,使液面收缩的力称为表面张力。作用于液面单位长度上的表面张力,称为液体的表面张力系数,测定液体表面张力系数的方法有:拉脱法、毛细管法、最大气泡压力法等。本实验采用拉脱法测定表面张力系数。 实验目的: 1、了解液体表面性质。 2、熟悉用拉脱法测定表面张力系数的方法。 3、熟悉用焦利弹簧秤测量微小力的方法。 实验仪器: 焦利弹簧秤,被测液体,游标卡尺,矩形金属框,烧杯,砝码及托盘等 实验原理: 1、面张力的由来 假设液体表面附近分子的密度和内部一样,它们的间距大体上在势能曲线的最低点,即相互处在平衡的位置上。由图(1)可以看出,分子间的距离从平衡位置拉开时,分子间的吸引力先加大后减小,在这儿只涉及到吸引力加大的一段,如图(2)所示,设想内部某个分子A欲向表面迁徙,

它必须排开分子1、2,并克服两侧分子3、4和后面分子5对它的吸引力。 用势能的概念来说明,就是它处在图(3)左边的势阱中,需要有大小为d E 的激活能才能越过势垒,跑到表面去。然而表面某个分子B 要想挤向 内部,它只需排开分子' ' 21、 和克服两侧分子' ' 43、的吸引力即可,后面没有分子拉它。所以它所处的势阱(图(3)中右边的那个)较浅,只要较小的激活能 ' d E 就可越过势垒,潜入液体内部。这样一来,由于表面分子向内 扩散比内部分子向表面扩散来得容易,表面分子会变得稀疏了,其后果是它们之间的距离从平衡位置稍为拉开了一些,于是相互之间产生的吸引力 加大了,这就是图(3)右边所示的情况。此时分子B 需克服分子' ' 43、 对它的吸引力比刚才大,从而它的势阱也变深了,直到 ' d E 变得和d E 一样时,内外 扩散达到平衡。所以在平衡状态下液体表面层内的分子略为稀疏,分子间距比平衡位置稍大,在它们之间存在切向的吸引力。这便是表面张力的由来。

液体表面张力系数的测定实验报告

液体表面张力系数的测定一 实验目的1 学习用界面张力仪测微小力的原理和方法。2 深入了解液体表面张力的概念,并测定液体的表面张力系数二 实验原理1 液体表面张力 由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。2 液体表面张力系数的测量原理 图1 如图1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则时,f 方向趋向垂直向下。在金属片脱0→?离液体前,受力平衡条件为(1)mg f F +=而(2))(2d l f +=α则(3))(2d l mg F +-=α若用金属环替代金属片,则(3)式变为

(4))(21d d mg F +-=πα式中d1,d2为圆环的内外直径。若用补偿法消除mg 的影响,即mg F f -=则(4)式可写为(5))(21d d f +=πα即为液体表面张力系数。三 实验仪器液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片四 实验内容及步骤1 仪器调整。调整仪器水平,刻度盘归零。 2调零。将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。 3 绘制质量标准曲线分别在小纸片上放100mg 、300 mg 、500 mg 、700 mg 、 1000 mg 的砝码,记下对应的刻度盘的示数。以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。 4 测量纯净水的表面张力系数调零。用玻璃杯盛大约2/3的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。记下刻度盘示数M’。为了消除随机误差,共测五次。 6 将M’在质量标准曲线上查得水作用在金属环上的表面张力,按式(5)计算出mg f =水的表面张力系数。五 数据记录及处理1 金属环的直径外径 : 内径:mm d )001.0670.19(1±=mm d )001.0470.18(1±=定设备调试高中资料试

