搜档网
当前位置:搜档网 › 实验一、复变函数与特殊函数图形的绘制

实验一、复变函数与特殊函数图形的绘制

实验一、复变函数与特殊函数图形的绘制
实验一、复变函数与特殊函数图形的绘制

实验一、复变函数与特殊函数图形的绘制

一、复变函数图形的绘制

例题:编程绘制出复变函数31/31

,的图形。

z z

,

z

解:

%experiment1.m

close all

clear all

m=30;

r=(0:m)'/m;

theta=pi*(-m:m)/m;

z=r*exp(i*theta);

w=z.^3;

blue=0.2;

x=real(z);

y=imag(z);

u=real(w);

v=imag(w);

v=v/max(max(abs(v))); %%函数值虚部归一化

M=max(max(u));

m=min(min(u));

axis([-1 1 -1 1 m M])

caxis([-1 1]) %%指定颜色值的范围

s=ones(size(z));

subplot(131)

mesh(x,y,m*s,blue*s) %%画投影图

hold on

surf(x,y,u,v) %%画表面图

xlabel('x')

ylabel('y')

zlabel('u')

title('z^3')

hold off

colormap(hsv(64)) %%画色轴

w=z.^(1/3);

x=real(z);

y=imag(z);

subplot(132)

for k=0:2

rho=abs(w);

phi=angle(w)+k*2*pi/3;

u=rho.*cos(phi);

v=rho.*sin(phi);

v=v/max(max(abs(v))); %%函数值虚部归一化 M=max(max(max(M,u)));

m=min(min(min(m,u)));

surf(x,y,u,v) %%画表面图

axis([-1 1 -1 1 m M])

hold on

end

s=ones(size(z));

mesh(x,y,m*s,blue*s) %%画投影图

xlabel('x')

ylabel('y')

zlabel('u')

title('z^{1/3}')

colormap(hsv(64)) %%画色轴

w=1./z;

w(z==0)=NaN;

x=real(z);

y=imag(z);

u=real(w);

v=imag(w);

v=v/max(max(abs(v))); %%函数值虚部归一化

M=max(max(max(M,u)));

m=min(min(min(m,u)));

subplot(133)

surf(x,y,u,v) %%画表面图

hold on

axis([-1 1 -1 1 m M])

s=ones(size(z));

mesh(x,y,m*s,blue*s) %%画投影图

xlabel('x')

ylabel('y')

zlabel('u')

title('1/z')

colormap(hsv(64)) %%画色轴

二、特殊函数图形的绘制

1、Γ函数的绘制

()()1

0,1,2,t

z z e

t

d t

z ∞

--Γ=

≠--?

% Fig1d15.m

x=-3:0.01:3; y=gamma(x);

plot(x,y,'linewidth',4) grid on

axis([-3 3 -5 5]) xlabel('x') ylabel('y')

title('\Gamma 函数')

2、勒让德函数的绘制

l 阶勒让德多项式()l P x 的定义是:

()()

()()()

()220

22!

1112!!2!l k

l k

l l

k l k P x x

x k l k l k ??????

-=-=

--≤≤--

其中,()()/220,1,2,1/2

21

2l l n

l n l l n =?

???==???-=+????

连带

()m

l

P x 的定义是

()()

[]

()2

2

1m

m m

l l

P x x P x =-

其中,0,1,2,l = ,0,1,2,,m l = ,而[]

()m l P x 是()l P x 的m 阶导数。

MA 计算连带勒让德函数的指令是

(,)legendre N X

在给

N ,X 值以后,它将计算所有N 阶连带勒让德函数在X 处的函数值。如果X

是矢量,所得的结果P 是矩阵,而P (m+1,i )则是连带勒让德函数()m

l P x 在X (i

)处

的函数值。

例如 >> 产生

-0.5000 -0.4850 -0.4400 0 -0.2985 -0.5879

3.0000 2.9700 2.8800

它表示的结果是

()()()()()()()()()0

2

2

2

1

1

1

2222

2

2

2220

0.10.2

000.50.10.4850.20.44

1000.10.2985

0.20.5879

2

030.1 2.97

0.2 2.88

x x x m P P P m P P P m P P P =====-=-=-===-=-====

例题:画出所有3阶连带勒让德函数的图形。 解:

% Fig1d17.m x=0:0.01:1;

y=legendre(3,x);

plot(x,y(1,:),'-',x,y(2,:),'-.',x,y(3,:),':',x,y(4,:),'--') title('勒让德多项式')

legend('P_3^0','P_3^1','P_3^2','P_3^3') 运行程序,得到如下的图形:

3、贝塞尔函数的绘制

MATLAB 有5种计算贝塞尔函数的指令,

计算指令 所计算的函数

J=besselj(ν,z) 计算ν阶第一类贝塞尔函数()J z ν的值 N=bessely(ν,z) 计算ν阶第二类贝塞尔函数()N z ν的值

H=besselh(ν,k,z) 计算ν阶第一类汉开尔函数(k=1)()

()1H z ν的值或ν阶第

二类汉开尔函数(k=2)()

()2H z ν的值

I=besseli(ν,z) 计算ν阶第一类虚宗量贝塞尔函数()I z ν的值 K=besselk(ν,z) 计算ν阶第二类虚宗量贝塞尔函数()K z ν的值

例题:绘出前四个第一类贝塞尔函数的曲线。 解:

%Fig1d20.m

clear all close all

y=besselj(0:3,(0:0.2:10)'); figure(1)

plot((0:0.2:10)',y(:,1),'b-',(0:0.2:10)',y(:,2),'b--*',... (0:0.2:10)',y(:,3),'r-.',(0:0.2:10)',y(:,4),'r--o') xlabel('x')

ylabel('J_{\nu}(x)')

title('贝塞尔函数J_{0,1,2,3}的图形') legend('J_0','J_1','J_2','J_3')

三、上机作业: 1、编程绘制根式复变函数

()

1/2

0.5z -的图形。

2、编程绘制复变函数0

1

1k

k

k k z z

z

==-∞

-

∑∑

、其泰勒展开式和洛朗展开式-的图形。

注:画级数图形时,取前101项近似。

3、绘制教材第252页图12.5中的前6个勒让德多项式的函数曲线。

4、根据教材第285页的公式(13.90),绘制前四个球贝塞尔函数(

()()()()

0123,,,j x j x j x j x )的曲线。

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数与积分变换》教学大纲

《复变函数与积分变换》教学大纲 课程名称:复变函数与积分变换 FunctionsofVariables&Transformations 课程性质:专业基础课 学分:3 总学时:48学时,其中,理论学时:48学时,实验(上机)学时:0学时, 适用专业:通信工程、电子信息工程等专业 先修课程:高等数学 一、教学目的与要求: 复变函数与积分变换是工科院校中数学要求较高专业的一门基础理论课程。复变函数以及与它密切相关的积分变换,它的理论和方法不仅在数学的其他的许多分支中,而且在其他自然科学和工程技术如电力工程、自动控制、信号分析和图像处理、材料成型等领域内获得广泛的应用,已成为不可缺少的运算工具。 通过本课程的学习,使学生掌握复变函数的基本理论和基本方法,傅立叶变换和拉普拉斯变换的思想与运算技巧,并在此基础上培养学生应用这些知识解决实际问题的能力,为后继专业课程的学习提供必要的数学工具。

第一章复数与复变函数(8学时) 第一节复数的概念与运算 一、复数的概念、表示法和运算 二、区域 第二节复变函数 一、复变函数的概念 二、复变函数的极限和连续 本章重点:复数的表示法、方根运算公式 本章难点:复变函数的极限与连续性 本章教学要求:掌握复数的概念和它的各种表示方法及运算;熟悉复平面、模与辐角的概念;熟练掌握乘积与商的模、隶莫弗公式、方根运算公式;了解区域的概念;理解复变数学的概念;理解复变函数的极限和连续的概念。 第二章解析函数(5学时) 第一节解析函数的概念 一、复变函数的导数和解析的概念 二、复变函数解析的充要条件 三、解析函数的基本性质 第二节初等函数的解析性 一、指数函数、三角函数、对数函数 本章重点:复变函数解析的充要条件 本章难点:复变函数解析的充要条件 本章教学要求:理解复变函数的导数及复变函数解析的概念;掌握复变函数解析的C-R条件,并能利用C-R条件判断复变函数的可导性和解析性;掌握解析函数的基本性质;了解指数函数、三角函数及对数函数的定义及它们的主要性质。 第三章复变函数的积分(6学时) 第一节复变函数的积分 一、复变函数的积分的定义与性质 第二节柯西定理与柯西公式 一、柯西积分定理、柯西积分公式 二、解析函数的高阶导数公式 本章重点:会求复变函数的积分,理解柯西积分定理 本章难点:掌握柯西积分公式、解析函数的高阶导数公式 本章教学要求:了解复变函数积分的定义及性质,会求复变函数的积分;理解柯西积分定理,掌握柯西积分公式;掌握解析函数的高阶导数公式;了解解析函数无限次可导的性质;会综合利用各定理计算闭路积分。 第四章级数(5学时) 第一节复级数的基本概念 一、复级数的一般概念

