搜档网
当前位置:搜档网 › Dynamic modelling for the hot blast stove

Dynamic modelling for the hot blast stove

Dynamic modelling for the hot blast stove
Dynamic modelling for the hot blast stove

Dynamic modelling for the hot blast stove

J.Zetterholm a ,b ,?,X.Ji a ,B.Sundelin c ,P.M.Martin d ,C.Wang b ,?

a

Energy Science/Energy Engineering,Lule?University of Technology,SE-97187Lule?,Sweden b

Swerea MEFOS,Process Integration Department,Box 812,97125Lule?,Sweden c

SSAB Special Steels,SE-61380Oxel?sund,Sweden d

Siemens VAI Metals Technologies,501Technology Drive,Canonsburg,PA 15317,United States

h i g h l i g h t s

A dynamic model for the hot blast stove system has been developed. The developed model was validated with experimental measurements.

The effect of OxyFuel technique on the performance of hot blast stoves was studied. Increasing the cycle time of a stove system can increase the blast temperature.

a r t i c l e i n f o Article history:

Received 18September 2015

Received in revised form 22February 2016Accepted 23February 2016Available online xxxx Keywords:

Blast furnace stove Flame temperature Flue gas

Heat transfer Hot blast

a b s t r a c t

A large amount of energy is required in the production of steel where the preheating of blast in the hot blast stoves for iron-making is one of the most energy-intensive processes.To improve the energy ef?-ciency of the steelmaking it is necessary to investigate how to improve the hot blast stove operation.In this work a mathematic model for evaluating the performance of the hot blast stove was developed using a ?nite difference approximation for the heat transfer inside the stove during operation.The developed model was calibrated and validated by using the process data from hot blast stove V26at SSABs plant in Oxel?sund,Sweden.The investigation shows a good agreement between the measured and modelled data.As a case study,the developed model was used to simulate the effect of a new concept of OxyFuel tech-nique to hot blast stoves.The investigation shows that,by using this OxyFuel technique,it is possible to maintain the blast temperature while removing the usage of coke oven gas (COG).The saved COG can be used to replace some fossil fuel,such as oil and LPG.

Furthermore,the effect of the cycle time on the single stove was studied.As expected,both the hot blast and ?ue gas temperatures are increased when increasing the cycle time.This shows that it is a good strategy for the hot blast stove to increase the blast temperature if the stove is currently not operated with the max-imum allowed ?ue-gas temperature.

ó2016Elsevier Ltd.All rights reserved.

1.Introduction

About one third of the world primary energy consumption is from the manufacturing industries.The iron and steel industry (ISI)is the second largest energy user and accounts for 20%of the energy usage in the manufacturing industries.Due to the heavy reliance on fossil fuels as both energy carrier and reducing agent,the ISI is the largest CO 2emitter with nearly one third of the total CO 2emissions in the industrial sector.This corresponds to 4–5%of the world total global CO 2emission [1].

Mitigating CO 2emissions from the ISI can be achieved either by introduction of renewable energy,breakthrough technologies or by further optimisation of current processes [2].Large scale introduc-tion of renewable energy has not yet been realised in the steelmak-ing process.Although charcoal has been used to replace pulverised coal (PC)in small blast furnaces (BF)in Brazil,it has not been tested in modern large-scale BF [3,4].

A steel plant represents huge capital investments,and thus the optimisation of current processes is more practical nowadays,e.g.improving the ef?ciency of the equipment currently in operation.A more ef?cient use of the process gases has shown a great potential to increase the energy ef?ciency of the entire steelworks and thus

https://www.sodocs.net/doc/0b18612094.html,/10.1016/j.apenergy.2016.02.1280306-2619/ó2016Elsevier Ltd.All rights reserved.

?Corresponding authors at:Energy Science/Energy Engineering,Lule?University

of Technology,SE-97187Lule?,Sweden.Tel.:+46920493514(J.Zetterholm);Swerea MEFOS,Process Integration Department,Box 812,97125Lule?,Sweden.Tel.:+46920245223(C.Wang).

E-mail addresses:jonas.zetterholm@ltu.se (J.Zetterholm),chuan.wang@swerea.se (C.Wang).

reduce the CO 2emissions from the process [5].With improved management of the process gases,the speci?c cost for production will also be decreased [6].

The blast furnace–basic oxygen furnace (BF–BOF)process accounts for nearly 70%of the world crude steel production [1].The electric arc furnace (EAF)process is another option,however,its production route is mainly limited by the availability of scrap [7].Considering the long investment cycles in the ISI,the BF–BOF process will maintain the dominant pathway for the production of steel in the coming years.