液体表面张力系数测定物理实验

液体表面张力系数的测定 【实验目的】 1.学会用拉脱法测定液体的表面张力系数。 2.了解焦利氏秤的构造和使用方法。 3.通过实验加深对液体表面现象的认识。 【仪器与器材】 焦利氏秤1把,U 形金属丝1条,砝码1盒,镊子1把,玻璃皿1个,温度计1支,酒精灯1个,蒸馏水100ml ,游标尺1把。 【原理与说明】 一、 实验原理 由于液体分子与分子间的相互作用,使液体表面层形成一张紧的膜,其上作用着张力,叫做表面张力。如图3-1所示,设想在液体MN 上划出一条线s s ',s s '把MN 分成A 、B 两部分。由于A 、B 两部分之间的分子相互作用,在s s '两侧就形成表面张力f ,f 的方向与液体表面相切且垂直于s s ',f 的大小与s s '的长度l 成正比,用公式表示为 )13(-=l f α 式中,α为表面张力系数,即作用在s s '的每单位长度上的力。 表面张力系数是研究液体表面性质所要用到的物理量,不同种类的液体,α值不同;同一种液体的α值随温度上升而减小;液体不纯净,α值也会改变。因此,在测定α值时必须注明在什么温度下进行,液体必须保持纯净。 测量表面张力系数α的方法很多,本实验用拉脱法测定。 将U 形金属丝浸入液体中,然后慢慢拉起,这时在金属丝内带起了一层薄膜,如图3-2所示。要想使金属丝由液面拉脱,必须用一定的力 F ,这个力的大小应等于金属丝所受液面的表面张力 f F 2= (注意有两个表面) l F α2= 图 3-1 图3-2

l F 2= α (3-2) 本实验用焦利氏秤测出F ,然后代入式(3-2)计算出α值。 二、 仪器构造 焦利氏秤实际上就是一个比较精确的弹簧秤,用焦利氏秤测力是根据虎克定律 x k F ?= (3-3) 式中,k 为弹簧的倔强系数,等于弹簧伸长单位长度的拉力, x ?为弹簧伸长量,如果已知k 值,再测定弹簧在外力作用下的伸长量x ?,就可以算出作用力F 的大小。 焦利氏秤的构造如图3-3所示,A 为垂直圆筒形支架,圆筒里有一可借助于旋钮D 升降的B 杆,升降高度可以由B 上的刻度和A 上的游标C 读出。弹簧E 悬在B 上的横梁N 上,E 的下端有一指 标镜M ,M 在固定于支架A 上的垂直玻璃管G 内。M 和G 上都刻有标线,H 为平台调节旋钮。 【实验步骤】 一、 k 值的测定 1.按图3-3挂好弹簧、指标镜和砝码盘,再调节三角底座上的螺丝,使指标镜处于玻璃管中,能上下自由振动且不与玻璃管相碰; 2.调节旋钮D ,使指标镜M 上的标线处于“三线重合”位置(先使G 标线在镜中的像与G 标线本身重合,再调节M 标线使之与前者重合),读出标尺上的读数 0x 。如弹簧振动不停,可将镊子靠在玻璃管上端,轻轻阻挡弹簧,即可停止振动; 3.在砝码盘上加0.5g 的砝码,旋转D ,当M 的标线重新处于“三线重合” 位置时,读出读数X; 4.重复步骤2、3共3次,将所得数据记入表3-1中。 二、 F 的测定 1. 先用洗涤液,再用蒸馏水洗净玻璃皿,把装有蒸馏水的玻璃皿放在平台上。用镊子夹 住金属丝在洒精灯上烧干,再挂在指标镜M 的挂钩上; 2. 调节旋钮D ,使M 的标线处于“三线重合”位置,读出标尺上的读数0x ; 3. 调节旋钮H ,让金属丝的水平部分和液面接触(水平部分如果和液面不平行,可用镊 子调整金属丝几次); 4.观察M 的标线是否在“三线重合”位置,如果不在,继续调节旋钮H ,直至标线处于“三线重合”位置; 图3-3

溶液表面张力的测定(精)

