搜档网
当前位置:搜档网 › 中考数学直角三角形的边角关系提高练习题压轴题训练含答案

中考数学直角三角形的边角关系提高练习题压轴题训练含答案

中考数学直角三角形的边角关系提高练习题压轴题训练含答案
中考数学直角三角形的边角关系提高练习题压轴题训练含答案

中考数学直角三角形的边角关系提高练习题压轴题训练含答案

一、直角三角形的边角关系

1.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数

值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)

【答案】6.4米

【解析】

解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.

∴DC=BC?cos30°=3

=?=米,

639

∵CF=1米,

∴DC=9+1=10米,

∴GE=10米,

∵∠AEG=45°,

∴AG=EG=10米,

在直角三角形BGF中,

BG=GF?tan20°=10×0.36=3.6米,

∴AB=AG-BG=10-3.6=6.4米,

答:树高约为6.4米

首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高

2.在等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,

∠EMF=135°.将∠EMF绕点M旋转,使∠EMF的两边交直线AB于点E,交直线AC于点F,请解答下列问题:

(1)当∠EMF绕点M旋转到如图①的位置时,求证:BE+CF=BM;

(2)当∠EMF绕点M旋转到如图②,图③的位置时,请分别写出线段BE,CF,BM之间的数量关系,不需要证明;

(3)在(1)和(2)的条件下,tan∠BEM=,AN=+1,则BM=,CF=.

【答案】(1)证明见解析(2)见解析(3)1,1+或1﹣

【解析】

【分析】

(1)由等腰△ABC中,∠B=90°,AM是△ABC的角平分线,过点M作MN⊥AC于点N,可得BM=MN,∠BMN=135°,又∠EMF=135°,可证明的△BME≌△NMF,可得BE=NF,

NC=NM=BM进而得出结论;

(2)①如图②时,同(1)可证△BME≌△NMF,可得BE﹣CF=BM,

②如图③时,同(1)可证△BME≌△NMF,可得CF﹣BE=BM;

(3) 在Rt△ABM和Rt△ANM中,,

可得Rt△ABM≌Rt△ANM,后分别求出AB、 AC、 CN 、BM、 BE的长,结合(1)(2)的结论对图①②③进行讨论可得CF的长.

【详解】

(1)证明:∵△ABC是等腰直角三角形,

∴∠BAC=∠C=45°,

∵AM是∠BAC的平分线,MN⊥AC,

∴BM=MN,

在四边形ABMN中,∠,BMN=360°﹣90°﹣90°﹣45°=135°,

∵∠ENF=135°,,

∴∠BME=∠NMF,

∴△BME≌△NMF,

∴BE=NF,

∵MN⊥AC,∠C=45°,

∴∠CMN=∠C=45°,

∴NC=NM=BM,

∵CN=CF+NF,

∴BE+CF=BM;

(2)针对图2,同(1)的方法得,△BME≌△NMF,

∴BE=NF,

∵MN⊥AC,∠C=45°,

∴∠CMN=∠C=45°,

∴NC=NM=BM , ∵NC=NF ﹣CF , ∴BE ﹣CF=BM ;

针对图3,同(1)的方法得,△BME ≌△NMF , ∴BE=NF ,

∵MN ⊥AC ,∠C=45°, ∴∠CMN=∠C=45°, ∴NC=NM=BM , ∵NC=CF ﹣NF , ∴CF ﹣BE=BM ;

(3)在Rt △ABM 和Rt △ANM 中,,

∴Rt △ABM ≌Rt △ANM (HL ), ∴AB=AN=+1,

在Rt △ABC 中,AC=AB=

+1, ∴AC=

AB=2+

, ∴CN=AC ﹣AN=2+﹣(+1)=1, 在Rt △CMN 中,CM=

CN=

, ∴BM=BC ﹣CM=

+1﹣

=1,

在Rt △BME 中,tan ∠BEM==

=

∴BE=

∴①由(1)知,如图1,BE+CF=BM , ∴CF=BM ﹣BE =1﹣

②由(2)知,如图2,由tan ∠BEM=,

∴此种情况不成立;

③由(2)知,如图3,CF ﹣BE=BM , ∴CF=BM+BE=1+, 故答案为1,1+或1﹣

【点睛】

本题考查三角函数与旋转与三角形全等的综合,难度较大,需综合运用所学知识求解.