复变函数第二章标准答案

复变函数第二章答案

————————————————————————————————作者:————————————————————————————————日期:

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

(完整版)复变函数试题库

《复变函数论》试题库 梅一A111 《复变函数》考试试题(一) 1、 =-?=-1||0 0)(z z n z z dz __________.(n 为自然数) 2. =+z z 2 2cos sin _________. 3.函数z sin 的周期为___________. 4.设 11 )(2+= z z f ,则)(z f 的孤立奇点有__________. 5.幂级数 n n nz ∞ =∑的收敛半径为__________. 6.若函数f(z)在整个平面上处处解析,则称它是__________. 7.若ξ=∞→n n z lim ,则=+++∞→n z z z n n ...lim 21______________. 8.= )0,(Re n z z e s ________,其中n 为自然数. 9. z z sin 的孤立奇点为________ . 10.若0z 是 )(z f 的极点,则___ )(lim 0 =→z f z z . 三.计算题(40分): 1. 设 )2)(1(1 )(--= z z z f ,求)(z f 在} 1||0:{<<=z z D 内的罗朗展式. 2. .cos 1 1||?=z dz z 3. 设 ? -++=C d z z f λ λλλ1 73)(2,其中 }3|:|{==z z C ,试求).1('i f + 4. 求复数 11 +-= z z w 的实部与虚部. 四. 证明题.(20分) 1. 函数 )(z f 在区域D 内解析. 证明:如果|)(|z f 在D 内为常数, 那么它在 D 内为常数. 2. 试证 : ()f z = 在割去线段0Re 1z ≤≤的z 平面内能分出两 个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.

复变函数与积分变换论文

复变函数与积分变换论文 题目:阐述复变函数与积分变换对电气自动化专业的作用 阐述复变函数与积分变换对电气自动化专业的作用 复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。复变函数论历史悠久,内容丰富,理论十分完美。它在数学许多分支、力学以及工程技术科学中有着广泛的应用。复数起源于求代数方程的根。通过学习《复变函数与积分变换》这门课程,我了解到它既是一门理论性较强的课程,又是解决实际问题的强有力的工具,它的理论和方法在数学、自然科学和工程技术中有着广泛的应用,同时老师也给我们了解到了更多关于复变函数的历史知识,让我更加对这门产生浓厚的学习兴趣。 《复变函数和积分变换》课程本身应该是一种将数学知识如何应用于工程的学科,是培养创新思维的非常重要的课程。这门课程对于培养创新人才具有特殊作用,而创新能力的基础是创新思维。复变函数和积分变换作为我们学校的电气工程自动化专业大