溶液表面张力的测定-最大气泡法 Determination of Surface Tension Using Maxinum Bubble Pressure Method 一、实验目的及要求 1.掌握最大气泡法测定表面张力的原理和技术。 2. 学会以镜面法作切线,并利用吉布斯吸附公式计算不同浓度下正丁醇溶液的表面吸附量。 3. 求正丁醇分子截面积和饱和吸附分子层厚度。 二、实验原理 在液体的内部任何分子周围的吸引力是平衡的。可是在液体表面层的分子却不相同。因为表面层的分子,一方面受到液体内层的邻近分子的吸引,另一方面受到液面外部气体分子的吸引,而且前者的作用要比后者大。因此在液体表面层中,每个分子都受到垂直于液面并指向液体内部的不平衡力(如图1所示)。 这种吸引力使表面上的分子向内挤促成液体的最小面积。要使液体的表面积增大就必须要反抗分子的内向力而作功增加分子的位能。所以说分子在表面层比在液体内部有较大的位能,这位能就是表面自由能。通常把增大一平方米表面所需的最大功A或增大一平方米所引起的表面自由能的变化值 图1 分子间作用力示意图 ΔG称为单位表面的表面能其单位为J.m-3。而把液体限制其表面及力图使它收缩的单位直线长度上所作用的力,称为表面张力,其单位是N.m-1。 液体单位表面的表面能和它的表面张力在数值上是相等的。欲使液体表面积加△S时,所消耗的可逆功A为: 液体的表面张力与温度有关,温度愈高,表面张力愈小。到达临界温度时,液体与气体不分,表面张力趋近于零。液体的表面张力也与液体的纯度有关。在纯净的液体(溶剂)中如果掺进杂质(溶质),表面张力就要发生变化,其变化的大小决 定于溶质的本性和加入量的多少。当加入溶质后,溶剂的表面张力要发生变化,。根据能量最低原理,若溶液质能降低溶剂的表面张力,则表面层溶质的浓度应比溶液内部的

表面张力系数测定方法综述

表面张力测定方法综述 摘要:本文主要阐述了几种表面张力测定的方法 关键词:滴重法毛细管上升法环法吊片法最大气泡压力法 滴外形法 前言:表面张力,是液体表面层由于分子引力不均衡而产生的沿表面作用于任一界线上的张力。通常,由于环境不同,处于界面的分子与处于相本体内的分子所受力是不同的。在水内部的一个水分子受到周围水分子的作用力的合力为0,但在表面的一个水分子却不如此。因上层空间气相分子对它的吸引力小于内部液相分子对它的吸引力,所以该分子所受合力不等于零,其合力方向垂直指向液体内部,结果导致液体表面具有自动缩小的趋势,这种收缩力称为表面张力。下面介绍几种测定表面张力的方法 滴重法 当液体在滴重计(滴重计市售商品名屈氏粘力管)口悬挂尚未下滴时: πσ= 2r mg r:若液体润湿毛细管时为外半径,若不润湿时应使用内半径。 σ: 液体的表面张力。 m:液滴质量(一滴液体)。 g;重力加速度,当采用厘米.克.秒制时为 981cm/S2 但从实际观察可知,测量时液滴并未全部落下,有部分收缩回去,故需对上式进行校正: πσ= r f m g 2'

m ’为滴下的每滴液体质量(用分析天平称量)。 f 称为哈金斯校正因子,它是r /v 1/3的函数;v 是每滴液体的体积; 可由每滴液体的质量除液体密度得到。在上式中r 和f 是未知数,可 采用已知表面张力的液体(如蒸馏水)做实验,采用迭代法得到: 设每滴水质量为m ’,体积为v ;先用游标卡尺量出滴重计管端的外直径D ;可得半径r 0;用r 0作初值;求得r 0/ v 1/3;查哈金斯校正因子表(插值法)得f 1;用水的表面张力σ和f 1代入 12'r f m g πσ=; 求的第一次迭代结果r 1;再由r 1/ v 1/3查表得f 2 ;再代入: 22'r f m g πσ= 求得第二次迭代值r 2,同法再由r 2/ v 1/3代入查表求f 3 ,这样反复迭 代直至相邻两次迭代值的相对误差:┃(r i-1-r i )/ r i ┃≤eps (eps 表示所需精度,如1‰)这时的r 就是要求的结果,记录贴在滴重管