3.如图,反比例函数() 0k y k x

=

≠ 的图象与正比例函数 2y x = 的图象相交于A (1,a ),B 两点,点C 在第四象限,CA ∥y 轴,90ABC ∠=?. (1)求k 的值及点B 的坐标;

(2)求tanC 的值.

【答案】(1)2k =,()1,2B --;(2)2. 【解析】

【分析】(1)先根据点A 在直线y=2x 上,求得点A 的坐标,再根据点A 在反比例函数

()0k

y k x

=

≠ 的图象上,利用待定系数法求得k 的值,再根据点A 、B 关于原点对称即可求得点B 的坐标;

(2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,根据90ABC ∠=? , 90BHC ∠=? ,可得C ABH ∠∠=,再由已知可得AOD ABH ∠∠=,从而得C AOD ∠∠=,求出C

tan 即可.

【详解】(1)∵点A (1,a )在2y x =上, ∴a =2,∴

A (1,2),

把A (1,2)代入 k

y x

= 得2k =, ∵反比例函数()0k

y k x

=

≠ 的图象与正比例函数 2y x = 的图象交于A ,B 两点, ∴A B 、 两点关于原点O 中心对称,

∴()1

2B --, ; (2)作BH ⊥AC 于H ,设AC 交x 轴于点D ,

90ABC ∠=? , 90BHC ∠=? ,∴C ABH ∠∠=,

∵CA ∥y 轴,∴BH ∥x 轴,∴AOD ABH ∠∠=,∴C AOD ∠∠=,

∴AD 2

2OD 1

tanC tan AOD =∠=

==.

【点睛】本题考查了反比例与一次函数综合问题,涉及到待定系数法、中心对称、三角函数等知识,熟练掌握和应用相关知识是解题的关键,(2)小题求出∠C=∠AOD是关键.

4.已知:△ABC内接于⊙O,D是弧BC上一点,OD⊥BC,垂足为H.

(1)如图1,当圆心O在AB边上时,求证:AC=2OH;

(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:

∠ACD=∠APB;

(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB 于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣

∠ABD=2∠BDN,AC=,BN=,tan∠ABC=,求BF的长.

【答案】(1)证明见解析;(2)证明见解析;(3)24.

【解析】

试题分析:(1)易证OH为△ABC的中位线,可得AC=2OH;(2)∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,又∵∠PAC =∠BCD,可证∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,连接OB,易证∠GBN=∠ABC,所以BG=BQ.

在Rt△BNQ中,根据tan∠ABC=,可求得NQ、BQ的长.利用圆周角定理可求得IC和AI 的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED=即可求得RG的长度,最后由垂径定理可求得BF的长度.

试题解析:(1)在⊙O中,∵OD⊥BC,∴BH=HC,∵点O是AB的中点,∴AC=2OH;(2)在⊙O中,∵OD⊥BC,∴弧BD=弧CD,∴∠PAC=∠BCD,∵∠APB=∠PAC+∠ACP,∠ACD=∠ACB+∠BCD,∴∠ACD=∠APB;(3)连接AO延长交于⊙O于点I,连接IC,AB 与OD相交于点M,连接OB,

∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,

∵tan∠ABC=,∴,∴,

∴,∵∠BNQ=∠QHD=90°,

∴∠ABC=∠QDH,∵OE=OD,

∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,

∴BG=BQ=,GN=NQ=,

∵∠ACI=90°,tan∠AIC=tan∠ABC=,∴,∴IC=,∴由勾股定理可求得:

AI=25,

设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=,BH=BQ+QH=,

∵OB2=BH2+OH2,∴,解得:,当QH=

时,∴QD=,

∴ND=,∴MN=,MD=15,∵,∴QH=不符合题意,舍去,当QH=时,∴QD=

∴ND=NQ+QD=,ED=,∴GD=GN+ND=,∴EG=ED﹣GD=,

∵tan∠OED=,∴,

∴EG=RG,∴RG=,∴ BR=RG+BG=12,∴BF=2BR=24.

