搜档网
当前位置:搜档网 › 空压机变频恒压供气控制系统的设计

空压机变频恒压供气控制系统的设计

空压机变频恒压供气控制系统的设计
空压机变频恒压供气控制系统的设计

空压机变频恒压供气控制系统的设计

来源:中国论文下载中心 [ 07-05-14 14:08:00 ] 作者:周少清编辑:studa20

1 引言

空压机在工业生产中有着广泛地应用。在供水行业中,它担负着为水厂所有气动元件,包括各种气动阀门,提供气源的职责。因此它运行的好坏直接影响水厂生产工艺。

空压机的种类有很多,但其供气控制方式几乎都是采用加、卸载控制方式。例如我厂使用的南京三达活塞式空压机、美国寿力螺杆压缩机和Atlas螺杆式空压机都采用了这种控制方式。根据我们多年的运行经验,该供气控制方式虽然原理简单、操作简便,但存在能耗高,进气阀易损坏、供气压力不稳定等诸多问题。随着社会的发展和进步,高效低耗的技术已愈来愈受到人们的关注。在空压机供气领域能否应用变频调速技术,节省电能同时改善空压机性能、提高供气品质就成为我们关心的一个话题。结合生产实际,我们选择了一台美国寿力LS-10型固定式螺杆空压机进行了研究。

2 空压机加、卸载供气控制方式简介

作者以美国寿力LS-10型固定式螺杆空压机电控原理图(如图3所示)为例,对加、卸载供气控制方式进行简单介绍。

SA1转至自动位置,按下起动按钮SB2,KT1线圈得电,其瞬时闭合延时断开的动合触点闭合,KM3和KM1线圈得电动作压缩机电机开始Y形起动;此时进气控制阀YV1得电动作,控制气体从小储气罐中放出进入进气阀活塞腔,关闭进气阀,使压缩机从轻载开始起动。当KT达到设定时间(一般为6秒后)其延时断开的动断触点断开,延时闭合的动合触点闭合,KM3线圈断电释放,KM2线圈得电动作,空压机电机从Y 形自动改接成△形运行。此时YV1断电关闭,从储气罐放出的控制气被切断,进气阀全开,机组满载运行。(注:进气控制阀YV1只在起动过程起作用,而卸载控制阀YV4却在起动完毕后起作用。) 若所需气量低于额定排气量,排气压力上升,当超过设定的最小压力值Pmin(也称为加载压力)时,压力调节器动作,将控制气输送到进气阀,通过进气阀内的活塞,部分关闭进气阀,减少进气量,使供气与用气趋于平衡。当管线压力继续上升超过压力调节开关(SP4)设定的最大压力值Pmax(也称为卸载压力)时,压力调节开关跳开,电磁阀YV4掉电。这样,控制气直接进入进气阀,将进气口完全关闭;同时,放空阀在控制气的作用下打开,将分离罐内压缩空气放掉。

当管线压力下降低于Pmin时,压力调节开关SP4复位(闭合),YV4接通电源,这时通往进气阀和放空阀的控制气都被切断。这样进气阀重新全部打开,放空阀关闭,机组全负荷运行。

3 加、卸载供气控制方式存在的问题

3.1 能耗分析

我们知道,加、卸载控制方式使得压缩气体的压力在Pmin~Pmax之间来回变化。Pmin是最低压力值,即能够保证用户正常工作的最低压力。一般情况下,Pmax、Pmin之间关系可以用下式来表示:

Pmax=(1+δ)Pmin(1)

δ是一个百分数,其数值大致在10%~25%之间。

而若采用变频调速技术可连续调节供气量的话,则可将管网压力始终维持在能满足供气的工作压力上,即Pmin附近。

由此可知,在加、卸载供气控制方式下的空压机较之变频系统控制下的空压机,所浪费的能量主要在2个部分:

(1) 压缩空气压力超过Pmin所消耗的能量

在压力达到Pmin后,原控制方式决定其压力会继续上升(直到Pmax)。这一过程中必将会向外界释放更多的热量,从而导致能量损失。

另一方面,高于Pmin的气体在进入气动元件前,其压力需要经过减压阀减压至接近Pmin。这一过程同样是一个耗能过程。

(2) 卸载时调节方法不合理所消耗的能量

通常情况下,当压力达到Pmax时,空压机通过如下方法来降压卸载:关闭进气阀使电机处于空转状态,同时将分离罐中多余的压缩空气通过放空阀放空。这种调节方法要造成很大的能量浪费。

关闭进气阀使电机空转虽然可以使空压机不需要再压缩气体作功,但空压机在空转中还是要带动螺杆做回转运动,据我们测算,空压机卸载时的能耗约占空压机满载运行时的10%~15%(这还是在卸载时间所占比例不大的情况下)。换言之,该空压机10%的时间处于空载状态,在作无用功。很明显在加卸载供气控制方式下,空压机电机存在很大的节能空间。

3.2 其它不足之处

(1) 靠机械方式调节进气阀,使供气量无法连续调节,当用气量不断变化时,供气压力不可避免地产生较大幅度的波动。用气精度达不到工艺要求。再加上频繁调节进气阀,会加速进气阀的磨损,增加维修量和维修成本。

(2) 频繁采用打开和关闭放气阀,放气阀的耐用性得不到保障。

4 恒压供气控制方案的设计

针对原有供气控制方式存在的诸多问题,经过上述对比分析,本人认为可应用变频调速技术进行恒压供气控制。采用这一方案时,我们可以把管网压力作为控制对象,压力变送器YB将储气罐的压力P转变为电信号送给PID智能调节器,与压力设定值P0作比较,并根据差值的大小按既定的PID控制模式进行运算,产生控制信号送变频调速器VVVF,通过变频器控制电机的工作频率与转速,从而使实际压力P始终接近设定压力P0。同时,该方案可增加工频与变频切换功能,并保留原有的控制和保护系统,另外,采用该方案后,空压机电机从静止到旋转工作可由变频器来启动,实现了软启动,避免了启动冲击电流和启动给空压机带来的机械冲击。