学生专业必修课,除了要求我们掌握复变函数和积分变换课程的基础知识、基本方法外,更重要的是要培养创新型的思维能力。让学生强化应用、重视实践、淡化专业、消灭书呆子,重视创新能力和实践能力的培养。 我们在复变函数和积分变换课程的学习中面对的处处都是创新模式,没有创新就不能学好该课程。复数域打破了实数域的限制、解析函数突破了二元函数和一元实函数的禁锢、洛朗级数克服了幂级数的局限性、拉普拉斯积分变换是傅里叶积分变换应用方面的创新等等。 在复变函数和积分变换的学习中,我们得到的不仅有作为科学创新基础的数学原理,还有一些创新思想方法,如解析函数高阶导数和积分变换中导数公式的归纳法思想、复数几何意义的直观性在初等几何中的应用思想、保形变换和积分变换中对称思维、两类积分变换应用的同中求异和理论中的异中求同、复势应用中的猜想与证明,观察与实验等等都体现了创新思维的火花。我们在学习中掌握了这些方法,有利于在今后的工作和生活中发挥巨大的作用。因此,复变函数和积分变换课程的教学,有助于学生创新思维能力的训练和培养。培养我们运用基本理论和方法解决实际问题的意识、兴趣和能力,尤其是解析函数在平面向量场中的应用,留数理论的应用,积分变换在解微分方程中的应用和求广义积分,培养我们打破思维定式,打破常规惯例,用新的眼光看复变函数和积分变换,就是说变量从实数到复数,积分从直线到曲线,尤其是封闭曲线。 我们从这门课程上可以学到傅里叶变换是一种对连续时间函数的积分变换。通过我们专业课的实验学习,深刻了解到傅里叶变换在处理和分析工程实际中的一些问题的重要作用。通过变换技术,从另一个角度对问题进行处理和分析,使问题的性质更清楚、更便于分析,也使问题的求解更方便,更便于解决。我以前总认为学这些东西没有用处,只是一些很落后和过时的理论,通过实验学习,我看到了它的重大作用。在我以后的学习中,也要在掌握基本理论的同时,去挖掘生活中的问题,并努力用所学的知识去解决,那样才能更好的理解和运用。我还学到积分变换可以把微分方程变换为初等方程,求解方便。另外求线性系统的响应,用积分变换不用考虑初始状态,非常方便。可以实现时域和频域的变换,方便对谐波进行分析计算。使用复频域的状态变量解法可以方便的用计算机对系统进行求解。 通过课程的学习,我们可以了解到,复数可以应用到现实中的数学建模,其在很多运算中都有者不可思议的性质和规律。复数的引入为人们解决实数域和物理科学提供了许多新的途径,打开了很多原本无法畅通的道路,无论是神奇的留数,还是保角映射,都为人类在解决非复领域上的问题提供了全新的思路与方便。 复变函数给我们一个新的概念,让我们不局限于实数的学习范围,给我们一个创新思维的学习。

最新复变函数第二章答案

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

实验一、复变函数与特殊函数图形的绘制

实验一、复变函数与特殊函数图形的绘制 一、复变函数图形的绘制 例题:编程绘制出复变函数31/31 ,的图形。 z z , z 解: %experiment1.m close all clear all m=30; r=(0:m)'/m; theta=pi*(-m:m)/m; z=r*exp(i*theta); w=z.^3; blue=0.2; x=real(z); y=imag(z); u=real(w); v=imag(w); v=v/max(max(abs(v))); %%函数值虚部归一化 M=max(max(u)); m=min(min(u)); axis([-1 1 -1 1 m M]) caxis([-1 1]) %%指定颜色值的范围 s=ones(size(z)); subplot(131) mesh(x,y,m*s,blue*s) %%画投影图 hold on surf(x,y,u,v) %%画表面图 xlabel('x') ylabel('y') zlabel('u') title('z^3') hold off colormap(hsv(64)) %%画色轴 w=z.^(1/3); x=real(z); y=imag(z); subplot(132) for k=0:2 rho=abs(w);

phi=angle(w)+k*2*pi/3; u=rho.*cos(phi); v=rho.*sin(phi); v=v/max(max(abs(v))); %%函数值虚部归一化 M=max(max(max(M,u))); m=min(min(min(m,u))); surf(x,y,u,v) %%画表面图 axis([-1 1 -1 1 m M]) hold on end s=ones(size(z)); mesh(x,y,m*s,blue*s) %%画投影图 xlabel('x') ylabel('y') zlabel('u') title('z^{1/3}') colormap(hsv(64)) %%画色轴 w=1./z; w(z==0)=NaN; x=real(z); y=imag(z); u=real(w); v=imag(w); v=v/max(max(abs(v))); %%函数值虚部归一化 M=max(max(max(M,u))); m=min(min(min(m,u))); subplot(133) surf(x,y,u,v) %%画表面图 hold on axis([-1 1 -1 1 m M]) s=ones(size(z)); mesh(x,y,m*s,blue*s) %%画投影图 xlabel('x') ylabel('y') zlabel('u') title('1/z') colormap(hsv(64)) %%画色轴