考点:1圆;2相似三角形;3三角函数;4直角三角形.

5.问题探究:

(一)新知学习:

圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).

(二)问题解决:

已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD 的垂线,垂足分别为N,M.

(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;

(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;

(3)若直径AB与CD相交成120°角.

①当点P运动到的中点P1时(如图二),求MN的长;

②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.

【答案】(1)证明见解析,直径OP=2;

(2)证明见解析,MN的长为定值,该定值为2;

(3)①MN=;②证明见解析;

(4)MN取得最大值2.

【解析】

试题分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;

(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;

(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:

MN=QN?sin∠MQN,从而可得MN=OP?sin∠MQN,由此即可解决问题;

(4)由(3)②中已得结论MN=OP?sin∠MQN可知,当∠MQN=90°时,MN最大,问题

得以解决.

试题解析:(1)如图一,

∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;

(2)如图一,

∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,

∴MN=OP=2,∴MN的长为定值,该定值为2;

(3)①如图二,

∵P1是的中点,∠BOC=120°,∴∠COP1=∠BOP1=60°,∠MP1N=60°,∵P1M⊥OC,

P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.

∵P1M=OP1?sin∠MOP1=2×sin60°=,∴MN=;

②设四边形PMON的外接圆为⊙O′,连接NO′并延长,

交⊙O′于点Q,连接QM,如图三,

则有∠QMN=90°,∠MQN=∠MPN=60°,

在Rt△QMN中,sin∠MQN=,∴MN=QN?sin∠MQN,

∴MN=OP?sin ∠MQN=2×sin60°=2×=

,∴MN 是定值.

(4)由(3)②得MN=OP?sin ∠MQN=2sin ∠MQN .

当直径AB 与CD 相交成90°角时,∠MQN=180°﹣90°=90°,MN 取得最大值2. 考点:圆的综合题.

6.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)

已知:如图,AB 是半圆O 的直径,弦//CD AB ,动点P 、Q 分别在线段OC 、CD 上,且DQ OP =,AP 的延长线与射线OQ 相交于点E 、与弦CD 相交于点F (点F 与点C 、D 不重合),20AB =,4

cos 5

AOC ∠=

.设OP x =,CPF ?的面积为y .

(1)求证:AP OQ =;

(2)求y 关于x 的函数关系式,并写出它的定义域; (3)当OPE ?是直角三角形时,求线段OP 的长.

【答案】(1)证明见解析;(2)236030050

(10)13

x x y x x -+=<<;(3)8OP =

【解析】 【分析】

(1)证明线段相等的方法之一是证明三角形全等,通过分析已知条件,OP DQ =,联结

OD 后还有OA DO =,再结合要证明的结论AP OQ =,则可肯定需证明三角形全等,寻

找已知对应边的夹角,即POA QDO ∠=∠即可;

(2)根据PFC ?∽PAO ?,将面积转化为相似三角形对应边之比的平方来求;(3)分成三种情况讨论,充分利用已知条件4

cos 5

AOC ∠=、以及(1)(2)中已证的结论,注意要对不符合(2)中定义域的答案舍去. 【详解】

(1)联结OD ,∵OC OD =, ∴OCD ODC ∠=∠, ∵//CD AB , ∴OCD COA ∠=∠,

∴POA QDO ∠=∠. 在AOP ?和ODQ ?中,

{OP DQ

POA QDO OA DO

=∠=∠=, ∴AOP ?≌ODQ ?, ∴AP OQ =;

(2)作PH OA ⊥,交OA 于H , ∵4cos 5

AOC ∠=, ∴4455OH OP x =

=,35PH x =, ∴1

32

AOP S AO PH x ?=

?=. ∵//CD AB , ∴PFC ?∽PAO ?, ∴

22

10(

)()AOP

y CP x S OP x

?-==, ∴2360300

x x y x

-+=,当F 与点D 重合时,

∵4

2cos 210165

CD OC OCD =?∠=??=, ∴

101016x x =-,解得50

13

x =, ∴2360300x x y x

-+=

50

(10)13x <<; (3)①当90OPE ∠=o 时,90OPA ∠=o , ∴4

cos 1085

OP OA AOC =?∠=?