具体的控制系统流程图如图1所示。

图1 恒压供气控制系统流程图

变频与工频电源的切换电路如图2所示; 空压机电控原理图如图3所示;变频调速控制系统接线图见图4。

5 系统元器件的选配及系统的安装与调试

5.1 元器件的选型

(1) 变频器

图2 变频和工频电源的切换电路

LS-10型固定式螺杆压缩机电机型号:LS286TSC-4,功率22kW,频率50Hz,额定电压380V,额定电流42A,4极,转速1470r/min,我们选用一台“台达牌”VFD300B43A型变频器。因为LS-10型空压机是一种大转动惯量负载,因此选用加大一级变频器(30kW),变频器的外部接线如图5所示。

a) 变频器的主要参数

l 输出:最大适用电机输出功率30kW,输出额定容量45.7kVA,输出额定电流60A,输出频率范围

0.10~400Hz,过载能力为额定输出电流的150%,运行60s,最大输出电压对应输入电源。

l 输入:3相,380~460V AC,50/60Hz,电压容许变动范围±10%,频率容许变动范围±5%。输入电流60A,采用强迫风冷。

(2) 该变频器的主要特点:

a) 采用了新一代电力元件IGBT作为驱动交流电动机的核心元件,应用高速微处理器实现正弦波脉宽调制(SPWM)技术,具有无传感器矢量控制及电压/频率(V/f)控制。

b) 配有RS-485接口,可与计算机联结,构成计算机监控、群控系统。

c) 自动转矩补偿。e) 禁止电机反转。

d) 自动调整加减速时间。f) 带过载(过热保护)。

(2) PID智能控制器

兰利牌PID智能控制器一个,型号:AL808,单路输入、输出,输出为4~20mA模拟信号,测量精度0.2%,厂家:深圳市亚特克电子有限公司。

(3) 压力变送器

压力变送器一个型号:DG1300-BZ-A-2-2,量程:0~1Mpa,输出4~20mA的模拟信号。精确度0.5%FS。厂家:广州森纳士压力仪器有限公司。

转贴于中国论文下载中心https://www.sodocs.net/doc/0e610036.html,

5.2 系统的安装与调试

图3 空压机电控原理图

图4 控制系统接线图

(1) 安装

控制柜安装在空压机房内,与原控制柜分离,但与压缩机之间的主配线不要超过30m。控制回路的配线采用屏蔽双绞线,双绞线的节距在15m以下。另外控制柜上装有换气装置,变频器接地端子按规定不与动力接地混用,以上措施增强了系统的稳定性、可靠性。

(2) 调试

a)变频器功能设定

00-09设定为00(V/f电压频率控制)

01-00最大操作频率:设定为50Hz(对应最大电压380V)

01-01最大频率:设定为50Hz(等于电机额定频率)

01-07上限频率:设定为48Hz

01-08下限频率:设定为40Hz

01-09第一加速时间:设定为10S

01-10第一减速时间:设定为10S

02-00设定为02,即由外部4~20mA输入(ACI)

02-01设定为01:运行指令由外部端子控制

02-02设定为00(以减速制动方式停止)

02-04设定为01:禁止反转

02-07设定为00:ACI断线时减速至0Hz

06-04设定为:150%(过载保护),其它功能遵照变频器出厂设定值。

b) PID参数的整定

由于用于控制变频器,根据在不允许输出信号频繁变化的应用系统中应选择PI调节方式原则,因此只能采用PI调节方式,以减少对变频器的冲击。

在对PID进行参数整定的过程中,我们首先根据经验法,将比例带设定在70%,积分时间常数设定在60s;为不影响生产,我们采取改变给定值的方法使压力给定值有个突变(相当于一个阶跃信号),然后观察其响应过程(即压力变化过程)。经过多次调整,在比例带P=40%,积分时间常数Ti=12s时,我们观察到压力的响应过程较为理想。压力在给定值改变5min左右(约一个多周期)后,振幅在极小的范围内波动,对扰动反应达到了预期的效果。

(3) 调试中其他事项

从图4可以看出,整套改造装置并不改变空压机原有控制原理,也就是说原空压机系统保护装置依然有效。并且工频/变频切换采用了电气及机械双重联锁,从而大大的提高了系统的安全、可靠性。

我们在调试过程中,将下限频率调至40Hz,然后用红外线测温仪对空压机电机的温升及管路的油温进行了长时间、严格的监测,电机温升约3~6℃之间,属正常温升范围,油温基本无变化(以上数据均为以原有工频运行时相比较)。所以40Hz下限频率运行对空压机机组的工作并无多大的影响。

图5 变频器的外部接线图

6 结束语

经过一系列的反复调整,最终系统稳定在40.5~42.5Hz的频率范围,管线压力基本保持在0.62Mpa,供气质量得到提高。改造后空压机的运行安全、可靠,同时达到了水厂用气的工艺要求。

参考文献

[1] 张燕宾. 变频调速应用实践[M]. 北京:机械工业出版社,2000.

[2] 吴忠智,黄立培,吴加林. 调速用变频器及配套设备选用指南[M]. 北京:机械工业出版社,2000.

[3] 袁任光. 交流变频调速器选用手册[M]. 广州:广东科技出版社,2002.

[4] 韩安荣. 通用变频器及其应用[M]. 北京:机械工业出版社,2000.

[5] 《变频器世界》杂志,2002年第3期、第4期.

[6]杨起行. 电动单元组合仪表[M]. 北京:机械工业出版社,1982

各种变频器恒压供水参数

安邦信AM300变频器供水参数表 F0.04=1 端子COM 与X1短接启动变频器 F0.02=30 加速时间 如启动过程中出现过流报警现象请加大此值 F0.03=30 减速时间 F0.05=5 PID 控制设定 闭环控制 F0.07=50 上限频率 F0.08=30 下限频率 F4.01=1 P 型机 F9.01= 键盘预置PID 给定 压力设定(100%对应压力表满量程)1Mpa (10公斤)压力 设定值40,则设定压力为4公斤 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 安邦信G7-P7系列变频器供水参数表 F9= 给定压力值(0—50对应压力表压力) F10= 1:外部端子0(本机监视) 3:外部端子1(远程监视) F11=0 本机键盘/远控键盘 F17= 下限频率,休眠启动模式下为休眠频率 F76= 运行监视功能选择 0:C00输出频率/PID 反馈 1:C01参考频率/PID 给定 6:C06机械速度(PID 模式下变频器输出频率) F80=1 PID 闭环模式有效 F87=4 比例P 增益 F88=0.2积分时间常数Ti F114= 休眠时间,10秒,0表示休眠关闭 F115= 唤醒频率,唤醒压力,此值要低于给定的压力值(小于F9)。需根据现场情况自行调整 F116= 0:G 型机 1:P 型机 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。