液体表面张力测定实验

[实验目的] 1.用拉脱法测量室温下液体的表面张力系数 2.学习力敏传感器的定标方法 [实验原理] 测量一个已知周长的金属片从待测液体表面脱离时需要的力,求得该液体表面张力系数的实验方法称为拉脱法.若金属片为环状吊片时,考虑一级近似,可以认为脱离力为表面张力系数乘上脱离表面的周长,即 F=α·π(D1十D2 ) (1) 式中,F为脱离力,D1,D2分别为圆环的外径和内径,α为液体的表面张力系数. 硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥,当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正此,即 △U=KF (2) 式中,F为外力的大小,K为硅压阻式力敏传感器的灵敏度,△U为传感器输出电压的大小。 [实验装置] 图1-1为实验装置图,其中,液体表面张力测定仪包括硅扩散电阻非平衡电桥的电源和测量电桥失去平衡时输出电压大小的数字电压表.其他装置包括铁架台,微调升降台,装有力敏传感器的固定杆,盛液体的玻璃皿和圆环形吊片,实验证明,当环的直径在3cm附近而液体和金属环接触的接触角近似为零时.运用公式(1)测量各种液体的表面张力系数的结果较为正

确。 [实验内容] 一、必做部分 1、力敏传感器的定标 每个力敏传感器的灵敏度都有所不同,在实验前,应先将其定标,步骤如下:打开仪器地电源开关,将仪器预热。(2)在传感器梁端头小钩中,挂上砝码盘,调节电子组合仪上的补偿电压旋钮,使数字电压表显示为零。(3)在砝码盘上分别如0.5g、1.0g、1.5g、2.0g、2.5g、3.0g等质量的砝码,记录相应这些砝码力F作用下,数字电压表的读数值U.(4)用最小二乘法作直线拟合,求出传感器灵敏度K. 2、环的测量与清洁 (1)用游标卡尺测量金属圆环的外径D1和内径D2 (关于游标卡尺的使用方法请阅实验1) (2)环的表面状况与测量结果有很大的关系,实验前应将金属环状吊片在NaOH溶液中浸泡20-30秒,然后用净水洗净。 3、液体的表面张力系数 (1)将金属环状吊片挂在传感器的小钩上,调节升降台,将液体升至靠近环片的下沿,观察环状吊片下沿与待测液面是否平行,如果不平行,将金属环状片取下后,调节吊片上的细丝,使吊片与待测液面平行。 (2)调节容器下的升降台,使其渐渐上升,将环片的下沿部分全部浸没于待测液体,

液体表面张力的测量预习报告

液体表面张力系数的测量实验 液体沿表面总是存在着使液面紧张且向液体内收缩的力称为表面张力。液体的许多现象,如毛细管现象、湿润现象、泡沫的形成等,都与表面张力有关。表面张力系数是液体表面的重要力学性质:对于不同种类的液体,其表面张力不同,而对于同一种液体,其表面张力系数随着温度及其所含杂志的改变而增大或减小。这些性质广泛应用于工业生产中,如浮法选矿、液体的传输技术、化工生产线的设计等等都要对液体的表面张力进行研究。 测定液体表面张力系数的方法很多。常用的有拉脱法和毛细管升高法。本次实验介绍用拉脱法测定液体表面张力系数。 一、实验目的 1.用砝码对硅压阻力敏传感器进行定标,计算该传感器的灵敏度,学习传感器的定标方法; 2.观察拉脱法测量表面张力的过程,并用物理学基本概念进行分析,加深对物理规律的认识; 3.测量纯水和其它液体(如:甘油)的表面张力系数。 二、实验仪器 实验仪器主要由液体表面张力系数测量实验仪主机以及实验装置以及镊子、砝码组成。应用电脑采集测量时需要壹根串口转USB 连接线、电脑和采集软件,仪器装置见下图。 三、实验原理 一个金属环固定在传感器上,将该环浸没于液体中,并渐渐拉起圆环,当它从液面拉脱瞬间传感器受到的拉力差值f 为 απ)(21D D f += (1) 式中: 1D 、2D 分别为圆环外径和内径,α为液体表面张力系数,g 为重力加速度,所以液体表面张力系数为:

)](/[21D D f +=πα (2) 实验中,液体表面张力可以由下式得到: B U U f /)(21-= (3) B 为力敏传感器灵敏度,单位V/N 。1U ,2U 分别为即将拉断水柱时数字电压表读数以及拉 断时数字电压表的读数。 四、实验步骤 1.连接硅压阻力敏传感器,并开机预热15~20分钟。测量吊环内外直径,然后清洗玻璃器皿(盛装待测液体)和吊环,给实验装置加水(注意加水量不可过多,可以参考装置外壁加水刻度线); 2.将吊环挂在力敏传感器的钩上,将力敏传感器转至水容器外部,这样取放砝码比较方便。待吊环晃动较小时,对仪器进行调零,然后用镊子安放砝码对传感器进行定标,取放砝码时应尽量轻; 3.将待测液体倒入玻璃器皿后,再将盛有待测液体的玻璃器皿小心地放入空的塑料容器,并一起放入实验圆筒内;将力敏传感器转至容器内,并轻轻挂上吊环,可以轻触吊环,让其晃动 说明:之所以不将测量液体直接倒入塑料容器内进行测量,是防止某些待测液体与塑料容器发生化学反应而影响测量结果。 4.关闭橡皮球阀门,反复挤压橡皮球使装置内部液体液面上升,当吊环下沿部分均浸入待测液体中时,及时松开橡皮球的阀门,这时液面缓慢下降,观察环浸入液体中及从液体中拉起时的物理过程和现象。特别应注意吊环即将拉断液柱前一瞬间数字电压表读数值为U 1,拉断后数字电压表读数为U 2。记下这两个数值。 5.用计算机采集时,在环接触液面开始下降时点开始采集按钮,可以通过软件实时采集传感器输出电压值的变化过程,通过鼠标移动测量拉脱瞬间的电压值以及拉断后的电压值,计算测量液体的表面张力,并与手动测量的结果进行比较。 五、注意事项 1.实验前,吊环须严格处理干净:可用NaOH 溶液洗净油污或杂质后,用纯水冲洗干净,并用热吹风烘干;

(完整版)液体表面张力系数的测定实验报告

液体表面张力系数的测定 一 实验目的 1 学习用界面张力仪测微小力的原理和方法。 2 深入了解液体表面张力的概念,并测定液体的表面张力系数 二 实验原理 1 液体表面张力 由于液体分子之间存在作用力,使每个位于表面层内的分子都受到一个指向液体内部的力,这就使每个分子都有从液体表面进入液体内部的倾向,所以液体表面积有收缩的趋势,在没有外力的情况下,液滴总是呈球形,致使其表面积缩到最小,这种使液体表面收缩的力叫做液体的表面张力。 2 液体表面张力系数的测量原理 图1 如图1,将一表面洁净的矩形金属薄片浸入水中,使其底边保持水平,然后将其轻轻提起,则其附近液面呈现如图示的形状,则0→?时,f 方向趋向垂直向下。在金属片脱离液体前,受力平衡条件为 mg f F +=(1) 而 )(2d l f +=α(2) 则 ) (2d l mg F +-= α(3) 若用金属环替代金属片,则(3)式变为