=; ②当90POE ∠=o 时,

101025

4cos cos 25OC CQ QCO AOC =

===

∠∠,

∴252OP DQ CD CQ CD ==-=-2571622

=-=, ∵

50

1013

OP <<, ∴7

2

OP =

(舍去);

③当90PEO ∠=o 时,∵//CD AB , ∴AOQ DQO ∠=∠, ∵AOP ?≌ODQ ?, ∴DQO APO ∠=∠, ∴AOQ APO ∠=∠,

∴90AEO AOP ∠=∠=o ,此时弦CD 不存在,故这种情况不符合题意,舍去; 综上,线段OP 的长为8.

7.如图,将一副直角三角形拼放在一起得到四边形ABCD ,其中∠BAC=45°,∠ACD=30°,点E 为CD 边上的中点,连接AE ,将△ADE 沿AE 所在直线翻折得到△AD′E ,D′E 交AC 于F 点.若AB=6

cm .

(1)AE 的长为 cm ;

(2)试在线段AC 上确定一点P ,使得DP+EP 的值最小,并求出这个最小值; (3)求点D′到BC 的距离.

【答案】(1);(2)12cm ;(3)

cm .

【解析】

试题分析:(1)首先利用勾股定理得出AC 的长,进而求出CD 的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案: ∵∠BAC=45°,∠B=90°,∴AB=BC=6

cm ,∴AC=12cm .

∵∠ACD=30°,∠DAC=90°,AC=12cm ,∴(cm ).

∵点E 为CD 边上的中点,∴AE=DC=

cm .

(2)首先得出△ADE 为等边三角形,进而求出点E ,D′关于直线AC 对称,连接DD′交AC 于点P ,根据轴对称的性质,此时DP+EP 值为最小,进而得出答案.

(3)连接CD′,BD′,过点D′作D′G ⊥BC 于点G ,进而得出△ABD′≌△CBD′(SSS ),则∠D′BG=45°,D′G=GB ,进而利用勾股定理求出点D′到BC 边的距离. 试题解析:解:(1)

(2)∵Rt △ADC 中,∠ACD=30°,∴∠ADC=60°, ∵E 为CD 边上的中点,∴DE=AE .∴△ADE 为等边三角形.

∵将△ADE 沿AE 所在直线翻折得△AD′E ,∴△AD′E 为等边三角形,∠AED′=60°. ∵∠EAC=∠DAC ﹣∠EAD=30°,∴∠EFA=90°,即AC 所在的直线垂直平分线段ED′.

∴点E,D′关于直线AC对称.

如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.

∵△ADE是等边三角形,AD=AE=,

∴,即DP+EP最小值为12cm.

(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,

∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,

∵AE=EC,∴AD′=CD′=.

在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′

(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.

设D′G长为xcm,则CG长为cm,

在Rt△GD′C中,由勾股定理得,

解得:(不合题意舍去).

∴点D′到BC边的距离为cm.

考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.

8.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度为13DE

=3米,点C在DE上,CD=0.5米,CD是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41,3≈1.73)

【答案】该停车库限高约为2.2米.