基于 PLC 和变频器控制的恒压供水系统设计

基于 PLC 和变频器控制的恒压供水系统设计 赵华军钟波 (广州铁路职业技术学院) 摘要:文章介绍一种基于三菱PLC 和变频器控制恒压供水系统,详细地介绍了硬件的构成和控制流程。系 统较好地解决高层建筑、工业等恒压供水需求。系统具有节能、工作可靠、自动控制程度高、经济易配置等优点。 关键词:变频器;PID;PLC;恒压供水 1 引言 目前,在城市供水系统中,还有很多高楼、生活 小区、边郊企业等采用高位水塔供水方式。这样,由 于用水量具有很大随机性,常常出现在用水高峰时供 水量很小甚至没有水用的问题;且采用高位水塔,很 容易造成自来水的二次污染问题。针对这一情况,本 文设计了一套基于变频器内置PID 功能的恒压供水 系统,采用了PLC 控制及交流变频调速技术对传统 水塔供水系统的技术改造。该系统根据用水量的变 化,经过压力传感器将水压变化情况反馈给系统,使 得系统能自动调节变频器输出频率,从而控制水泵转 速,调节输出数量,使得水量变化时可保持水压恒定; 可取代高位水塔或直接水泵加压供水方式,为城市供 水系统的建设提出了一条极具推广、应用的新途径[1]。 2 工作原理 本文采用的变频器是三菱FR-A540,该变频器内 置PID 控制功能;供水系统方案如图1 所示。 将通往用户供水管中的压力变化经传感器采集 到变频器,与变频器中的设定值进行比 较,根据变频器内置的PID 功能,进行数 据处理,将数据处理的结果以运行频率的 形式进行输出[2]。 当供水的压力低于设定压力,变频器 就会将运行频率升高,反之则降低,且可 根据压力变化的快慢进行差分调节。由于 本系统采取了负反馈,当压力在上升到接 近设定值时,反馈值接近设定值,偏差减小,PID 运算会自动减小执行量,从而降低变频器输 出频率的波动,进而稳定压力。 在水网中的用水量增大时,会出现“变频泵” 效率不够的情况,这时就需要增加水泵参与供水,通 过PLC 控制的交流接触器组负责水泵的切换工作; PLC 是通过检测变频器频率输出的上下限信号,来判 断变频器的工作频率,从而控制接触器组是否应该增 加或减小水泵的工作数量。

变频恒压供水控制系统

变频恒压供水控制系统 发表时间:2019-01-08T16:21:17.107Z 来源:《电力设备》2018年第24期作者:蒋正锋[导读] (四川理工技师学院四川成都 611130) 1、系统构成 整个系统由一台PLC,一台变频器,水泵机组(3台),一个压力传感器,低压电器及一些辅助部件构成。 2、系统硬件设计 2.1.1 PLC选型 本系统选用FX2N-32MR型PLC。 2.1.2 接线及I/O分配 2.3 变频器选型及接线 2.3.1 变频器选型 根据设计的要求,本系统选用FR-A740系列变频器。 2.3.2变频器的接线 变频器端子 PLC端子功能 STF Y7 电机正转 FU X2 增泵、减泵 OL X3 增泵、减泵 2.6系统主电路设计 系统主电路接线 3 系统的软件设计 (1)自动运行部分 LD M8002 SET M0 LD X015 CJ P0 LD M0 AND X000 RST M0 SET M2 SET M7 SET M8 1)启动1#泵 按下启动按钮,系统检测采用那种运行模式。如果按钮SB7没按,则使用自动运行模式。变频启动1#水泵。 LD M2 AND X002 RST M2 SET M1 SET M4 2)启动1#,2#泵: 接收到变频器上限信号,PLC通过这个上限信号后将1#水泵由变频运行转为工频运行,KM1断开KM0吸合,同时KM3吸合变频启动第2#水泵。 LD M1 AND M4 AND X003 RST M1 RST M4 SET M2 3)启动1#泵: 接到下限信号就关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。 LD M1 AND M3 AND M6 AND X003 RST M6 RST M3 SET M4 4)启动1#,2#泵: 输出的下限信号使PLC关闭KM5、KM2,开启KM3,2#水泵变频启动。 LD M1 AND M4 AND X003 RST M4 RST M1 SET M2 5)启动1#泵: 接到下限信号关闭KM3、KM0,吸合KM1,只剩1#水泵变频运行。

空压机变频恒压供气控制系统的设计

空压机变频恒压供气控制系统的设计 来源:中国论文下载中心 [ 07-05-14 14:08:00 ] 作者:周少清编辑:studa20 1 引言 空压机在工业生产中有着广泛地应用。在供水行业中,它担负着为水厂所有气动元件,包括各种气动阀门,提供气源的职责。因此它运行的好坏直接影响水厂生产工艺。 空压机的种类有很多,但其供气控制方式几乎都是采用加、卸载控制方式。例如我厂使用的南京三达活塞式空压机、美国寿力螺杆压缩机和Atlas螺杆式空压机都采用了这种控制方式。根据我们多年的运行经验,该供气控制方式虽然原理简单、操作简便,但存在能耗高,进气阀易损坏、供气压力不稳定等诸多问题。随着社会的发展和进步,高效低耗的技术已愈来愈受到人们的关注。在空压机供气领域能否应用变频调速技术,节省电能同时改善空压机性能、提高供气品质就成为我们关心的一个话题。结合生产实际,我们选择了一台美国寿力LS-10型固定式螺杆空压机进行了研究。 2 空压机加、卸载供气控制方式简介 作者以美国寿力LS-10型固定式螺杆空压机电控原理图(如图3所示)为例,对加、卸载供气控制方式进行简单介绍。 SA1转至自动位置,按下起动按钮SB2,KT1线圈得电,其瞬时闭合延时断开的动合触点闭合,KM3和KM1线圈得电动作压缩机电机开始Y形起动;此时进气控制阀YV1得电动作,控制气体从小储气罐中放出进入进气阀活塞腔,关闭进气阀,使压缩机从轻载开始起动。当KT达到设定时间(一般为6秒后)其延时断开的动断触点断开,延时闭合的动合触点闭合,KM3线圈断电释放,KM2线圈得电动作,空压机电机从Y 形自动改接成△形运行。此时YV1断电关闭,从储气罐放出的控制气被切断,进气阀全开,机组满载运行。(注:进气控制阀YV1只在起动过程起作用,而卸载控制阀YV4却在起动完毕后起作用。) 若所需气量低于额定排气量,排气压力上升,当超过设定的最小压力值Pmin(也称为加载压力)时,压力调节器动作,将控制气输送到进气阀,通过进气阀内的活塞,部分关闭进气阀,减少进气量,使供气与用气趋于平衡。当管线压力继续上升超过压力调节开关(SP4)设定的最大压力值Pmax(也称为卸载压力)时,压力调节开关跳开,电磁阀YV4掉电。这样,控制气直接进入进气阀,将进气口完全关闭;同时,放空阀在控制气的作用下打开,将分离罐内压缩空气放掉。 当管线压力下降低于Pmin时,压力调节开关SP4复位(闭合),YV4接通电源,这时通往进气阀和放空阀的控制气都被切断。这样进气阀重新全部打开,放空阀关闭,机组全负荷运行。 3 加、卸载供气控制方式存在的问题 3.1 能耗分析 我们知道,加、卸载控制方式使得压缩气体的压力在Pmin~Pmax之间来回变化。Pmin是最低压力值,即能够保证用户正常工作的最低压力。一般情况下,Pmax、Pmin之间关系可以用下式来表示: Pmax=(1+δ)Pmin(1) δ是一个百分数,其数值大致在10%~25%之间。 而若采用变频调速技术可连续调节供气量的话,则可将管网压力始终维持在能满足供气的工作压力上,即Pmin附近。 由此可知,在加、卸载供气控制方式下的空压机较之变频系统控制下的空压机,所浪费的能量主要在2个部分:

国内外各种变频器恒压供水参数设置以及远传压力表接线.doc

如对你有帮助,请购买下载打赏,谢谢! 安邦信AM300变频器供水参数表 F0.04=1 端子COM 与X1短接启动变频器 F0.02=30 加速时间 如启动过程中出现过流报警现象请加大此值 F0.03=30 减速时间 F0.05=5 PID 控制设定 闭环控制 F0.07=50 上限频率 F0.08=30 下限频率 F3.05=1 停机方式选择 自由停车 F4.00=1 P 型机 F9.01= 键盘预置PID 给定 压力设定(100%对应压力表满量程)1Mpa (10 公斤)压力设定值40,则设定压力为4公斤 F0.12=1 恢复出厂设置 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 安邦信G7-P7系列变频器供水参数表 F9= 给定压力值(0—50对应压力表压力) F10= 1:外部端子0(本机监视) 3:外部端子1(远程监视) F11=0 本机键盘/远控键盘 F16=50 上限频率 F17= 下限频率,休眠启动模式下为休眠频率 F28=30 加速时间 F29=30 减速时间 F74=1 自由停车 F76= 运行监视功能选择 0:C00输出频率/PID 反馈 1:C01参考频率/PID 给定 6:C06机械速度(PID 模式下变频器输出频率) F80=1 PID 闭环模式有效 F87=4 比例P 增益 F88=0.2积分时间常数Ti F114= 休眠时间,10秒,0表示休眠关闭 F115= 唤醒频率,唤醒压力,此值要低于给定的压力值(小于F9)。需根据现场情况自行调整 F116= 0:G 型机 1:P 型机 F66=1 恢复出厂设置 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 调试 在试运行时,可以先通过操作面板的上下键调一个比较小的值,比如10.0,然后通过端子运行,等压力稳定了,看变频器的运行情况,等运行正常后,看着远传压力表,这时候根据所需要的压力通过调节操作面板的上下键调节;调到所需要的压力;若压力不稳定,可通过调节参数F87(PID 的比例增益),参数F88(PID 的积分)使压力趋于稳定; 1、休眠功能的调试 1.1、进入休眠功能的调试:将变频器的压力设定值调到所需要的设定值,再把参数F76调成6,让变频器运行,在没有用户用水的情况下,看变频器的运行频率,把看到的频率值再给上稍微加个几HZ(如2HZ)设定到F17下限频率中;当变频器的运行频率小于下限频率时,再经过时间F114的延时,变频器进入休眠状态; 1.2、进入唤醒功能的调试:将变频器的压力设定值调到所需要的设定值,再把参数F76调成0,让变频器运行,看变频器的反馈压力值,把看到的反馈值再给稍微减去个点儿(如2)设定到F115唤醒压力中;当实际压力小于F115唤醒压力时,变频器进入运行状态; 欧陆EV500变频器PID 供水参数 参数设置: P0.00 设为1 P 机型 P0.02 面板运行时设为0,端子运行时设为1 P0.04 设为20 加速时间(根据机型设定)(秒) P0.05 设为20 减速时间(根据机型设定)(秒) P0.10 设为20 最小频率(Hz ) P0.11 设为50 最大频率(Hz ) P1.05 设为1 自由停止 P6.00 设为 1 PID 控制 P6.01 设为2 比例,积分控制 P6.02 设为 1 压力设定通道 1面板数字设定 P6.03 设为0 反馈通道选择 V1(0-10V ) P6.07 设为0.5 比例增益 P6.08 设为 1 积分时间常数 P6.15 设为0—F6.16 PID 睡眠频率 P6.16 设为F6.16—最大频率 PID 苏醒频率(设置范围为0-100压力百分数。例如,压力设定值d-08设为30,P6.16设为25,假设远程压力表为10公斤,则当压力降为2.5公斤时变频器苏醒) P6.18 设为 30 预置频率,开始运行频率(Hz ) P6.19 设为 10 预置频率运行时间(秒)(本变频器为使系统快速达到稳定状态,避免对管网的冲击,可先预置30 Hz 运行,10秒钟后在闭环运行) d-08 设定压力值(此值为百分比形式,例:压力表量程为1Mpa(10公斤),如果想设定压力为3公斤,则此值应设为30) P0.13 1初始化动作 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 日业SY3200供水参数 0017 PI 控制反馈值 0100=1 端子FWD 与COM 短接启动变频器 运行命令选择 0105=30 加速时间,如启动过程中出现过流报警现象请加大此值 0106=30 减速时间 0107=50 上限频率 (0211=1 停电后电压恢复后再自动启动) (0212=0.0 允许停电的最大时间) 0216=1 自由停止 变频器停止方式 0500=1 PID 闭环控制 0501=0 PI 调节误差极性(正极性,反馈值减小,PI 输出频率增加) 0502=0 PI 给定信号选择(数字给定) 0503= PI 数字给定值(0.0-100.0%) 压力设定(100%对应压力表满量程)1.0Mpa (10公斤)压力表设定值为40,则设定压力为4公斤 0504=2 PI 反馈信号(外部VF ) 0506=0.4 比例增益P 0507=6 积分增益TI 0509= PI 调节最小运行频率 1017 睡眠延时 0.0—600.0S 0.1S 0.0S 1018 唤醒差值 0.0—10.0% 0.1% 10.0% 1000 22恢复出厂值设定 压力表判断方法: 用万用表欧姆档分别量压力表两端的阻值,其中阻值最大的一次万用表两表笔分别接的高端和低端,另一端为中端,与中端阻值大的一端为高端,另一端为低端。 三肯变频器IPF (同SPF )恒压供水参数(一拖一) 1=2 外部端子信号操作面板 7=50 上限频率 8=15 下限频率 55=50 增益频率 71=3 内置PID 控制模式 120=1 122=1 PID 控制比例增益 123=0.5 PID 控制积分增益

变频恒压供水控制系统设计

课程设计 课题名称变频恒压供水控制系统设计学院(部) 专业 班级 学生姓名 学号 指导教师(签字)

