搜档网
当前位置:搜档网 › 集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场

集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场

集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场
集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场

实验报告

班级: 姓名: 学号:

一、实验名称

集成霍尔传感器测量圆形线圈和亥姆霍兹线圈的磁场

二、实验目的

1、掌握霍尔效应原理测量磁场;

2、测量单匝载流原线圈和亥姆霍兹线圈轴线上的磁场分布。

三、实验仪器

亥姆霍兹线圈磁场测定仪、包括圆线圈和亥姆霍兹线圈平台(包括两个圆线圈、固定夹、不锈钢直尺等)、高灵敏度毫特计和数字式直流稳压电源。

四、实验原理

1、圆线圈的磁场

根据毕奥—萨伐尔定律,载流线圈在轴线上某点的磁感应强度为:

NI x R R

B 2

322

20)

(2+=

μ

式中I 为通过线圈的电流强度,R 为线圈平均半径,x 为圆心到该点的距离,N 为线圈的匝数,A m T /1047

0??=-πμ,为真空磁导率。因此,圆心处的磁感应强度为

NI

R

B 20

μ=

2、亥姆霍兹线圈的磁场

亥姆霍兹线圈:两个半径和匝数完全相同的线圈,其轴向距离等于线圈的半径。

这种线圈的特点是当线圈串联连接并通以稳定的直流电后,就可在线圈中心区域内产生较为均匀性较好的磁场,因而成为磁测量等物理实验的重要组成部件,与永久磁铁相比,亥姆霍兹线圈所产生的磁场在一定范围内具有一定的均匀性,且产生的磁场具有一定的可调性,可以产生极微弱的磁场直至数百高斯的磁场,同时在不通电的情况下不会产生环境磁场。

亥姆霍兹线圈如图所示,是一对彼此平行且连通的共轴圆形线圈,两线圈内电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的半径R 。

设z 为亥姆霍兹线圈中轴线上某点离中心点O

处的距离,根据毕奥—萨伐尔定律及磁

场叠加原理可以从理论上计算出亥姆霍兹线圈轴上任意一点的磁感应强度为

?

?????-++++???='--232

2232220]z 2([]z 2([21))R R R R R I N B μ

而在亥姆霍兹线圈上中心O 处的磁感应强度'

B 为

R I

N B ??=

02

3

'

058μ 当线圈通有某一电流时,两线圈磁场合成如图 可看出,两线圈之间轴线上磁感应强度在相当大的范围内是均匀的。

3、测量亥姆霍兹线圈磁场的方法——霍尔效应法

直接测量,设备简单,操作容易,适用于弱磁场和非均匀磁场的测量,霍尔探头经定标后可直接显示磁感应强度值。

五、实验步骤

1、载流圆线圈和亥姆霍兹线圈轴线上各点磁感应强度的测量

(1)先按要求将各导线连接好,直流稳压电源中数字电流表已串接在电源的一个输出端,测量电流I=100 mA 时,单线圈a 轴线上各点磁感应强度a B ,每隔1.00 cm 测量一个数据。实验中,随时观察毫特斯拉计探头是否沿线圈轴线移动。每测量一个数据,必须先在直流电源输出电路断开(I=0)调零后,才测量和记录数据。将测得数据填入表1中。

(2)用理论公式计算圆线圈中轴线上各点的磁感应强度,将计算结果填入表1中并与实验测量结果进行比较。

(3)在轴线上某点转动毫特斯拉计探头,观察一下该点磁感应强度测量值的变化规律,并判断该点磁感应强度的方向。

(4)将线圈a 和线圈b 之间的距离d 调整到d=10.00 cm ,这时,组成一个亥姆霍兹线圈。取电流值I=100 mA ,分别测量两线圈单独通电时,轴线上各点的磁感应强度值a B 和b B ,然后将亥姆霍兹线圈在通同样电流I=100mA ,在轴线上的磁感应强度值b a B +,将测量结果填入表2中。证明在轴线上的点b a b a B B B +=+,即载流亥姆霍兹线圈轴线上任一点磁感应强度是两个载流单线圈在该点上产生的磁感应强度之和。 (5)分别把亥姆霍兹线圈间距调整为2

R

d =

和R d 2=,与步骤(4)类似,测量在电流为I=100mA 时轴线上各点的磁感应强度值,将测量结果分别填入表3和表4中。 (6)作间距2

R

d =

,R d =,R d 2=时,两个线圈轴线上磁感应强度B 与位置z 之间关系图,即B-z 图,验证磁场叠加原理。

2、载流圆线圈通过轴线平行面上的磁感应线分布的描绘

2

R 2

R

R

R

B

把一张坐标纸黏贴在包含线圈轴线的水平面上,可自行选择恰当的点,把探测器底部传感器对准此点,然后亥姆霍兹线圈通过I=100mA 电流。转动探测器,观测毫特斯拉计的读数值,读数值为最大时传感器的法线方向,即为该点的磁感应强度方向。比较轴线上的点与远离轴线点磁感应强度方向变化情况。近似画出载流亥姆霍兹线圈磁感应线分布图。

3、注意事项

(1)接好电路后,打开电源预热10min 后才能进行实验。 (2)每测量一点磁感应强度值时应断开线圈电流(路),在电流为零时调探测器为零,然后接通线圈电流(路)进行测量和读数。调零的作用是抵消地磁场的影响及其他不稳定因素的补偿。

(3)注意平台上的标度尺不要压在载流线圈的轴线上,标度尺应平行于平台的中轴线并与平台中轴线距离为1.00 cm 。

(4)测量时,探测器的探测孔朝下并与待测点对应,并注意探测器本身的尺寸。 (5)在测量亥姆霍兹线圈磁场B 时,必须串联两线圈里的电流。

六、记录数据、表格

表1 单线圈轴线上磁场感应强度

位置/cm -9 -8 -7 -6 -5 -4 -3 -2 -1 0 测量值

0.123 0.142 0.166 0.190 0.214 0.242 0.264 0.287 0.300 0.309 理论值 百分误差 位置/cm +1 +2 +3 +4 +5 +6 +7 +8 +9 测量值

0.307 0.298 0.280 0.257 0.233 0.206 0.181 0.159 0.137 理论值 百分误差

表2 亥姆霍兹线圈轴线上磁感应强度

位置/cm -9 -8 -7 -6 -5 -4 -3 -2 -1 0 单线圈磁场a B 0.259 0.280 0.297 0.308 0.310 0.305 0.287 0.266 0.240 0.217 单线圈磁场b B

0.062 0.072 0.082 0.096 0.111 0.130 0.150 0.172 0.196 0.223 b a B B +

亥姆霍兹线圈的磁场B

0.320 0.355 0.384 0.409 0.425 0.437 0.440 0.442 0.442 0.444 位置/cm +1 +2 +3 +4 +5 +6 +7 +8 +9 单线圈磁场a B 0.191 0.167 0.144 0.126 0.109 0.095 0.081 0.069 0.061 单线圈磁场b B

0.250 0.273 0.294 0.308 0.312 0.308 0.294 0.274 0.253 b a B B +

亥姆霍兹线圈的磁场B

0.448

0.445

0.444

0.437

0.425

0.405

0.381

0.346

0.314

两线圈间距d=10 cm 。

七、结果处理、作图作图:

八、思考题

预习思考题:

1、为什么在实验中每测量一点的磁感应强度之前必须调零?