) (21d d mg F +-= πα(4) 式中d1,d2为圆环的内外直径。 若用补偿法消除mg 的影响,即 mg F f -= 则(4)式可写为 ) (21d d f += πα(5) 即为液体表面张力系数。 三 实验仪器 液体界面张力仪、标准砝码、环形测件、玻璃杯、镊子、纯净水、小纸片 四 实验内容及步骤 1 仪器调整。调整仪器水平,刻度盘归零。 2调零。将小纸片放在金属环上,调整调零旋扭,通过放大镜观察,指针、指针的像及红线三线重合。 3 绘制质量标准曲线 分别在小纸片上放100mg 、300 mg 、500 mg 、700 mg 、 1000 mg 的砝码,记下对应的刻度盘的示数。以所加砝码的质量作为横坐标,刻度盘的示数作为纵坐标,绘制质量标准曲线。 4 测量纯净水的表面张力系数 调零。用玻璃杯盛大约2/3的水,放在样品座上,调节样品座的高度,使金属环刚好浸过水面。左手调节样品座下面的螺丝,使样品座缓慢的下降,右手调节蜗轮旋扭。两手调节的同时,眼睛观察三线始终重合,直到环把水膜拉破为止。记下刻度盘示数M ’。为了消除随机误差,共测五次。 6 将M ’在质量标准曲线上查得水作用在金属环上的表面张力mg f =,按式(5)计算出水的表面张力系数。 五 数据记录及处理 1 金属环的直径 外径 :mm d )001.0670.19(1±= 内径:mm d )001.0470.18(1±=

液体表面张力系数测定实验报告

液体表面张力系数的测量 【实验目的】 1、 掌握用砝码对硅压阻式力敏传感器定标的方法,并计算该传感 器的灵敏度 2、 了解拉脱法测液体表面张力系数测定仪的结构、测量原理和使 用方法,并用它测量纯水表面张力系数。 3、 观察拉脱法测量液体表面张力系数的物理过程和物理现象,并 用物理学概念和定律进行分析研究,加深对物理规律的认识 4、 掌握读数显微镜的结构、原理及使用方法,学会用毛细管测定 液体的表面张力系数。 5、 利用现有的仪器,综合应用物理知识,自行设计新的实验内容。 【实验原理】 一、拉脱法测量液体的表面张力系数 把金属片弯成如图 1(a )所示的圆环状,并将该圆环吊挂在灵敏的测力计上,如图 1(b )所示,然后把它浸到待测液体中。当缓缓提起测力计(或降低盛液体的器皿)时,金属圆环就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一个最大值 F (当超过此值时,液膜即破裂),则 F 应是金属圆环重力 mg 与液膜拉引金属圆环的表面张力之和。由于液膜有两个表面,若每个表面的力为f L a = (L 为圆形液膜的周长),则有 2F mg L s =+ (2) 所以 2F mg L s -= (3)

圆形液膜的周长L 与金属圆环的平均周长,L 相当,若圆环的内、外直径分别为1,2D D 。则圆形液膜的周长 L ≈L ’=p (D 1+D 2)/2 (4) 将(4)式代入(3)式得() 12F mg D D s p -=- (5) 硅压阻式力敏传感器由弹性梁和贴在梁上的传感器芯片组成,其中芯片由四个硅扩散电阻集成一个非平衡电桥。当外界压力作用于金属梁时,在压力作用下,电桥失去平衡,此时将有电压信号输出,输出电压大小与所加外力成正比。即U K F D =D (6) 式中,ΔF 为外力的大小;K 为硅压阻式力敏传感器的灵敏度,单位为 V/N ;ΔU 为传感器输出电压的大小。 二、毛细管升高法测液体的表面张力系数 1一只两端开口的均匀细管(称为毛细管)插入液体,当液体与该管润湿且接触角小于90°时,液体会在管内上升一定高度。而当接触角大于 90°时,液体在管内就会下降。这种现象被称为毛细现象。 本实验研究玻璃毛细管插入水中的情形。如图 2 所示,f 为 表面张力,其方向沿着凹球面的切线方向,大小为 2 f r p s =,其中

相关主题