14 / - 1 - 一、设计概述 变频器是一种新型技术,将变频调速技术用于供水控制系统中,具有高效节能、水压恒定等优点。本课程设计为实现恒压供水功能而按照设计任务书要求完成设计任务。最终实现控制系统的自动稳定运行。 根据设计要求本系统采用西门子PLC300控制系统对变频器进行调速控制和系统输入输出信号的采集以及系统报警功能的实现。本系统内的电机调速由变频器来实现,通过PLC控制变频器和现场压力仪表检测的反馈信号来实现对电机的自动恒压控制功能。 二、设计任务 例如一楼宇供水系统,正常供水20m3/小时,最大供水量35m3/小时,扬程45m。采用变频调速技术组成一闭环调节系统,控制水泵的运行,保证用户水压恒定。当用水量增大或减小时,水泵电动机速度发生变化,改变流量,以保证水压恒定。本恒压供水系统,要求以1.0Mpa的恒定压力对用户进行供水。水泵有2台,由一台变频器驱动。PLC按照压力变送器(PIT)的信号,调节

变频器的输出,使水泵的转速变化,从而保证供水压力的恒定。两台水泵互为备份,可任意选择一台水泵处于变频模式或工频模式。控制系统原理如图1所示: 14 / - 2 - PLC 变频PIT 恒压供水变频控制系统原理图图1 系统设备选型三、 主要电气元件参数指标1,三相异步电动机水泵:35KW1.0Mpa 恒压设定点:,两线制,4-20mA电流输出压力变送器:0-1.6Mpa VVVF变频器变频器: 1)水泵(小时,35m3/根据设计要求水泵正常供水20m3/小时,最大供水量50 ,流量扬程45m扬程。参考相关资料选择型号为IS50-32-125(50m 的水泵即可满足要求。m3/小时) (2)远传压力表结合具体有数据读取表盘等优点,由于远传压力表具有价格低、14 / - 3 - 实际设计,故在此处选择其作为反馈信号。 四、系统控制要求 1、设两台水泵。一台工作,一台备用。正常工作时,始终有 一台水泵供水。当工作泵出现故障时,备用泵自投。 2、两台泵可以互换。 3、给定压力可调,压力控制点设在水泵处。 4、具有自动,手动工作方式,各种保护、报警装置。 5、用PLC为主要器件完成控制系统的设计。

空压机变频器系统功能

1 系统功能: ?自动容量调节控制 空压机采用容调控制,当排气量有富馀则压力升高到设定值(如0.7Mpa),空压机进入空载状态,空载电机耗电及放入大气的压缩空气都是无用功,加装变频的意义就在于省掉这部分无用功。 ?变频节能控制(使用任意一台均为变频控制) 变频器按照设定的压力和管道出口处的实际压力反馈信号实时调整空压 机电机的转速,从而调整排气量,达到需用多少产生多少,并保证压力的 稳定。变频器控制单元有一个内置的PID 控制器,它可以用于控制压力、流量和液位等过程变量。在启动了过程PID 控制之后,过程给定信号(设定点)取代速度给定信号。另外,一个实际值(过程反馈)也会反馈给传 动单元。过程PID 控制会调节传动单元的速度使实际测量值等于给定值。 下面右侧的方框图举例说明了过程PID 控制。左侧的图显示了控制器根 据压力测量值和压力设定值来调节空压机的运转速度。 ?变频节能控制能耗分析 我们知道,加、卸载控制方式使得压缩气体的压力在Pmin~Pmax之间来 回变化。Pmin是最低压力值,即能够保证用户正常工作的最低压力。一 般情况下,Pmax、Pmin之间关系可以用下式来表示: Pmax=(1+δ)Pmin δ是一个百分数,其数值大致在25%~40%之间。

而若采用变频调速技术可连续调节供气量的话,则可将管网压力始终维持在能满足供气的工作压力上,即Pmin附近。 由此可知,在加、卸载供气控制方式下的空压机较之变频系统控制下的空压机,所浪费的能量主要在2个部分: (1) 压缩空气压力超过Pmin所消耗的能量 在压力达到Pmin后,原控制方式决定其压力会继续上升(直到Pmax)。这一过程中必将会向外界释放更多的热量,从而导致能量损失。 另一方面,高于Pmin的气体在进入气动元件前,其压力需要经过减压阀减压至接近Pmin。这一过程同样是一个耗能过程。 (2) 卸载时调节方法不合理所消耗的能量 通常情况下,当压力达到Pmax时,空压机通过如下方法来降压卸载:关闭进气阀使电机处于空转状态,同时将分离罐中多余的压缩空气通过放空阀放空。这种调节方法要造成很大的能量浪费。 关闭进气阀使电机空转虽然可以使空压机不需要再压缩气体作功,但空压机在空转中还是要带动螺杆做回转运动,据我们测算,空压机卸载时的能耗约占空压机满载运行时的10%~15%(这还是在卸载时间所占比例不大的情况下)。换言之,该空压机至少在10%的时间处于空载状态,在作无用功。 ?变频节能控制的其他益处 供气压力稳定;实现加卸载转换的多个阀门几乎不用动作,增长了使用寿命;转速始终在最高值以下,主机的寿命会增长,设备运转噪音会降低;排气量低于最高值,设备的运行温度会下降,增长润滑油的使用寿命;各种滤材的寿命也会增长,降低维护费用;变频装置本身是一种软起动设备,可大大降低电机起动电流,降低对电网的污染。 ?自动记忆运行 当出现控制信号如给定信号、压力反馈信号丢失等故障时,变频器可以按照故障前15分钟内的平均运行值或预先设定的数值(如0.7Mpa)自动运行,同时给出故障提示。 ?瞬时掉电保护

恒压供水参数如何设置

英威腾CHF100系A列变频器,要求:PID恒压控制,压力保持2KG,用4-20mA电流反馈,控制线怎么接,参数如何设置 二线制接线:AI2、+24V, J16跳线到导流端子 参数设置: P0.01=1 (外部信号控制启动、停止,启动端子指令通道) P0.04=50 (上限频率) P0.05=10-20(下限频率) P0.07=6 (PID控制设定) P0.11=加速时间 P0.12=减速时间 电机参数电机功率额定电流等 P9.00=0 P9.01=40%(传感器压力量程0.6MPA) P9.02=1 P9.04=1.0KP(比例增益) P9.05=o.5S(积分增益) (如果压力波动较大、适当调大) 适当调节比例增益和积分增益可调节压力变化的快慢