答:在实验中,测量坐标板上的每一点由于所处的环境不同,所受到周围环境的电磁波大小就有一个差异。因为我们在实验中主要是研究在该点由这个线圈所激发的磁场的磁感应强度是多少,所以绝对有这个必要在测量每一点之前调零来排除周围环境的电磁波的影响。

2、在测量磁感应强度时,如何放置探测器探头以确保测量值是该处的磁感应强度的大小?

答:左右、上下、角度、仰角均微微移动,读到最大值,法线方向即磁场方向。 操作后思考题:

1、本实验采用什么原理测量磁场?

答:线性霍尔基于霍尔效应,将感应的磁场强度转化为相应的输出电压,使用者可由电压得出磁场强度,线性霍尔的灵敏度和感应范围不同型号不同。

2、亥姆霍兹线圈的磁场分布有什么特点?

答 在一个通电圆圈中,其磁场分布根据毕奥-萨伐尔定律,在过圆心而且垂直于线圈

平面的轴线上距离圆心X 处,磁场大小为NI x R R

B 2

3

22

20)

(2+=

μ,其中I 为电流大小 R 为圆

圈半径0μ为一个常数。亥姆霍兹线圈是两个彼此平行且连通的共轴圆形线圈,他的磁场分布是两个通电圆圈磁场的叠加。半径和两个圆圈的距离不同,叠加的结果也不同。两个线圈之外是逐渐减弱的。但是两个线圈之间可能是中间最弱,也可以是中间最强,还可以是匀强磁场。

3、若将两线圈通以相反方向的电流,则在两线圈内部和外部的轴线上的磁场将会怎样分布?

答:其内部磁场将会相互抵消,而外部磁场则维持跟原来一样。

4、MATLAB 是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。使用MA TLAB ,您可以较使用传统的编程语言(如C 、C++和Fortran )更快的解决技术计算问题。您能用MATLAB 快速绘制出亥姆霍兹线圈磁场的空间分布吗?

答:很遗憾,不会→_→

FD-HM-I亥姆霍兹线圈磁场测定仪说明书(100318修订)

FD-HM-I 亥姆霍兹线圈磁场测定仪 一、概述 亥姆霍兹线圈磁场测定仪是综合性大学和工科院校物理实验教学大纲重要实验之一。该实验可以学习和掌握弱磁场测量方法,证明磁场迭加原理,根据教学要求描绘磁场分布等。传统的亥姆霍兹线圈磁场测量实验,一般用探测线圈配以指针交流电压表测量磁感应强度。由于线圈体积大,指针式交流电压表等级低等原因,测量的误差较大。 近年来,在科研和工业中,集成霍耳传感器由于体积小,测量准确度高,易于移动和定位,所以被广泛应用于磁场测量。例如:A SS 95型集成霍耳传感器就是一种高灵敏度的优质磁场传感器,它的体积小(面积mm mm 34?,厚mm 2),其内部具有放大器和剩余电压补偿电路,采用此集成霍耳传感器(配直流数字电压表)制成的高灵敏度毫特计,可以准确测量mT 000.20~的磁感应强度,其分辨率可达T 6 101-?。因此,用它探测载流线圈及亥姆霍兹线圈的磁场,准确度比用探测线圈高得多。用高灵敏度集成霍耳传感器测量T T 3 5 102101--??~弱交、直流磁场的方法已在科研与工业中广泛应用。 本仪器采用先进的95A 型集成霍耳传感器作探测器,用直流电压表测量传感器输出电压,探测亥姆霍兹线圈产生的磁场,测量准确度比探测线圈优越得多,仪器装置固定件牢靠,实验内容丰富。 本仪器经复旦大学物理实验教学中心使用,取得良好的教学效果。 二、原理 (1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为: I N x R R B ?+?= 2 /322 2 0) (2μ (1) 式中0μ为真空磁导率,R 为线圈的平均半径,x 为圆心到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为: I N R B ?= 20 0μ (2)

圆线圈与亥姆霍兹线圈轴线上磁场的测量

圆线圈与亥姆霍兹线圈轴线上磁场的测量 加灰色底纹部分是预习报告必写部分 圆线圈和亥姆霍兹线圈磁场描绘是一般综合性大学和工科院校物理实验教学大纲中重要实验之一。通过该实验可以使学生学习并掌握对弱磁场的测量方法,验证磁场的迭加原理,按教学要求描绘出磁场的分布图。本实验仪器选用先进的玻莫合金磁阻传感器,测量圆线圈和亥姆霍兹线圈磁场。该传感器与传统使用的探测线圈、霍尔传感器相比,具有灵敏度高、抗干扰性强、可靠性好及便于安装等诸多优点,可用于实验者深入研究弱磁场和地球磁场等,是描绘磁场分布的最佳升级换代产品。 【实验目的】 1. 了解和掌握用一种新型高灵敏度的磁阻传感器测定磁场分布的原理; 2. 测量和描绘圆线圈和亥姆霍兹线圈轴线上的磁场分布,验证毕—萨定理; 【实验仪器】 1.516FB 型磁阻传感器法磁场描绘仪(见图5)套(共2件): 2.仪器技术参数: ① 线圈有效半径:cm 0.10R =,单线圈匝数: 匝100N =; ② 数显式恒流源输出电流:mA 0.199~0连续可调;稳定度为字1%2.0±; ③ 数显式特斯拉计:μT 1 ,μT 1999~0 2 ,μT 1.0 ,μT 9.199~0 1分辨率量程分辨率量程; ④ 测试平台:mm 160300?; ⑤ 交流市电输入: Hz 50 %,10V 220AC ±。 【实验原理】 1. 磁阻效应与磁阻传感器: 物质在磁场中电阻率发生变化的现象称为磁阻效应。对于铁、钴、镍及其合金等磁性金属,当外加磁场平行于磁体内部磁化方向时,电阻几乎不随外加磁场变化;当外加磁场偏离金属的内部磁化方向时,此类金属的电阻减小,这就是强磁金属的各向异性磁阻效应。