Matlab在复变函数中应用解读

Matlab在复变函数中应用 数学实验(一) 华中科技大学数学系 二○○一年十月

MATLAB在复变函数中的应用 复变函数的运算是实变函数运算的一种延伸,但由于其自身的一些特殊的性质而显得不同,特别是当它引进了“留数”的概念,且在引入了Taylor级数展开Laplace 变换和Fourier变换之后而使其显得更为重要了。 使用MATLAB来进行复变函数的各种运算;介绍留数的概念及MAT–LAB的实现;介绍在复变函数中有重要应用的Taylor展开(Laurent展开Laplace变换和Fourier变换)。 1 复数和复矩阵的生成 在MATLAB中,复数单位为)1 j i,其值在工作空间中都显示为 =sq rt = (- 0+。 .1 i 0000 1.1 复数的生成 复数可由i z+ =。 a =语句生成,也可简写成bi a z* + b 另一种生成复数的语句是) exp(i theta r =,也可简写成) =, z* exp(theta * i r z* 其中theta为复数辐角的弧度值,r为复数的模。 1.2 创建复矩阵 创建复矩阵的方法有两种。 (1)如同一般的矩阵一样以前面介绍的几种方式输入矩阵 例如:)] i A* * i i = + 3[i * - + * , ), 23 5 33 6 exp( 2 3 , exp( 9 (2)可将实、虚矩阵分开创建,再写成和的形式 例如: )2,3( re=; rand im=; )2,3( rand

im i re com *+= ] 5466.07271.05681.02897.07027.05341.08385.03420.03704.03412.03093.06602.0[i i i i i i com ++++++= 注意 实、虚矩阵应大小相同。 2 复数的运算 1.复数的实部和虚部 复数的实部和虚部的提取可由函数real 和imag 实现。 调用形式 )(x real 返回复数x 的实部 )(x imag 返回复数x 的虚部 2.共轭复数 复数的共轭可由函数conj 实现。 调用形式 )(x conj 返回复数x 的共轭复数 3.复数的模和辐角 复数的模和辐角的求解由功能函数abs 和angle 实现。 调用形式 )(x abs 复数x 的模 )(x angle 复数x 的辐角 例:求下列复数的实部与虚部、共轭复数、模与辐角 (1) i 231 + (2)i i i --131 (3)i i i 2)52)(43(-+ (4)i i i +-2184 由MATLAB 输入如下:

复变函数第二章习题答案精编版.doc

第二章解析函数 1-6 题中: (1)只要不满足 C-R 条件,肯定不可导、不可微、不解析 (2)可导、可微的证明:求出一阶偏导u x, u y, v x, v y,只要一阶偏导存在且连续,同时满足C-R 条件。 (3)解析两种情况:第一种函数在区域内解析,只要在区域内处处可导,就处处解析;第二种情况函数在某一点解析,只要函数在该点及其邻域内处处可导则在该点解析,如果只在该点可导,而在其邻域不可导则在该点不解析。 (4)解析函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解析的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解析函数。 解析函数求导: f ( z) u x iv x 4、若函数f ( z)在区域 D上解析,并满足下列的条件,证明 f ( z) 必为常数。 (1)f z 0 z D 证明:因为 f ( z) 在区域上解析,所以。 令 f (z) u( x, y) iv ( x, y) ,即 u v , u v f (z) u i v 0 。 x y y x x y 由复数相等的定义得:u v u v x y 0, 0 。 y x 所以, u( x, y) C1(常数),v( x, y) C2(常数),即 f (z) C1 iC2为 常数。 5、证明函数在z 平面上解析,并求出其导数。 (1) e x ( xcos y y sin y) ie x ( y cos y x sin y).