压力变送器选型要点: 1、变送器要测量什么样的压力:先确定系统中要确认测量压力的最大值,一般而言,需要选择一个具有比最大值还要大1.5倍左右的压力量程的变送器。这主要是在许多系统中,尤其是水压测量和加工处理中,有峰值和持续不规则的上下波动,这种瞬间的峰值能破坏压力传感器,持续的高压力值或稍微超出变送器的标定最大值会缩短传感器的寿命,然而,由于这样做会精度下降。于是,可以用一个缓冲器来降低压力毛刺,但这样会降低传感器的响应速度。所以在选择变送器时,要充分考虑压力范围,精度与其稳定性。 2、什么样的压力介质:我们要考虑的是压力变送器所测量的介质,黏性液体、泥浆会堵上压力接口,溶剂或有腐蚀性的物质会不会破坏变送吕中与这些介质直接接触的材料。以上这些因素将决定是否选择直接的隔离膜及直接与介质接触的材料。一般的压力变送器的接触介质部分的材质采用的是316不锈钢,如果你的介质对316不锈钢没有腐蚀性,那么基本上所有的压力变送器都适合你对介质压力的测量.如果你的介质对316不锈钢有腐蚀性,那么我们就要采用化学密封,这样不但起到可以测量介质的压力,也可以有效的阻止介质与压力变送器的接液部分的接触,从而起到保护压力变送器,延长了压力变送器的寿命. 3、变送器需要多大的精度:决定精度的有,非线性,迟滞性,机电商务网非重复性,温度、零点偏置刻度,温度的影响。但主要由非线性,迟滞性,非重复性,精度越高,价格也就越高。每一种电子式的测量计都会有精度误差的,但是由于各个国家所标的精度等级是不一样的,比如,中国和美国等国家标的精度是传感器在线性度最好的部分,也就是我们通常所说的测量范围的10%到90%之间的精度;而欧洲标的精度则是线性度最不好的部分,也就是我们通常所说的测量反的0到10%以及90%到100%之间的精度.如欧洲标的精度为1%,则在中国标的精度就为0.5%. 4、变送器的温度范围:通常一个变送器会标定两个温度范围,即正常操作的温度范围和温度可补偿的范围。正常操作温度范围是指变送器在工作状态下不被破坏的时候的温度范围,在超出温度补范围时,可能会达不到其应用的性能指标。温度补偿范围是一个比操作温度范围小的典型范围。在这个范围内工作,变送器肯定会达到其应有的性能指标。温度变从两方面影响着其输出,一是零点漂移;二是影响满量程输出。如:满量程的+/-X%/℃,读数的+/- X%/℃,在超出温度范围时满量程的+/-X%,在温度补偿范围内时读数的+/-X%,如果没有这些参数,会导至在使用中的不确定性。变送器输出的变化到度是由压力变化引起的,还是由温度变化引起的。温度影响是了解如何使用变送器时最复杂的一部分。 5、需要得到怎样的输出信号: mV 、V、 mA及频率输出数字输出,选择怎样的输出取决于多种因素,包括变送器与系统控制器或显示器间的距离,是否存在“噪声”或其他电子干扰信号。是否需要放大器,放大器的位置等。对于许多变送器和控制器间距离较短的OEM设备,采用mA输出的变送器最为经济而有效的解决方法,如果需要将输出信号放大,最好采用具有内置放大的变送器。对于远距离传输出或存在较强的电子干扰信号,最好采用mA级输出或频率输出。如果在RFI或EMI指标很高的环境中,除了要注意到要选择mA或频率输出外,还要考虑到特殊的保护或过滤器。(目前由于各种采集的需要,现在市场上压力变送器的输出信号

变频器恒压供水系统(多泵) (2).

目录 1 变频器恒压供水系统简介 (1) 1.1变频恒压供水系统理论分析 (1) 1.1.1变频恒压供水系统节能原理 (1) 1.1.2 变频恒压控制理论模型 (2) 1.2恒压供水控制系统构成 (3) 1.3 变频器恒压供水产生的背景和意义 (3) 2 变频恒压供水系统设计 (5) 2.1 设计任务及要求 (5) 2.2 系统主电路设计 (6) 2.3 系统工作过程 (6) 3 器件的选型及介绍 (8) 3.1 变频器简介 (8) 3.1.1 变频器的基本结构与分类 (8) 3.1.2 变频器的控制方式 (8) 3.2 变频器选型 (9) 3.2.1 变频器的控制方式 (9) 3.2.2 变频器容量的选择 (10) 3.2.3 变频器主电路外围设备选择 (12) 3.3 可编程控制器(PLC) (14) 3.3.1 PLC的定义及特点 (14) 3.3.2 PLC的工作原理 (15) 3.3.3 PLC及压力传感器的选择 (16) 4 PLC编程及变频器参数设置 (17) 4.1 PLC的I/O接线图 (17) 4.2 PLC程序 (17) 4.3 变频器参数的设置 (21) 4.3.1 参数复位 (21)

4.3.2 电机参数设置 (21) 总结 (22) 参考文献 (23)

1 变频器恒压供水系统简介 1.1变频恒压供水系统理论分析 1.1.1变频恒压供水系统节能原理 供水系统的基本特性和工作点扬程特性是以供水系统管路中的阀门开度不 变为前提,表明水泵在某一转速下扬程H与流量Q之间的关系曲线f(Q),如图1-1 所示。 图1-1供水系统的基本特征 由图可以看出,流量Q越大,扬程H越小。由于在阀门开度和水泵转速都不变的情况下,流量的大小主要取决于用户的用水情况,因此,扬程特性所反映的是扬程H与用水流量Q(u)间的关系。而管阻特性是以水泵的转速不变为前提,表明阀门在某一开度下,扬程H与流量Q之间的关系H J (Qu )。管阻特性反映了水泵的能量用来克服泵系统的水位及压力差、液体在管道中流动阻力的变化规律。由图可知,在同一阀门开度下,扬程H越大,流量Q也越大。由于阀门开度的改变,实际上是改变了在某一扬程下,供水系统向用户的供水能力。因此,管阻特性所反映的是扬程与供水流量Qc之间的关系H f (Qc )。扬程特性曲线和管阻特性曲线的交点,称为供水系统的工作点,如图中A点。在这一点,用户的用水流量Qu和供水系统的供水流量Qc处于平衡状态,供水系统既满足了扬程特性,也符合了管阻特性,系统稳定运行。图1-1供水系统的基本特征。 变频恒压供水系统的供水部分主要由水泵、电动机、管道和阀门等构成。通

恒压供水系统自动控制设计要点

变频调速恒压供水系统,该系统能够根据运行负荷的变化自动调节供水系统水泵的数量和转速,使整个系统始终保持高效节能的最佳状态。 本文主要针对当前供水系统中存在的自动化程度不高、能耗严重、可靠性低的缺点加以研究,开发出一种新型的并在这三个方面都有所提高的变频式恒压供水自动控制系统。全文共分为四章。第一章阐明了供水系统的应用背景、选题意义及主要研究内容。第二章阐明了供水系统的变频调速节能原理。第三章详细介绍了系统硬件的工作原理以及硬件的选择。第四章详细阐述了系统软件开发并对程序进行解释。 关键词:变频器;恒压供水系统; PLC