杜海龙 21102019 计算电流线圈产生的磁场

求截面为矩形的圆线圈周围产生的磁场 一、数值方法 (一)数学模型:所研究的电流圆线圈产生磁场的问题在柱坐标系下研究, 根据磁场强度跟矢势之间的关系,得到磁场; 磁场为B ,矢势为A B A =?? r r z z A A e A e A e θθ=++ A e θθ= (,)A r z e θθ= (由A 具有轴对称得到) 所以B A =?? A e θθ=?? 在柱坐标系中,由公式1()()11()()r r z z z r r z r z f f e f e f e f f f r z f f f z r f f rf r r r θθθ θθθθ ?=++??????=-?????????=-?????? ???=-???? -得 B A =?? 1()r z f e rf e z r r θθ?? =-+?? 即r A B z θ ?=-?,1()z B rA r r θ? =? (1)先求矢势A 4L Idl A r μπ=? 一个电流为I ,半径为a 的线圆环周围空间产生的磁场,其矢势表示为 202220cos (,)42cos Ia A r z d r z a ar πθμ? ?π?=++-? 推广到截面为矩形的圆环线圈中 22 11202220 cos (,)4()2cos R z R z I r A r z d dz dr s r z z r r r πθμ? ?π?'''='''+-+-??? 其中S 为矩形截面的面积,12,R R 为矩形截面的两边距圆环中心的距离,12,z z 为矩形截面的上下面的z 轴坐标。 (二)数值模型离散化(均匀网格有限差分) (1)高斯方法计算三重积分(参考书:徐士良常用算法程序集第二版)

圆线圈和亥姆霍兹线圈的磁场

圆线圈和亥姆霍兹线圈的磁场 磁场测量是磁测量中最基本的容,最常用的测量方法有三种;感应法、核磁共振法和霍尔效应法。本实验要求学生用霍尔效应法测量载流亥姆霍兹线圈的磁感应强度沿轴线的分布。 〔实验目的〕 1.掌握弱磁场测量原理及如何用集成霍尔传感器测量磁场的方法。 2.验证磁场迭加原理。 3.学习亥姆霍兹线圈产生均匀磁场的特性。 〔实验原理〕 一、圆线圈 载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上磁场情况如图3.14.1所示。 根据毕奥-萨伐尔定律,轴线上某点的磁感应强度B 为 I N x R R B ?+?= 2 /322 2 0) (2μ (3.14.1) 式中I 为通过线圈的电流强度,N 为线圈匝数,R 线圈平均半径,x 为圆心到该点的距离,0μ为真空磁导率。而圆心处的磁感应强度0B 为 I N R B ?= 20 0μ (3.14.2) 轴线外的磁场分布情况较复杂,这里简略。

二、亥姆霍兹线圈 亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈,每一线圈N 匝,两线圈的电流方向一致,大小相同,线圈之间距离d 正好等于圆形线圈的平均半径R 。其轴线上磁场分布情况如图3.14.2所示,虚线为单线圈在轴线上的磁场分布情况。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,故在生产和科研中有较大的实用价值,也常用于弱磁场的计量标准。 设x 为亥姆霍兹线圈中轴线上某点离中心点O 处的距离,则亥姆霍兹线圈轴线上任一点的磁感应强度大小B '为 3/23/22222201222R R B N I R R x R x μ--????????????'=???++++-?????? ? ????????????????? (3.14.3) 在亥姆霍兹线圈轴线上中心O 处磁感应 强度大小'0B 为 003/2 85N I B R μ??'= (3.14.4) 三、双线圈 若线圈间距d 不等于R 。设x 为双线圈中轴线上某点离中心点O 处的距离,则双线圈轴线上任一点的磁感应强度大小B ''为 3/23/22222201222d d B N I R R x R x μ--????????????''=???++++-?????? ? ????????????????? (3.14.5) 四、霍尔传感器 1.霍尔传感器

矩形激励线圈的分析

矩形激励线圈的分析 摘要:本文由毕奥?D莎伐定律出发,首先讨论了由一定长度的线电流源和矩形环流源的磁感应强度分布,然后在此基础上,详尽的论述了基于体电流源的矩形线圈产生的磁场分布。 一、引言 载流线圈是大量电工设备中不可缺少的装置,是科学研究和工程问题中最常用的一种磁体,在线圈磁体的设计与研制中,常需要计算线圈的磁场分布。由于工程实际需要和研究问题方便,人们对轴对称线圈进行了大量而广泛的研究,取得了大量成果。在科学研究和工程设计中,矩形线圈的应用也是相当广泛的,但人们对矩形线圈的研究却很少,仅研究了长方形载流导体的磁场计算问题,而未真正涉及矩形线圈的磁场计算。 为了实现对弱磁场或者对不均匀磁场的测量,都需要一个激励源,以产生在一定体积范围内具有一定磁场强度(一般为几个nT到0.1mT)的匀强磁场。在实际运用中,用于产生匀强的装置很多,如螺线管、Helmholtz线圈、矩形线圈等,在本文设计的无损检测系统采用的是矩形线圈,本文将对矩形线圈产生匀强磁场的原理及计算方法进行详尽的分析。 二、具有一定长度带电直导线的磁场计算 根据毕奥?D莎伐定律,空间线电流源产生的磁场强度为:(1)式中: B?D空间点的磁感应强度,其方向垂直于直导线与空间点构成的平面; ?D真空导磁率(4p′10-7T×m/A); I?D导线的电流强度; l?D导线长度; R?D源点到场点的距离; eR?DR方向的单位矢量。 为了计算具有一定长度的电流源在其周围产生的磁场,建立如图1坐标系,并用毕奥?D 莎伐定律的积分形式:(2)

电流的方向为Ii (x方向),场点坐标为P(0,0,Z)=Zk,而导线上的点可以表述为 (x,Y,0)=xi+Yj,则有带入上式,利用计算可得: (3) (4) (5) (6) 对于一般的情况而言: ?D该空间点到带电导线的垂直距离,即|PQ|,; a?D导线底端到该空间点在导线上投影间的距离,即|QA|; b?D导线顶端到该空间点在导线上投影间的距离,即|QB|; Y?D 在XOY平面的投影,即|OQ|; Z?D 在XOZ平面的投影,即|OP|。这样空间点与其在导线和XOY平面的投影点构成一直角三角形DPOQ。

磁场的测定(霍尔效应法)汇总

霍尔效应及其应用实验(FB510A 型霍尔效应组合实验仪) (亥姆霍兹线圈、螺线管线圈) 实 验 讲 义 长春禹衡时代光电科技有限公司

实验一 霍尔效应及其应用 置于磁场中的载流体,如果电流方向与磁场垂直,则在垂直于电流和磁场的方向会产生一附加的横向电场,这个现象是霍普金斯大学研究生霍尔于1879年发现的,后被称为霍尔效应。如今霍尔效应不但是测定半导体材料电学参数的主要手段,而且利用该效应制成的霍尔器件已广泛用于非电量的电测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广泛的应用前景。掌握这一富有实用性的实验,对日后的工作将有益处。 【实验目的】 1.了解霍尔效应实验原理以及有关霍尔器件对材料要求的知识。 2.学习用“对称测量法”消除副效应的影响,测量试样的S H I ~V 和M H I ~V 曲线。 3.确定试样的导电类型。 【实验原理】 1.霍尔效应: 霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场H E 。如图1所示的半导体试样,若在X 方向通以电流S I ,在Z 方向加磁场B ,则在Y 方向即试样A A '- 电极两侧就开始聚集异号电荷而产生相应的附加电场。电场的指向取决于试样的导电类型。对图1(a )所示的N 型试样,霍尔电场逆Y 方向,(b )的P 型试样则沿Y 方向。即有 ) (P 0)Y (E )(N 0)Y (E H H 型型?>?< 显然,霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力H E e ?与洛仑兹力B v e ??相等,样品两侧电荷的积累就达到动态平衡,故有