【解析】

【分析】

据题意得出

3

tan B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可

得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF3的长.【详解】

解:由题意得,

3 tan

3

B=

∵MN∥AD,

∴∠A=∠B,

∴tan A=3

3

∵DE⊥AD,

∴在Rt△ADE中,tan A=DE

AD

∵DE=3,

又∵DC=0.5,

∴CE=2.5,

∵CF⊥AB,

∴∠FCE+∠CEF=90°,

∵DE⊥AD,

∴∠A+∠CEF=90°,

∴∠A=∠FCE,

∴tan∠FCE=3

3

在Rt△CEF中,设EF=x,CF3x(x>0),CE=2.5,

代入得(5

2

)2=x2+3x2,

解得x=1.25,

∴CF=3x≈2.2,

∴该停车库限高约为2.2米.

【点睛】

本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.

9.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E

(1)判断直线PD是否为⊙O的切线,并说明理由;

(2)如果∠BED=60°,PD=3,求PA的长;

(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.

【答案】(1)证明见解析;(2)1;(3)证明见解析.

【解析】

【分析】

(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;

(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;

(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.

【详解】

(1)直线PD为⊙O的切线,

理由如下:

如图1,连接OD,

∵AB是圆O的直径,

∴∠ADB=90°,

∴∠ADO+∠BDO=90°,

又∵DO=BO,

∴∠BDO=∠PBD,

∵∠PDA=∠PBD,

∴∠BDO=∠PDA,

∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,

∴直线PD为⊙O的切线;

(2)∵BE是⊙O的切线,

∴∠EBA=90°,

∵∠BED=60°,

∴∠P=30°,

∵PD为⊙O的切线,

∴∠PDO=90°,

在Rt△PDO中,∠P=30°,3

∴0 tan30

OD

PD

=,解得OD=1,

∴22

PO PD OD

+,

∴PA=PO﹣AO=2﹣1=1;

(3)如图2,

依题意得:∠ADF=∠PDA,∠PAD=∠DAF,

∵∠PDA=∠PBD∠ADF=∠ABF,

∴∠ADF=∠PDA=∠PBD=∠ABF,

∵AB是圆O的直径,

∴∠ADB=90°,

设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,∵四边形AFBD内接于⊙O,

∴∠DAF+∠DBF=180°,

即90°+x+2x=180°,解得x=30°,

∴∠ADF=∠PDA=∠PBD=∠ABF=30°,

∵BE、ED是⊙O的切线,

∴DE=BE,∠EBA=90°,

∴∠DBE=60°,∴△BDE是等边三角形,

∴BD=DE=BE,

又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,

∴△BDF是等边三角形,

∴BD=DF=BF,

∴DE=BE=DF=BF,

∴四边形DFBE为菱形.

【点睛】

本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.

10.如图,在正方形ABCD中,E是边AB上的一动点,点F在边BC的延长线上,且=,连接DE,DF,EF. FH平分EFB

CF AE

∠交BD于点H.

⊥;

(1)求证:DE DF

=:

(2)求证:DH DF

⊥于点M,用等式表示线段AB,HM与EF之间的数量关系,并(3)过点H作HM EF

证明.

【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析. 【解析】 【分析】

(1)根据正方形性质, CF AE =得到DE DF ⊥.

(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=?,BD 平分ABC ∠, 得45DBF ∠=?.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于

45DHF DBF BFH BFH ∠=∠+∠=?+∠,45DFH DFE EFH EFH ∠=∠+∠=?+∠, 所以DH DF =.

(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得

222BD AB AD AB =

+=.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得

HM HN =.因为4590HBN HNB ∠=?∠=?,

,所以22sin 45HN

BH HN HM ===?

.

由22cos 45DF

EF DF DH =

==?

,得22EF AB HM =-.

【详解】

(1)证明:∵四边形ABCD 是正方形, ∴AD CD =,90EAD BCD ADC ∠=∠=∠=?. ∴90EAD FCD ∠=∠=?. ∵CF AE =。 ∴AED CFD △△≌. ∴ADE CDF ∠=∠.

∴90EDF EDC CDF EDC ADE ADC ∠=∠+∠=∠+∠=∠=?. ∴DE DF ⊥.

(2)证明:∵AED CFD △△≌, ∴DE DF =. ∵90EDF ∠=?, ∴45DEF DFE ∠=∠=?.