Frequency conversion constant pressure water supply system, the system is capable of automatically adjusting water supply system based on load changes of quantity and speed of the pump, always maintain the high efficiency and energy saving the best state of the This article primarily for current there is a high degree of automation in the water supply system, serious disadvantages, reliability, low energy consumption study developed a new and increased in these three areas of automatic control system of frequency conversion constant pressure water supply. The text is divided into four chapters. Chapter I sets out the water supply system of main research topics on background, meaning and content. Chapter II sets out the principle of variable frequency speed adjusting energy saving of water supply systems. Chapter III details the working principle of system hardware and hardware choices. The fourth chapter elaborates system software development and to explain the procedures Key words:Cam、high deputy、automation

变频恒压供水控制系统设计

课题名称变频恒压供水控制系统设计 学院(部) 电子与控制工程学院 专业电气工程及其自动化 班级 2011320401 学生阿不都热扎克·阿不都拉 _ 学号 06 月 23 日至 06 月 27 日共 1 周 指导教师(签字) 2011年 06 月 7 日

目录 摘要 (3) 一、设计容 (4) 二、设计要求 (4) 三、设计容 1、方案的确定 (5) 2、变频调速恒压供水系统简介及工作原理 (6) 3、水泵的容量计算 (8) 4、水泵/变频器/PLC的选择 (9) 5、变频器参数设定 (10) 6、PID控制器参数选择 (10) 7、PLC外部接线图的设计 (11) 8、主电路的设计 (12) 9、系统的工作原理 (12) 四、设计图纸 (13) 五、操作使用说明书 (14) 六、设计体会 (15) 七、主要参考资料 (16) 附录一/附录二 (17) 附录三 (18) 附录四 (19)

摘要 随着我国社会经济的不断发展,住房制度改革的不断深入,人民生活水平的不断提高,城区中各类小区建设发展十分迅速,同时也对小区的基础设施建设提出了更高的要求。小区供水系统的建设是其中的一个重要方面,供水的经济性、可靠性、稳定性直接影响到小区住户的正常生活与工作,也直接体现了小区物业水平的高低。传统的恒速泵加压供水、水塔高位水箱供水、气压罐供水灯供水方式普遍不通话程度的存在效率低、可靠性差、自动化不高等缺点,难以满足当前经济生活的需要。 论文分析了采用变频调速方式实现恒压供水的工作机理,通过对PID模块的参数预置,利用远传压力表的水压反馈量,构成闭环调节系统,利用变频器与水泵的配合作用实现恒压供水且有效节能。 论文论述了多种供水方案的合理性,同时也指出各种方案存在的问题,通过对比比较给出了比较适合该系统的方案——PLC控制变频恒压供水。 关键字:恒压供水变频调速 PLC

恒压供水系统中的几个参数

恒压供水系统中的几个参数1 兆帕与公斤 “1兆帕”是压强的单位 即1兆帕 1000000帕的。 一平方米的面积上受到的压力是一牛顿时所产生的压强为一帕斯卡 [1Pa=1N/(M×M)]。 而公斤力是力的单位 1公斤力 9.8牛顿。 这是两个不同概念的物理量 没法说“1兆帕等于多少公斤力”。 但彼此有一定的关系 要产生“1兆帕”的压强 需在1平方厘米的 面积上 施加的压力约是10公斤。 1公斤压力 0.098兆帕 所以:1兆帕 MPA)≈10.2公斤压力 KG/CM^2) 1MPa=10.197公斤/厘米2=101.97m水柱 可以让水升高101.97m。 2、变频器中PID的定义 PID控制器参数的工程整定,各种调节系统中P.I.D参数经验数据以下 可参照 温度T: P=20~60%,T=180~600s,D=3-180s 压力P: P=30~70%,T=24~180s, 液位L: P=20~80%,T=60~300s, 流量L: P=40~100%,T=6~60s。 基本的PID算法 需要整定的系数是Kp 比例系数 ,Ki 积分系数 ,Kd 微分系数 三个。这三个参数对系统性能的影响如下 1 比例系数 Kp ①对动态性能的影响比例系数Kp加大 使系统的动作灵敏 速度 加快 Kp偏大 振荡次数加多 调节时间加长。当Kp太大时 系统 会趋于不稳定 若Kp太小 又会使系统的动作缓慢 ②对稳态性能的影响加大比例系数Kp 在系统稳定的情况下 可 以减小静差 提高控制精度 但是加大Kp只是减少静差 不能完全 消除。 2 积分系数 Ki ①对动态性能的影响积分系数Ki通常使系统的稳定性下降。Ki太 大 系统将不稳定 Ki偏大 振荡次数较多 Ki太小 对系统性能的 影响减少 而当Ki合适时 过渡特性比较理想 ②对稳态性能的影响积分系数能消除系统的静差 提高控制系统的 控制精度。但是若Ki太小时 积分作用太弱 以致不能减小静差。 3 微分系数 Kd 微分控制可以改善动态特性 如超调量减少 调节时间缩短 允许加 大比例控制 使静差减小 提高控制精度。但当Kd偏大或偏小时 超调量较大 调节时间较长 只有合适的时候 才可以得到比较满意的过渡过程。 对系数实行“先比例 后积分 再微分”的整定步骤。 1 首先只整定比例部分。即将比例系数由小到大 并观察相应的 系统响应 直到得到反应快 超调小的响应。 2 加入积分环节。整定时首先置积分系数Ki一个较小的值 并

PLC与变频器控制的自动恒压供水系统解析

PLC与变频器控制的自动恒压供水系统 1 系统简介 为改善生产环境,沱牌公司投资清洁水技改工程并建成一座日产水2.5万顿的供水系统,分别建设了抽水泵系统、加压泵系统和高位水池。根据公司用水需求特点,从抽水泵系统过来的水一部分直接供给生产用水部门,一部分则需通过加压泵输送到高位水池,而供给生产用水部门的水压与供给高位水池的水压相差较大。同时高位水池距抽水泵房较远达十多公里,高位水池的液位高低和加压泵系统的设计以及如何与抽水泵系统“联动”也是较难解决的。 鉴于以上特点,从技术可靠 和>'https://www.sodocs.net/doc/0e610036.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济实用角度综合考虑,我们设计了用PLC控制与变频器控制相结合的自动恒压控制供水系统,同时通过主水管线压力传递 较>'https://www.sodocs.net/doc/0e610036.html,/jingjilunwen/' target='_blank' class='infotextkey'>经济地实现了加压泵系统与抽水泵系统“远程联动”的控制目的。 2 系统方案 系统主要由三菱公司的PLC控制器、ABB公司的变频器、施耐德公司的软启动器、电机保护器、数据采集及其辅助设备组成(见图1)。 2.1 抽水泵系统 整个抽水泵系统有150KW深井泵电机四台,90KW深井泵电机两台,采用变频器循环工作方式,六台电机均可设置在变频方式下工作。采用一台 150KW和一台90KW的软起动150KW和90KW的电机。当变频器工作在50HZ,管网压力仍然低于系统设定的下限时,软起动器便自动起动一台电机投入到工频运行,当压力达到高限时,自动停掉工频运行电机。一次主电路接线示意图见图2所示。