载流圆线圈周围磁场分布

载流圆线圈周围磁场分布 孟雨 孟雨物理工程学院11级物理学类三班 Email:1240123245@https://www.sodocs.net/doc/0e15002992.html, 摘要:本文第一次在直角坐标系中直接从磁感应强度的计算公式毕奥-萨伐尔定律出发,精确求解了圆电流空间任一点磁场分布。并通过数值模拟,给出了圆电流周围磁场的空间分布情况。 关键词:载流圆线圈、椭圆积分、磁感应强度、数值模拟 0.引言 圆电流的磁场分布是电磁学中一个重要而典型的问题,不少学者进行求解此方面问题时一般采用矢势方法,而即使采用最为基本的毕奥-萨伐尔定律求解时,求解的也是简化后的磁场在固定平面内的分布,而非整个三维空间内的分布。究其原因,在于积分的复杂性。即使求解磁场在平面内的分布,也涉及复杂的椭圆积分,因此对于磁场在三维空间任意处的分布,很多学者避而不答。本文仅采用最为基本的毕奥-萨伐尔定律,通过一系列变量替换直接在直角系给出了磁场分布的级数形式解。 本文与已发文章《闭合载流导线周围磁感应强度的空间分布》5【】(物理学刊27期)、《一个重要公式在电磁学中的应用》6【】(物理学刊29期)同属姊妹篇。第一篇文章提出了解决 该问题的一般方法,并推广到任意形状的闭合载流线圈,同时作为例子计算了过垂直载流圆线圈环面中心直线上的磁感应强度。第二篇文章是对第一篇文章的进一步探索,运用椭圆积分精确求解了载流圆线圈在其所在整个平面的强度分布情况。本文是前两篇文章的更深一步探索,最终精确求解了载流圆线圈在空间任意处的分布情况。通过这三篇文章,希望给大家带来的不仅仅是问题的答案,更为重要的是将作者一步步探索问题的过程呈献给大家,希望能给大家未来的学习和研究带来帮助。 1.载流圆线圈磁感应强度 这里直接引用文章【5】、【6】中的结果:

磁场,感应计算题

稳恒磁场计算题 144.稳恒磁学计算题144、如下图所示,AB 、CD 为长直导线BC 为圆心在O 点的一段圆弧形导线,其半径为R .若通以 电流I ,求O 点的磁感应强度. 解:如图所示,O 点磁场由DC 、CB 、BA 三部分电流产生,其中: DC 产生 )21(4)2sin 4(sin 45cos 400 01-=-= R I R I B πμπ π πμ 方向向里 CB 产生 R I R I B 16224002 μμππ == 方向向里 BA 产生 03=B R I R I B B B B O 16)12(400321μπμ+-=++= 方向向里 145、如图所示,一载流导线中间部分被弯成半圆弧状,其圆心点为O ,圆弧半径为R 。若导线的流过电流I ,求圆心O 处的磁感应强度。 解:两段直电流部分在O 点产生的磁场 01=B 弧线电流在O 点产生的磁场 R I B 2202μπα= R I R I B B B O πα μπαμ42220 021== +=∴ 146、载流体如图所示,求两半圆的圆心点P 处的磁感应强度。

解:水平直电流产生 01=B 大半圆 产生 1 024R I B μ= 方向向里 小半圆 产生 2 034R I B μ= 方向向里 竖直直电流产生 2 044R I B πμ= 方向向外 4321B B B B B O +++=∴ )1 11(44442 210202 01 0R R R I R I R I R I B O πμπμμμ-+=- + = 方向向里 147、在真空中,有两根互相平行的无限长直导线相距0.1m ,通有方向相反的电流,I 1=20A,I 2=10A ,如图所示.试求 、解:取垂直纸面向里为正,如图设X 轴。 ) 1.0(102102)(2272010x x x x d I x I B --?=-+= -πμπμ 在电流1I 左侧,B 方向垂直纸面向外 在电流1I 、2I 之间,B 方向垂直纸面向里 在电流2I 右侧,当m x 2.0<时,B 方向垂直纸面向外 当m x 2.0>时,B 方向垂直纸面向里

亥姆霍兹线圈磁场实验

亥姆霍兹线圈磁场实验 实验名称:亥姆霍兹 日期: 2017.3.8 专业班级:环境工程163班 试验人: 李璐驿 学号:58021161000 指导老师: 钟双英 实验目的 (1) 学习感应法测量磁场的原理和方法; (2) 研究研究亥姆霍兹线圈周线上的磁场分布. 主要仪器 磁场测试仪、亥姆霍兹线圈架和亥姆霍兹磁场实验控制箱.工作温度10~35℃,相对湿度25%~75%. 两个励磁线圈各500匝,圆线圈的平均半径105R =mm,两线圈中心间距105mm.感应线圈距离分辨率0.5mm. 实验原理 一、 载流圆线圈与亥姆霍兹线圈 1、载流圆线圈磁场 半径为R 通以电流为I 的圆线圈,周线上磁场的公式为 ) (2222 320 X R R N I B += μ 式中0N 为线圈的匝数;x 为轴上某一点到圆心O 的距离;710410H m μπ-=??.本次实验取I=200mA. 2、亥姆霍兹线圈 两个相同线圈彼此靠近,使线圈上通以同向电流理论计算证明:线圈间距a 等于线圈半径R 时,两线圈合场在轴附近较大范围内是均匀的.这时线圈称为亥姆霍兹线圈,如图所示. 实验内容 1. 测量亥姆霍兹线圈周线上的磁场分布 2. 验证公式cos m m NS B εωθ= 3. *研究励磁电流频率改变对磁场强度的影响 数据记录与处理: 表 1

X/mm -50 -45 -40 -35 -30 -25 -20 B/mT 0.422 0.447 0.468 0.489 0.508 0.528 0.546 X/mm -15 -10 -5 0 5 10 15 B/mT 0.558 0.568 0.576 0.580 0.579 0.574 0.565 X/mm 20 25 30 35 40 45 50 B/mT 0.555 0.540 0.520 0.502 0.481 0.464 0.436 单线圈 0.700 0.600 0.500 0.400 0.300 0.200 0.100 0.000 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 表二 X/mm -100 -90 -80 -70 -60 -50 -40 B/mT 0.553 0.615 0.672 0.723 0.761 0.805 0.835 X/mm -30 -20 -10 0 10 20 30 B/mT 0.846 0.855 0.853 0.853 0.850 0.846 0.844 X/mm 40 50 60 70 80 90 100 B/mT 0.828 0.802 0.764 0.722 0.667 0.602 0.548