证明:设 f z u x, y iv x, y = e x ( x cos y y sin y) ie x ( y cos y xsin y). 则 u , y x ( x cos y y sin y ) , v x, y x x e e ( y cos y x sin y) u e x ( x cos y ysin y) e x cos y v e x cos y y sin ye x x cos ye x x ; y u e x ( x sin y sin y y cos y) ; v e x ( y cos y x sin y sin y) y x 满足 u v , u v 。 x y y x 即函数在 z 平面上 ( x, y) 可微且满足 C-R 条件,故函数在 z 平面上 解析。 f (z) u i v e x (x cos y y sin y cos y) ie x ( y cos y x sin y sin y) x x 8、(1)由已知条件求解析函数 f ( z) u iv u x 2 y 2 xy f (i ) 1 i 。 , , 解: u x 2x y, u y 2 y x 由于函数解析,根据 C-R 条件得 u x v y 2x y 于是 y 2 v 2xy (x) 2 其中 ( x) 是 x 的待定函数,再由 C —R 条件的另一个方程得 v x 2y ( x) u y 2y x , x 2 所以 (x) x ,即 (x) c 。 2 于是 v y 2 x 2 c 2xy 2 2 又因为 f (i ) 1 i ,所以当 x 0, y 1 ,时 u 1 1 1 , v c 1得 c 2 2

复变函数习题答案第2章习题详解

第二章习题详解 1. 利用导数定义推出: 1) () 1 -=n n nz z ' (n 为正整数) 解: ()()()()()z z z z z n n z nz z z z z z z n n n n n z n n z n ????????-?? ??? ?++-+ += -+= --→→ 2 2 1 12 1lim lim ' ()() 1 1 2 1 12 1----→=?? ? ?? ?++-+ = n n n n z nz z z z n n nz ??? lim 2) 211z z -=?? ? ??' 解: () ()2 11 111 1z z z z z z z z z z z z z z z z z - =+-= +-= - += ?? ? ??→→→?????????lim lim lim ' 2. 下列函数何处可导?何处解析? 1) ()iy x z f -=2 解:设()iv u z f +=,则2x u =,y v -= x x u 2=??, 0=??y u , 0=??x v ,1-=??y v 都是连续函数。 只有12-=x ,即2 1- =x 时才满足柯西—黎曼方程。 ()iy x z f -=∴2 在直线2 1- =x 上可导,在复平面内处处不解析。 2) ()3 3 32y i x z f += 解:设()iv u z f +=,则3 2x u =,3 3y v = 2 6x x u =??, 0=??y u , 0=??x v , 2 9y y v =??都是连续函数。 只有2 2 96y x =,即032=± y x 时才满足柯西—黎曼方程。 ()3 3 32y i x z f +=∴在直线 032=± y x 上可导,在复平面内处处不解析。 3) ()y ix xy z f 2 2 += 解:设()iv u z f +=,则2 xy u =,y x v 2 =

复变函数实验课(一)

湖北民族学院理学院 2014年春季学期 数学与应用数学专业复变函数实验课 (一)计算部分 上课教师:汪海玲

Matlab中复变函数命令集 定义符号变量Syms 虚单位z=Sqrt(-1) 复数表示z=x+y*i 指数表示z=r*exp(i*a) 求实部Real(z) 求虚部Imag(z) 求共轭Conj(z) 求模Abs(z) 求幅角Angle(z) 三角函数z=sin(z) z=cos(z) 指数函数z=exp(z) 对数函数z=log(z) 幂函数z=z^a 解方程expr=‘方程式’; Solve(expr) 泰劳展开Taylor(e,z) 求留数[r,p,k]=residue(p,q) 傅立叶变换Fourier(e,z,w) 逆傅立叶变换Ifourier(e,w,z) 拉普拉斯变换Laplace(e,w,t) 逆拉普拉斯变换Ilaplace(e,t,x)

一复数的运算 1.复数的实部和虚部 复数的实部和虚部的提取可由函数real和imag实现。 调用形式 real返回复数x的实部 (x ) (x imag返回复数x的虚部 ) 2.共轭复数 复数的共轭可由函数conj实现。 调用形式 conj返回复数x的共轭复数 (x ) 3.复数的模和辐角 复数的模和辐角的求解由功能函数abs和angle实现。 调用形式 abs复数x的模 ) (x angle复数x的辐角 ) (x 上机操作:课本例题1.2、例题1.4、课后习题(一)1. 4.复数的乘除法 复数的乘除法运算由“/”和“ ”实现。 5.复数的平方根 复灵敏的平方根运算由函数sprt实现。 调用形式 ) sprt返回复数x的平方根值 (x 6.复数的幂运算 x^,结果返回复数x的n次幂。 复数的幂运算的形式为n 上机操作:课本例题1.8 7.复数的指数和对数运算 复数的指数和对数运算分别由函数exp和log实现。