PLC控制恒压供水系统.docx

PLC 控制恒压供水系统 国家职业资格全省统一鉴定 维修电工技师 (国家职业资格二级) 所在省市:江苏省常州市 摘要:本设计是针对居民生活用水 /消防用水而设计的。由变 频器、 PLC 控制系统,调节水泵的输出流量。电动机泵组由三 台水泵并联而成,由变频器或工频电网供电,根据供水 系统出口水压和流量来控制变频器电动机泵组之间的切换 及速度,使系统运行在最合理的状态,保证按需供水。采用 PLC 控制的变频调速供水系统,由PLC 进行逻辑控制,由 变频器进行压力调节。通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。运行结果表明,该系统具有压力稳 定,结构简单,工作可靠操作方便等优点。

关 第一章概 述??????????????????????(1)1-1常的供水方式及恒 的??????????(1) 二、水的一般性原 ????????????????(1) 1-2PLC 、器控制的恒供水系方 案?????????(3) 二、方案特 点??????????????????????(3)四、型及目 的???????????????????(4) 硬件 ??????????????????????(6)二、器介 ?????????????????????(7)二、方 式??????????????????????(7)机速方案的比 ????????????????(9) 二、模供水系的

定?????????????????(10 ) 一、路介 ??????????????????????(11 )三、入出元件与 PLC 地址照 表????????????( 15) 程序????????????????????(17)???????????????????????? ?( 20) 致 ???????????????????????? ?( 21) 参考文 献???????????????????????( 22 )第一章概述 供水的一种典型方式是恒供水。恒供水使用器的速 功能通供水的水的速,以持供水始端力,使之保持相 的恒定,故又称恒供水。在供水以逐步渗透到各种行,品 种也从一的恒供水向多功能和高的、供水及能化控 制的方向展。 基于触摸屏和PLC 作控制器作速的恒供

空压机节能变频技术

空压机节能变频技术 市蓝海华腾技术有限公司是一家致力于变频器的研发、设计、生产与销售的高新技术企业,拥有丰富的行业经验和雄厚的技术实力。 针对空压机行业电能浪费严重,节能需求迫切的现状,公司经过深入研究,结合V5-K空压机专用变频器,推出了完整的空压机变频控制解决方案。 一、行业分析 据中国空压机网调查: 全国有180亿元/年的空压机市场,有超过400万台的空压机在工作,22KW以上功率等级的空压机超过100万台,22kw以下中小空压机以活塞式为主。年新增数十万台。 空压机一般按工厂最大负荷加10-20%余量设计,另外工厂实际需求存在季节性及时间性波动,也导致用气量波动较大,所以空压机多数时间并非满载运行,节能空间很大。 空压机的用电量约占全部工业用电设备的9%,节能降耗利国利民。 国家提供专项资金大力扶持节能降耗,这也进一步推动了空压机等产业的升级。变频空压机也越来越为广大用户接受。变频空压机已经成为未来的主流发展方向。 二、传统空压机的问题传统空压机的工作图: 传统空压机的问题: 1、电能浪费严重 传统的加卸载式空压机,能量主要浪费在: 1)加载时的电能消耗 在压力达到所需工作压力后,传统控制方式决定其压力会继续上升直到卸载压力。在加压过程中,一定会产生更多的热量和噪音,从而导致电能损失。另一方面,高压气体在进入气动元件前,其压力需要经过减压阀减压,这一过程同样耗能。 2)卸载时电能的消耗 当达到卸载压力时,空压机自动打开卸载阀,使电机空转,造成严重的能量浪费。空压机卸载时的功耗约占满载时的30%~50%,可见传统空压机有明显的节能空间。 2、工频启动冲击电流大

变频恒压供水系统与PID调节器参数的选择解读

变频恒压供水系统与PID调节器参数的选择解读

顺德职业技术学院学报 Journal of Shunde Polytechnic 收稿日期 :2011-08-03作者简介 :张 琳 (1978— ,女,黑龙江省佳木斯市人,讲师,硕士,研究方向:电子、自动控制、通信与信息系统。 变频恒压供水系统与 PID 调节器参数的选择 张 琳 (天津滨海职业学院 机电系 , 天津 300451 摘要 :介绍基于爱默生 TD2100变频器 (内置 PID 调节器 组成的变频恒压供水系 统 , 其主要用于高层楼宇的供水 , 系统由变频器、压力传感器等组成 , 具有优良的节能作用和稳定可靠的运行效果。 关键词 :变频器 ; PID 调节器 ; 恒压供水中图分类号 :TP214; TM921.51 文献标志码 :B 文章编号 :1672-6138(2011 04-0007-03 DOI :10.3969/j.issn.1672-6138.2011.04.003 科技与应用

Vol. 9No. 4Oct. 2011 变频恒压供水系统是现代建筑中普遍采用的一种水 处理系统,随着变频调速技术的发展和人们节能意识的 不断增强,变频恒压供水系统的节能特性使得其越来越广泛应用于住宅小区、 高层建筑的生活及消防供水系统。本文介绍了基于爱默生 TD 2100变频器 (内置PI D 调节器组成的变频恒压供水系统,为达到系统最佳的动稳态性能,如何选择 PI D 调节器的参数。 1变频恒压供水系统组成 该系统由压力传感器、变频器、供水泵组、供水 管路等组成,系统主要设备采用爱默生 TD 2100供水专用变频器 , 内置 PI 调节器和电机专用控制芯片 D SP+CPLD +M CU ,无需配置 PLC 或供水控制器,即可实现多种常用供水控制专用功能。控制结构如图 1所示。 爱默生 TD 2100变频器功能强大 [1],比较适用于简单的恒压、 恒流供水系统的水泵变频调速控制。该变频器 可灵活编程设定给定信号与反馈信号的类型及比率, PI D 等闭环控制参数,渐变频率启泵与停泵的渐变延时 时间,最大、最小工作频率及其他运行参数,具有很强 的设备超限运行及安全保证功能等等。 变频器的基本运行工作参数如下:F 05=50;最大输出频率:50H z; F 06=50;基本运行频率 50H z; F 07=380;最大输出电压:380V ; F 10=10;加速时间 10s; F 11=10;减速时间 10s; F 12=50;上限频率 50H z; F 13=25;下限频率 25H z; F 24=1;运行方式:普通供水 PI闭环; F 25=1;供水模式:1表示先起先停的 2台变频循环泵控制方式;

相关主题