实验3.09磁场分布

实验3.9 磁场分布测量 磁场的测量有许多方法,常用的有电磁感应法,半导体(霍耳效应)探测法和核磁共振法。本实验使用的是电磁感应法测量磁场,它是以简单的线圈作为测量元件,利用电磁感应原理直接测量亥姆霍兹(Helmholtz )线圈产生的磁场。值得一提的是本实验所使用的亥姆霍兹线圈在物理研究中有许多用处,如产生磁共振,消除地磁的影响等,获1997年诺贝尔物理奖的实验中,就有若干对这种线圈,因此熟悉这种线圈产生的磁场是很有意义的。 3.9.1实验目的 1.学习电磁感应法测磁场的原理; 2.学习用探测线圈测量载流线圈的磁场的方法; 3.验证矢量叠加的原理; 4.了解亥姆霍兹线圈磁场的特点。 3.9.2实验原理 3.9.2.1电磁感应法测磁场 当导线中通有变化电流时,其周围空间必然产生变化磁场。处在变化磁场中的闭合回路,由于通过它的磁通量发生变化,回路中将有感应电动势产生。通过测量此感应电动势的大小就可以计算出磁场的量值。这就是感应法测磁场的实质。 因为磁场是一矢量场,所以测量磁场的任务,就是要测出场中各点的磁感应强度的大小和方向。 为叙述简单起见,先假定有一个均匀的交变磁场,其量值随时间t 按正弦规律变化 t B B m i ωsin = 式中B m 为磁感应强度的峰值,其有效值记作B ,ω为角频率。再假设置于此磁场中的探测线圈T (线圈面积为S ,共有N 匝)的法线n 与B m 之间的夹角为θ,如图3.9.1所示,则通过T 的总磁通φi 为 θωφcos sin t NSB N m i i =?=B S 由于磁场是交变的,因此在线圈中会出现感 应电动势,其值为 θωωφ cos cos t B NS dt d e m i -=-= (3.9.1) 如果把T 的两条引线与一个交流数字电压表连接,交流数字电压表的读数U 表示被测量值的有效值(rms ),当其内阻远大于探测线圈的电阻时有 θωcos rms B NS e U == (3.9.2) 从(3.9.2)式可知,当N ,S ,ω,B 一定时,角θ越小,交流数字电压表读数越大。当θ =0时,交流数字电压表的示值达最大值U max ,(3.9.2)式成为 ω NS U B max = (3.9.3) 测量时,把探测线圈放在待测点,用手不断转动它的方位,直到数字电压表的示值达到最大为止。把所得读数U max 代入(3.9.3)式就可算出该点的磁场值。 图3.9.1感应法测磁场原理图

圆线圈与亥姆霍兹线圈轴线上磁场的测量

实验15 圆线圈与亥姆霍兹线圈轴线上磁场的测量 磁场是物理学中一个基本的问题,在实际工作中也会经常遇到要对磁场进行测量。稳恒电流所产生的磁场,由于电流的分布各不相同,因而磁场分布也就会有各种各样的形式。测量磁场时,所采用的方法各有不同。本实验是采用霍尔传感器对圆线圈和亥姆霍兹线圈通以稳恒电流时所产生的磁场进行测量。 [实验目的] 1.了解霍尔传感器测量磁场的原理与方法。 2.测量圆线圈和亥姆霍兹线圈轴线上磁场的分布,进一步加强对磁场叠加原理的认识。 [实验原理] 如果在一个半径为R 的圆形线圈中,通以电流I ,则在圆电流轴线上到圆心距离为x 的任一点处之磁感强度为 2 32 2 2 02/) R x (IR B += μ 其方向沿轴线向外。当x=0,即在圆线圈中心点时, R I B 20μ= 若在一条直线上有两个完全相同共轴密绕的圆形短线圈,两线圈半径都是R ,线圈匝数均为N ,且两线圈间距亦为R ,通有大小和方向都相同的电流。在两线圈间轴线中点a 附近,磁场叠加结果基本保持均匀。这就是亥姆霍兹线圈的特点。 以轴线为x 轴,且以左边圆电流的圆心为原点,于是两圆电流在轴线上任一点产生的磁场B 1和B 2方向均沿着轴正向,如图1。 因两两线圈间轴线上任一点处的磁感强度分布函数为 ]] )x R (R [)R x ([ NIR B B B //2 32223222 021112 ?+++= +=μ 对轴线中点a ,x=R/2,即有 R NI B /R 0232 58μ= 在a 点附近,各点的B 值与中点比较相对误差非常小(<1%),说明磁场足够均匀。因此,亥姆霍兹线圈成为能提供良好均匀磁场的常用设备。 [实验仪器] 实验所用仪器为FD-HM-1型新型圆线圈和亥姆霍兹线圈磁场测定仪,其主要组成部 图1 亥姆霍兹线圈

磁场计算练习

1.如图所示,矩形线圈匝数N=100匝,ab=30 cm,ad=20 cm,匀强磁场磁感应强度B=0.8 T,绕轴OO′从图示位置开始匀速转动,角速度ω=100π rad/s,试求: (1)穿过线圈的磁通量最大值Φm为多大?线圈转到什么位置时取得此值? (2)线圈产生的感应电动势最大值E m为多大?线圈转到什么位置时取得此值? (3)写出感应电动势e随时间变化的表达式,并在图乙中作出图象. 2.如图所示,有一倾斜的光滑平行金属导轨,导轨平面与水平面的夹角为,导轨间距为L,接在两导轨间的电阻为R,在导轨的中间矩形区域内存在垂直斜面向上的匀强磁场,磁感应强度大小为B,一直量为m、有效电阻为r的导体棒从距磁场上边缘d处释放,整个运动过程中,导体棒与导轨接触良好,且始终保持与导轨垂直。不计导轨的电阻,重力加速度为g。 (1)求导体棒刚进入磁场时的速度; (2)求导体棒通过磁场过程中,通过电阻R的电荷量q; (3)若导体棒刚离开磁场时的加速度为0,求异体棒通过磁场的过程中回路中产生的焦耳热Q。

3.如图所示是一个交流发电机的示意图,线框处于匀强磁场中,已知,匀强磁场的磁感应强度,线圈的匝数,线圈的总电阻,外电路负载电阻,线圈以, 电表是理想电表求 (1)电压表的示数? (2)从图示位置开始经时感应电动势的瞬时值多大? (3)从图示位置开始经的这段时间通过R的电量? (4)线圈匀速转动一周外力做多少功? 4.如图所示,平行导轨倾斜放置,倾角θ=37°,匀强磁场的方向垂直于导轨平面向上,磁感应强度B=T,质量为m=1kg的金属棒ab垂直放在导轨上,ab与导轨平面间的动摩擦因数μ=0.25。ab的电阻r=1Ω,平行导轨间的距离L=1m, R1 =R2=4Ω,导轨电阻不计,ab由静止开始下滑运动x=3.5m后达到匀速。sin37°=0.6,cos37°=0.8。求: (1)ab在导轨上匀速下滑的速度多大? (2)ab由静止到匀速过程中电路产生的焦耳热为多少?