复变函数课后部分习题解答

(1)(3-i) 5 解:3-i=2[cos( -30°)+isin(-30°)] =2[cos30°- isin30°] (3-i)5 =25[cos(30°?5)-isin(30°?5)] =25(-3/2-i/2) =-163-16i

(2)(1+i )6 解:令z=1+i 则x=Re (z )=1,y=Im (z )=1 r=z =22y x +=2 tan θ=x y =1 Θx>0,y>0 ∴θ属于第一象限角 ∴θ= 4 π ∴1+i=2(cos 4π+isin 4 π ) ∴(1+i )6=(2)6(cos 46π+isin 4 6π ) =8(0-i ) =-8i 1.2求下式的值 (3)61-

因为 -1=(cos π+sin π) 所以 6 1-=[cos(ππk 2+/6)+sin(ππk 2+/6)] (k=0,1,2,3,4,5,6). 习题一 1.2(4)求(1-i)3 1的值。

解:(1-i)3 1 =[2(cos-4∏+isin-4 ∏ )]31 =62[cos(12)18(-k ∏)+isin(12 ) 18(-k ∏)] (k=0,1,2) 1.3求方程3z +8=0的所有根。 解:所求方程的根就是w=38- 因为-8=8(cos π+isin π) 所以38-= ρ [cos(π+2k π)/3+isin(π+2k π)/3] k=0,1,2

其中ρ=3r=38=2 即 w=2[cosπ/3+isinπ/3]=1—3i 1 w=2[cos(π+2π)/3+isin(π+2π)/3]=-2 2 w=2[cos(π+4π)/3+isin(π+4π)/3]= 1—3i 3 习题二 1.5 描出下列不等式所确定的区域或者闭区域,并指明它是有界还是无界的,单连通还是多连通的。 (1) Im(z)>0 解:设z=x+iy 因为Im(z)>0,即,y>0

实验一计算复变函数极限、微分、积分、留数、泰勒级数展开式

实验一计算复变函数极限、微分、积分、留数、泰勒级数展开式 【实验目的】 1、熟悉Matlab运行环境,会在窗口操作和运行一些命令 2、掌握求复变函数极限、微分、积分、留数以及泰勒级数命令 3、熟练在计算机上操作复变函数极限、微分、积分、留数以及泰勒级数命令【实验仪器】一台电脑,要求安装matlab 软件 【实验内容】 MATLAB实现内容 1、MATLAB求复变函数极限 2、MATLAB求复变函数微分 3、MATLAB求复变函数积分 4、MATLAB求复变函数在孤立奇点的留数 5、MATLAB求复变函数的泰勒级数展开式 【实验步骤】 1.打开matlab桌面和命令窗口,方式一,双击桌面快捷方式,方法二,程序里单击matlab图标,方式三,找到matlab文件夹,双击图标2.在matlab命令窗口输入命令 3.运行,可以直接回车键,F5键 【注意事项】 1.命令的输入要细心认真,不能出错 2.尤其是分号,逗号等符号的区别 3. 注意数学上的运算和matlab中的不同,尤其是括号

【实验操作内容】 以下的例题都是在命令窗口输入源程序,然后运行,或回车就可以得到结果。 1、MATLAB 求复变函数极限 用函数limit 求复变函数极限 【Matlab 源程序】 syms z f=; limit(f,z,z0) 返回极限结果 例 1 求 在 的极限 解 【Matlab 源程序】 syms z f=sin(z)/z; limit(f,z,0) ans= 1 limit(f,z,1+i) ans= 1/2*sin(1)*cosh(1)-1/2*i*sin(1)*cosh(1) +1/2*i*cos(1)*sinh(1)+1/2*cos(1)*sinh(1 2、 MATLAB 求复变函数微分 用函数diff 求复变函数极限 【Matlab 源程序】 z z z f sin )(=i z +=1,0