∵90ABC ∠=?,BD 平分ABC ∠, ∴45DBF ∠=?. ∵FH 平分EFB ∠, ∴EFH BFH ∠=∠.

∵45DHF DBF BFH BFH ∠=∠+∠=?+∠,

45DFH DFE EFH EFH ∠=∠+∠=?+∠, ∴DHF DFH ∠=∠. ∴DH DF =.

(3)22EF AB HM =-.

证明:过点H 作HN BC ⊥于点N ,如图,

∵正方形ABCD 中,AB AD =,90BAD ∠=?, ∴222BD AB AD AB =

+=.

∵FH 平分,EFB HM EF HN BC ∠⊥⊥,,

∴HM HN =.

∵4590HBN HNB ∠=?∠=?,

, ∴22sin 45HN

BH HN HM =

==?

.

∴22DH BD BH AB HM =-=.

∵22cos 45DF

EF DF DH =

==?

∴22EF AB HM =-. 【点睛】

本题考查正方形的性质、勾股定理、角平分线的性质、三角函数,题目难度较大,解题的关键是熟练掌握正方形的性质、勾股定理、角平分线的性质、三角函数.

11.如图,AB 是⊙O 的直径,PA 、PC 与⊙O 分别相切于点A ,C ,PC 交AB 的延长线于点D ,DE ⊥PO 交PO 的延长线于点E . (1)求证:∠EPD=∠EDO ; (2)若PC=3,tan ∠PDA=

3

4

,求OE 的长.

【答案】(1)见解析;(25.【解析】

【分析】

(1)由切线的性质即可得证.(2)连接OC,利用tan∠PDA=3

4

,可求出CD=2,进而求得

OC=3

2

,再证明△OED∽△DEP,根据相似三角形的性质和勾股定理即可求出OE的长.

【详解】

(1)证明:∵PA,PC与⊙O分别相切于点A,C,∴∠APO=∠CPO, PA⊥AO,

∵DE⊥PO,

∴∠PAO=∠E=90°,

∵∠AOP=∠EOD,

∴∠APO=∠EDO,

∴∠EPD=∠EDO.

(2)连接OC,

∴PA=PC=3,

∵tan∠PDA=3

4

∴在Rt△PAD中,

AD=4,22

PA AD

+,∴CD=PD-PC=5-3=2,

∵tan∠PDA=3

4

∴在Rt△OCD中,

OC=3

2

22

OC CD

+

5

2

∵∠EPD=∠ODE,∠OCP=∠E=90°,∴△OED∽△DEP,

∴PD

DO =

PE

DE

=

DE

OE

=2,

∴DE=2OE,

在Rt △OED 中,OE 2

+DE 2

=OD 2

,即5OE 2

=2

52?? ???

=254,

∴OE=

5

2

【点睛】

本题考查了切线的性质;锐角三角函数;勾股定理和相似三角形的判定与性质,充分利用tan ∠PDA=

3

4

,得线段的长是解题关键.

12.如图,正方形OABC 的顶点O 与原点重合,点A ,C 分别在x 轴与y 轴的正半轴上,点

A 的坐标为(4,0),点D 在边A

B 上,且tan ∠AOD =

1

2

,点E 是射线OB 上一动点,EF ⊥x 轴于点F ,交射线OD 于点G ,过点G 作GH ∥x 轴交AE 于点H . (1)求B ,D 两点的坐标;

(2)当点E 在线段OB 上运动时,求∠HDA 的大小;

(3)以点G 为圆心,GH 的长为半径画⊙G .是否存在点E 使⊙G 与正方形OABC 的对角线所在的直线相切?若不存在,请说明理由;若存在,请求出所有符合条件的点E 的坐标.

【答案】(1)B (4,4),D (4,2);(2)45°;(3)存在,符合条件的点为(8﹣

2,8﹣2)或(2,2)或42164216++??或16421642,77?-- ??

,理由见解析 【解析】 【分析】

相关主题