实验十一亥姆霍兹线圈磁场测定全解

实验十一 亥姆霍兹线圈磁场测定 一、概述 亥姆霍兹线圈磁场测定仪是综合性大学和工科院校物理实验教学大纲重要实验之一。该实验可以学习和掌握弱磁场测量方法,证明磁场迭加原理,根据教学要求描绘磁场分布等。传统的亥姆霍兹线圈磁场测量实验,一般用探测线圈配以指针交流电压表测量磁感应强度。由于线圈体积大,指针式交流电压表等级低等原因,测量的误差较大。 近年来,在科研和工业中,集成霍耳传感器由于体积小,测量准确度高,易于移动和定位,所以被广泛应用于磁场测量。例如:A SS 95型集成霍耳传感器就是一种高灵敏度的优质磁场传感器,它的体积小(面积mm mm 34?,厚mm 2),其内部具有放大器和剩余电压补偿电路,采用此集成霍耳传感器(配直流数字电压表)制成的高灵敏度毫特计,可以准确测量mT 000.20~的磁感应强度,其分辨率可达 T 6101-?。因此,用它探测载流线圈及亥姆霍兹线圈的磁场,准确度比用探测线圈高 得多。用高灵敏度集成霍耳传感器测量T T 35102101--??~弱交、直流磁场的方法已在科研与工业中广泛应用。 本仪器采用先进的95A 型集成霍耳传感器作探测器,用直流电压表测量传感器输出电压,探测亥姆霍兹线圈产生的磁场,测量准确度比探测线圈优越得多,仪器装置固定件牢靠,实验内容丰富。 本仪器经复旦大学物理实验教学中心使用,取得良好的教学效果。 二、原理 (1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点的磁感应强度为: I N x R R B ?+?= 2 /3222 0)(2μ (1) 式中0μ为真空磁导率,R 为线圈的平均半径,x 为圆心到该点的距离,N 为线圈匝数,I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为: I N R B ?= 20 0μ (2)

精编【激励与沟通】矩形激励线圈的分析

【激励与沟通】矩形激励线圈 的分析 xxxx年xx月xx日 xxxxxxxx集团企业有限公司 Please enter your company's name and contentv

矩形激励线圈的分析 摘要:本文由毕奥?D莎伐定律出发,首先讨论了由一定长度的线电流源和矩形环流源的磁感应强度分布,然后在此基础上,详尽的论述了基于体电流源的矩形线圈产生的磁场分布。 一、引言 载流线圈是大量电工设备中不可缺少的装置,是科学研究和工程问题中最常用的一种磁体,在线圈磁体的设计与研制中,常需要计算线圈的磁场分布。由于工程实际需要和研究问题方便,人们对轴对称线圈进行了大量而广泛的研究,取得了大量成果。在科学研究和工程设计中,矩形线圈的应用也是相当广泛的,但人们对矩形线圈的研究却很少,仅研究了长方形载流导体的磁场计算问题,而未真正涉及矩形线圈的磁场计算。 为了实现对弱磁场或者对不均匀磁场的测量,都需要一个激励源,以产生在一定体积范围内具有一定磁场强度(一般为几个nT到0.1mT)的匀强磁场。在实际运用中,用于产生匀强的装置很多,如螺线管、Helmholtz线圈、矩形线圈等,在本文设计的无损检测系统采用的是矩形线圈,本文将对矩形线圈产生匀强磁场的原理及计算方法进行详尽的分析。

二、具有一定长度带电直导线的磁场计算 根据毕奥?D莎伐定律,空间线电流源产生的磁场强度为:(1) 式中:B?D空间点的磁感应强度,其方向垂直于直导线与空间点构成的平面; ?D真空导磁率(4p′10-7T×m/A);I?D导线的电流强度;l?D导线长度; R?D源点到场点的距离;eR?DR方向的单位矢量。 为了计算具有一定长度的电流源在其周围产生的磁场,建立如图1坐标系,并用毕奥?D莎伐定律的积分形式:(2) 电流的方向为Ii (x方向),场点坐标为P(0,0,Z)=Zk,而导线上的点可以表述为(x,Y,0)=xi+Yj,则有带入上式,利用计算可得: (3) (4) (5) (6) 对于一般的情况而言: ?D该空间点到带电导线的垂直距离,即|PQ|,;

《大学物理实验》2-11实验十一 亥姆霍兹线圈磁场测定

实验十一 圆线圈和亥姆霍兹线圈磁场测定 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N 匝的圆环电流。 当它们的间距正好等于其圆环半径R 时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1.学习和掌握弱磁场测量方法, 2.验证磁场迭加原理, 3.描绘载流圆线圈和亥姆霍兹线圈轴线磁场分布。 二、实验原理 (1)根据毕奥—萨伐尔定律,载流线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点(如图1所示)的磁感应强度为: 2 0223/2 2()R B N x μ?= +I ? (1) 式中0μ为真空磁导率, R 为线圈的平均半径,x 为圆心到该点P 的距离,为线圈匝数,N I 为通过线圈的电流强度。因此,圆心处的磁感应强度0B 为: I N B ?= 200μ (2) (2)亥姆霍兹线圈是一对彼此平行且连通的共轴圆形线圈(如图2所示),两线圈内的电流方向一致,大小相同,线圈之间的距离正好等于圆形线圈的半径d R 。这种线圈的特点是能在其公共轴线中点附近产生较广的均匀磁场区,设x 为亥姆霍兹线圈中轴线上

某点离中心点处的距离,则亥姆霍兹线圈轴线上任意一点的磁感应强度为: O ?? ???????????????????????++??????????????++=??2/3222/322 202221x R R x R R NIR B μ (3) 而在亥姆霍兹线圈上中心O 处的磁感应强度B 为: ' 00 3/285N I B R μ??= (4) 三、实验仪器 FD—HM—Ⅰ圆线圈和亥姆霍兹线圈实验平台, 毫特斯拉计,三位半数字电流表及直流稳流电源组合仪一台;传感器探头, 电源线 1根,连接线 4根,不锈钢直尺 1把,铝合金靠尺1把。 图3 实验装置图 1-毫特斯拉计,2-电流表,3-直流电流源,4-电流调节旋钮, 5-调零旋钮,6-传感器插头, 7-固定架, 8-霍耳传感器, 9-大理石台面, 10、线圈, 注:A、B、C、D 为接线柱 四、实验内容和步骤 1.仪器调试 (1)开机后应预热10分钟,再进行测量; (2)将两个线圈和固定架按照图3所示简图安装。大理石台面(图3中9所示有网格线的平面)应该处于线圈组的轴线位置。根据线圈内外半径及沿半径方向支架厚度,