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π =+z arc ,6 5)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2( tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]2 3sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3 π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )

(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )22 1=+-z z (B )433=--+z z (C ))1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

复变函数在中学数学中的应用1

毕业论文 学生姓名林文强学号160901074 学院数学科学院 专业数学与应用数学 题目复变函数在中学数学中的应用 熊成继 指导教师 (姓名)(专业技术职称/学位) 2013 年 5 月

毕业论文独创性声明 本人郑重声明: 本论文是我个人在导师指导下进行的研究工作及取得的研究成果。本论文除引文外所有实验、数据和有关材料均是真实的。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写过的研究成果。其他同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。 作者签名: 日期:

摘要:本文通过对代数、几何以及三角函数等问题的探讨来说明复数在中学数学中的应用。将一些解决起来非常复杂的非复数问题,依据题目所给出的条件的特性,将该题目经过一定方式转换成复数问题,然后运用复数的性质及意义解决它。例如在代数问题中,利用复数模的性质;几何问题中,可以利用复数的几何意义及其与向量的关系;在三角函数中,可以利用复数的三角形式。运用复数解题的方法突破了常规的解题方法,有助于培养学生的创新思维。 关键词:复数;代数;几何;三角函数

Abstract:Based on the algebra, geometry and trigonometry problems to illustrate the application of the complex in the middle school mathematics.Some solutions are very complicated non complex problems, according to the characteristics of the given conditions, the title after a certain conversion into a complex problem, and then use the nature and meaning of complex number to easily solve.For example, in the algebraic problem, using the properties of complex modes; geometric problems, can the geometric meaning of complex utilization and its relationship with the vector; in the trigonometric function, can use the triangle form of complex https://www.sodocs.net/doc/0c16527062.html,ing the method of complex problem solving through the method of solving problems of conventional, contributes to the cultivation of students' creative thinking. Keyword:Complex Number; Algebra; Geometry; Trigonometric Function

复变函数测试题及答案-精品

第一章 复变函数测试题及答案-精品 2020-12-12 【关键字】条件、充分、关系、满足、方向、中心 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 (tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos( sec θπθπ θ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为

i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

复变函数D卷答案

湖南科技学院二○○ 年 学期期末考试 专业 年级 试题 考试类型:闭卷 试卷类型:D 卷 考试时量: 120 分钟 一(共7分,每小题1分) 1.nLnz Lnz n =(n 为正整数) ( ) 2.),(),()(y x iv y x u z f +=在区域D 内解析,则在区域D 内),(y x u 是),(y x v 的共轭调 函数。 ( ) 3.函数在可去奇点处的留数为0。 ( ) 4.0是2sin )(z z z f = 的一阶极点。 ( ) 5.复数0的辐角主值为0。 ( ) 6.在复变函数中,0cos ,0sin ,1|cos |,1|sin |2 2 ≥≥≤≤z z z z 同样成立。 ( ) 7.解析函数),(),()(y x iv y x u z f +=的实部),(y x u 和虚部),(y x v 都是其解析区域内的调 和函数。 ( ) 二 、填空题(共28分,每小题4分) 1. i i -1=_________. 2.? =-2 |1|2 z z dz = 。 3. dz z c ?=__________。 (其中c 是从1到的直线段) 4.幂级数n n n z n ∑ +∞ =1 的收敛半径R =

5.0为 )1()(2-=z e z z f 的 阶零点。 6.2 ||2(1)(3)z dz z z =--?=____________ 7. )1(Re z z s z +∞== 。 8.1z =+arg z =_______________。 三 、计算题(共39分) 1. 已知),(),()(y x iv y x u z f +=在z 平面上是解析函数,且2 33),(xy x y x u -=,求解)(z f , 使得i f 2)0(=。(12分) 2. 求 ) 1(1 -z z 在10<z 内的展开式。(15分) 3. 利用留数求定积分20 1 .51sin 82 I d π θθ=-? (12分) 四、证明题(共12分) 若函数)(),(z f z f 在区域D 内都解析,证明在D 内)(z f 为常数。

相关主题