圆线圈磁场的测绘[1]

圆线圈磁场的测绘 小的通电线圈称磁偶极子,是研究磁场性质的有用工具,是磁学中典型的物理模型。通常用以提供磁场的螺线管也就是多个线圈磁场叠加,各种形状线圈在磁场中的受力都基于磁偶极子受磁力矩的原理及特点来研究,因而研究圈线圈磁场分布有重要的实际意义。 磁场和以磁场为基础的器件、仪器被广泛用于科学研究和工业的各种部门,许多现代技术如宇宙航行、高能加速器、计算机、核磁共振、超导、生物医学、地磁学等,都与磁场测量有关联。 实验目的 1、研究载流线圈轴线上磁场的分布,加深对毕奥—萨伐尔定律的理解; 2、掌握感应法测磁场的原理和方法; 3、考察亥姆霍兹线圈的磁场均匀区,验证磁场叠加原理。 实验仪器 亥姆霍兹线圈,低频信号发生器,MF-20型万用表,探测线圈,直角坐标纸等。 实验原理 一、载流圆线圈轴线上的磁场分布 设圆线圈半径为R,匝数为N,在同电流I时,线圈轴线上一点P的磁感应强度B等于 (1) 式中为真空磁导率,x为P点坐标,原点在线圈中心。 二、亥姆霍兹线圈轴线上的磁场分布 亥姆霍兹线圈是由一对半径R、匝数N均相同的圆线圈组成,两线圈平行共轴、半径R 和匝数N均相等,线圈间距离正好为半径R。取二线圈连线的中心为坐标原点O,则当给二线圈通以同方向、等大小的电流I时,它们对轴线上任一点P产生的磁场方向将一致,P 点的磁场为两线圈分别在该处产生的磁场的叠加,大小为

(2)在处 (3) 在和处,Bx的相对差异约为0.012%,因此,在原点O附近的磁场非常均 匀。 三、磁场的测量 磁感应强度是一个矢量,对它的测量既要测大小,又要测方向。测磁场的方法很多,在此实验中是用试探线圈去测交变磁场。 如图1所示:给一圆线圈(在此使用亥姆霍兹线圈的一支)通以某一频率的正弦交流电。 将探测线圈接到晶体管万用表的交流毫伏档。用交流毫伏表测量磁感应强度时,显示值U 为磁感应强度的有效值,轴线上任一点x处测得的U值与圆线圈中心x=0处测得的U0之比

例1长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场中垂

例1长为a宽为b的矩形线圈,在磁感强度为B的匀强磁场 中垂 【错解】t=0时,线圈平面与磁场平行、磁通量为零,对应的磁通量的变化率也为零,选A。 【错解缘故】 磁通量Φ=BS ⊥BS〔S ⊥ 是线圈垂直磁场的面积〕,磁通量的变化ΔΦ=Φ 2 -Φ 1 , 两者的物理意义截然不同,不能理解为磁通量为零,磁通量的变化率也为零。 【分析解答】 实际上,线圈在匀强磁场中绕垂直于磁场的轴转动时,产生交变电动势e=εm cosωt=Babωcosωt。当t=0时,cosωt=1,尽管磁通量 可知当电动势为最大值时,对应的磁通量的变化率也最大,即 【评析】 弄清概念之间的联系和区别,是正确解题的前提条件。在电磁感应中要弄清磁通量Φ、磁通量的变化ΔΦ以及磁通量的变化率ΔΦ/Δt之间的联系和区别。 例2在图11-1中,CDEF为闭合线圈,AB为电阻丝。当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极?

【错解】 当变阻器的滑动头在最上端时,电阻丝AB因被短路而无电流通过。由此可知,滑动头下移时,流过AB中的电流是增加的。当线圈CDEF中的电流在G处产生的磁感强度的方向是“·”时,由楞次定律可知AB中逐渐增加的电流在G处产生的磁感强度的方向是“×”,再由右手定那么可知,AB中的电流方向是从A 流向B,从而判定电源的上端为正极。 【错解缘故】 楞次定律中“感生电流的磁场总是要阻碍引起感生电流的磁通量的变化”,所述的“磁通量”是指穿过线圈内部磁感线的条数,因此判断感应电流方向的位置一般应该选在线圈的内部。 【分析解答】 当线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,它在线圈内部产生磁感强度方向应是“×”,AB中增强的电流在线圈内部产生的磁感强度方向是“·”,因此,AB中电流的方向是由B流向A,故电源的下端为正极。 【评析】 同学们往往认为力学中有确定研究对象的问题,忽略了电学中也有选择研究对象的问题。学习中应该注意这些研究方法上的共同点。 例3一个共有10匝的闭合矩形线圈,总电阻为10Ω、面积为0.04m2,置于水平面上。假设线框内的磁感强度在0.02s内,由垂直纸面向里,从1.6T均匀减少到零,再反向均匀增加到2.4T。那么在如今间内,线圈内导线中的感应电流大小为______A,从上向下俯视,线圈中电流的方向为______时针方向。 【错解】 由于磁感强度均匀变化,使得闭合线卷中产生感应电流,依照法拉第电磁感应定律,感应电动势

驱动高频亥姆霍兹线圈的三种方法探讨研究

驱动高频亥姆霍兹线圈的三种方法探讨研究 诸如磁场感应、校准和科学实验的许多应用都经常用高频亥姆霍兹线圈来产生均匀但随时间变化的高频磁场。产生这样的磁场需要用到高频亥姆霍兹线圈驱动器。因为磁场密度正比于电流,所以为了产生大的磁场,需要产生大的电流。然而,在高频情况下线圈阻抗也变成高阻抗了。 对于一个给定的驱动器电压幅度,线圈电流反比于线圈阻抗。因此影响磁场的两个相反因素是电流和频率。实现高频磁场是很困难的。本文讨论了三种帮助高频亥姆霍兹线圈产生强磁场的技术。 高频亥姆霍兹线圈基础 亥姆霍兹线圈是因德国物理学家Hermann von Helmholtz而命名的,由两个完全相同且并行放置的电磁线圈组成,这两个线圈中心在同一轴线上,就像镜像一样,如图1所示。当电流以相同方向经过这两个高频亥姆霍兹线圈时,就会在线圈内的三维空间内产生一个高度均匀的磁场。这些亥姆霍兹线圈经常用于抵消背景(地球)磁场、测量和校准,以及电子设备敏感性测试中的磁场。 图1:单轴高频亥姆霍兹线圈由一对半径为R、间距等于R的两个线圈组成。 亥姆霍兹线圈的设计和制造 高频亥姆霍兹线圈是由两个线圈搭建而成的。因为两个磁性线圈设计成完全相同,因此当线圈半径等于间隔距离时就能产生均匀的磁场。这两个线圈以串联的方式连接在一起,因此给它们馈送的电流相同,从而产生两个相同的磁场。这两个磁场叠加在一起就会在两个并行线圈中心的圆柱形空间中产生均匀的磁场。 这个圆柱形空间的均匀磁场约等于25%的线圈半径(R),长度等于两个线圈之间间距的50%。高频亥姆霍兹线圈可以做成1、2或3轴。多轴磁性线圈可以在亥姆霍兹线圈对内部的三维空间内产生任意方向的磁场。最常见的高频亥姆霍兹线圈是圆形的。方形的亥姆霍兹线圈也经常使用。

亥姆霍兹线圈磁场 南昌大学 物理实验(可打印修改) (2)

南昌大学物理实验报告 课程名称:普通物理实验(1) 实验名称:亥姆霍兹线圈磁场 学院:理学院专业班级:应用物理学152班学生姓名:学号: 实验地点:基础实验大楼B212 座位号:26 实验时间:第七周星期四上午十点开始

一、实验目的: 1.学习和掌握霍尔效应原理测量磁场的方法。 2.测量载流圆线圈和亥姆霍兹线圈轴线上的磁场分布。 二、实验原理: 1.载流圆线圈与亥姆霍兹线圈的磁场(1)载流圆线圈磁场 根据比奥-萨伐尔定律,载流圆线圈在轴线(通过圆心并与线圈平面垂直的直线)上某点磁感应强度B 为 (1) 2 3222 00)(2x R IR N B += μ式中为真空磁导率,R 为线圈的平均半径,为圆线圈的匝数,I 通过线圈的电流x 为轴线上某H/m 10π47-0?=μ0N 一点到圆心O 的距离.因此它在轴线上磁场分布图如图(1)所示。 (2)亥姆霍兹线圈 所谓亥姆霍兹线圈是两个相同的圆线圈,彼此平行且共轴,通以同方向电流I ,理论计算证明:当线圈间距a 等于线圈半径R 时,两线圈合磁场在轴线上(两线圈圆心连线)附近比较大范围内是均匀的,如图(2)所示.这种均匀磁场在工程运用和科学实验中应用十分广泛。

1.测量圆电流线圈轴线上磁场的分布 (1)仪器使用前,请先开机预热5min接好电路,调零. (2)调节磁场实验仪的输出功率,使励磁电流有效值为I=200mA,以圆电流线圈中心为坐标原点,每隔10.0 B mm测一个值,测量过程中注意保持励磁电流值不变,记录数据并作出磁场分布曲线图. m 2.测量亥姆霍兹线圈轴线上磁场的分布 (1)关掉电源,把磁场实验仪的两组线圈串联起来(注意极性不要接反),接到磁场测试仪的输出端钮,调零. (2)调节磁场测试仪的输出功率,使励磁电流有效值仍为I=200mA,以两个圆线圈轴线上的中心点为坐标原点,B 每隔10.0 mm测一个值.记录数据并作出磁场分布曲线图. m 五、实验数据与处理: 1.圆电流线圈轴线上磁场分布的测量数据(注意坐标原点设在圆心处,要求列表记录,表格中包括测点位置,并在表格中表示出各测点对应的理论值),在坐标纸上画出实验曲线。 ≈ Bmax时,记录x53.0mm x/mm010******** △x/mm-53-43-33-23-13-3 Bm/mT 测量值0.4190.4620.5020.5360.5550.564 Bm/mT 标准值0.4250.4740.5190.5570.5840.597 Bm/mT 误差值0.0060.0120.0170.0210.0290.033 x/mm60708090100110 △x/mm71727374757 Bm/mT 测量值0.5560.5330.5000.4600.4150.368 Bm/mT 标准值0.5940.5750.5440.5020.4550.406 Bm/mT0.0380.0420.0440.0380.0400.038

亥姆霍兹线圈磁场测定-实验报告

开放性实验实验报告—— 亥姆霍兹线圈磁场测定 姓名学号班级 亥姆霍兹线圈是一对相同的、共轴的、彼此平行的各有N匝的圆环电流。当它们的间距正好等于其圆环半径R时,称这对圆线圈为亥姆霍兹线圈。在亥姆霍兹线圈的两个圆电流之间的磁场比较均匀。在生产和科研中经常要把样品放在均匀磁场中作测试,利用亥姆霍兹线圈是获得一种均匀磁场的比较方便的方法。 一、实验目的 1. 熟悉霍尔效应法测量磁场的原理。 2. 学会亥姆霍兹磁场实验仪的使用方法。 3. 测量圆线圈和亥姆霍兹线圈上的磁场分布,并验证磁场的叠加原理 二、实验原理 同学们注意,根据自己的理解,适当增减,不要太多,有了重点就可以了。 1.霍尔器件测量磁场的原理 图3—8—1 霍尔效应原理

如图3—8—1所示,有-N型半导体材料制成的霍尔传感器,长为L,宽为b,厚为d,其四个侧面各焊有一个电极1、2、3、4。将其放在如图所示的垂直磁场中,沿3、4两个侧面通以电流I,电流密度为J,则电子将沿负J方向以速度运动,此电子将受到垂直方向磁场B的洛仑兹力 作用,造成电子在半导体薄片的1测积累过量的负电荷,2侧积累过量的正电荷。因此在薄片中产生了由2侧指向1侧的电场,该电场对电子的作用力,与反向,当两种力相平衡时,便出现稳定状态,1、2两侧面将建立起稳定的电压,此种效应为霍尔效应,由此而产生的电压叫霍尔电压,1、2端输出的霍尔电压可由数显电压表测量并显示出来。 如果半导体中电流I是稳定而均匀的,则电流密度J的大小为

(3—8—1) 式中b为矩形导体的宽,d为其厚度,则bd为半导体垂直于电流方向的截面积。 如果半导体所在范围内,磁场B也是均匀的,则霍耳电场也是均匀的,大小为 (3—8—2) 霍耳电场使电子受到一与洛仑兹力F m相反的电场力F e,将阻止电子继续迁移,随着电荷积累的增加,霍耳电场的电场力也增大,当达到一定程度时,F m与F e大小相等,电荷积累达到动态平衡,形成稳定的霍耳电压,这时根据F m=F e有 (3—8—3) 将(3—8—2)式代入(3—8—3)式得 (3—8—4) 式中、容易测量,但电子速度难测,为此将变成与I有关的参数。根据欧姆定理电流密度,为载流子的浓度,得,故有 (3—8—5) 将(3—8—5)式代入(3—8—4)式得

相关主题