Hot blast stoves are very important auxiliary equipment to the BF process,providing hot air,called blast,to the process.The function of the hot blast stove is to provide high-temperature blast to the BF at a

improve their performance has been identi?ed as one focus.Sahin and Morari examined how to minimise the fuel usage for a stove system operating in staggered parallel by applying a Model Predic-tive Controller on the governing heat transfer equations [10].Other pathways such as installing heat exchangers for preheating com-bustion gases,enriching the combustion air with oxygen have also been proposed to improve the performance of the hot stove [11].The improved performance can be on the reduced enrichment gas,the reduced total energy usage or the increased hot blast tem-perature.Optimising the performance of the hot stove system to deliver a high-temperature hot blast will be of bene?t for the entire steelmaking process both in terms of energy usage and CO 2emis-sions.In fact,by increasing the temperature of the blast by 100°C,Nomenclature _m mass ?ow rate (kg/s)

c p speci?c heat capacity (J kg à1K à1)T temperature (K)_Q heat (W)

q

density (kg/m 3)V volume (m 3)t time (s)

h convective heat transfer coef?cient (W m à2K à1)Re Reynolds number (dimensionless)Nu Nusselt number (dimensionless)f friction factor

Pr Prandtl number (dimensionless)d

diameter (m)

l

dynamic viscosity (N s m 2)

y i volumetric fraction (dimensionless)k

thermal conductivity (W m à1K à1)U

interaction parameter (dimensionless)M molar weight (kg/mol)p pressure (Pa)u velocity (m/s)

D x distance in ?ow direction (m)A

area (m 2)

emissivity a absorptivity

r

Stefan–Boltzmann constant (W m à2K à4)g gas s

solid

Fig.1.Schematic view of a hot blast stove system.

2J.Zetterholm et al./Applied Energy xxx (2016)xxx–xxx

The hot blast stove can be divided into three sections:combus-tion chamber,dome,and chequerwork chamber.During the period of on-gas,the blast furnace gas(BFG)together with an enrichment gas is combusted and the hot?ue gas?ow through the combustion chamber,the dome,and then the chequerwork chamber.The che-querwork chamber is?lled with refractory bricks with channels to provide a large surface area for heat transfer as well as a large vol-ume for energy storage.The chequerwork brick is heated and stores the thermal energy.

After on-gas,the stove is switched to on-blast where the cold blast is heated by?owing from the bottom of the chequerwork, through the dome and a part of the combustion chamber.When the hot blast leaves the stove,it is often mixed with a certain amount of the cold blast to produce a constant?ow with a stable temperature before it is injected into the BF as illustrated in Fig.1.

The hot blast stoves in many steel plants have been running for many years,and the performance can differ signi?cantly for each stove in the same system.To improve the performance of a stove system it is necessary to represent the performance and then investigate how changes to the operation would affect the perfor-mance of individual stoves.

Initial modelling for the thermal regenerator has been devel-oped as design tools where the model assumed constant operation and properties[14].Varying gas?ow rates and gas properties were included in the modelling by Willmott in1968[15].In1977Raze-los and Benjamin also considered the temperature-dependent solid-properties[16].Martin and Hass developed a model which relied on the?nite difference approximation for the heat transfer equation in1982[17],and this model included the combustion chamber and dome which had not previously been considered. More recently a predictive controller was developed by Muske et al.[14]which considered a detailed heat transfer model with temperature-dependent gas-and solid-properties dynamically. The three dimensional?ow through the stove was considered in the design tool developed by Kimura et al.[18].All the previous modelling work has only considered a single stove design.A new model covering a stove system needs to be developed in order to identify how the performance of the entire stove system will be affected by changes of the operation either in a single or in several stoves in the system.

In this work,a model derived from the fundamental heat trans-fer equations was developed for the entire stove system with the consideration of e.g.the effect of gas?ow,temperature and compo-sition on the convective and radiative heat transfer.The considera-tion of a stove system with the possibility of separate calibrations and layouts for each stove in the system was also included.

Furthermore,with this developed model,a new concept of Oxy-Fuel developed by Linde gas was investigated.For the?rst time, this concept of stove oxygen enrichment with?ue gas recirculation (SOE-FGR)was investigated with the developed dynamic model, and the effects on the?ue gas temperature and hot blast temper-ature were examined for both individual stoves and the stove system.

Additionally,a case study of the effect of a prolonged cycle time on the single stove was investigated in order to de?ne the limits on the ef?ciency improvement.

2.Method

The developed model used a?nite difference approximation of the heat balance to represent the heat transfer inside the hot blast stove.For the?nite difference approximation,the stove was divided into steps in time and?ow direction,i.e.time steps and physical steps which creates a‘‘calculation grid”where each nod represents a speci?c physical position in the stove at a speci?c point in time.Each calculation node consists of several elements representing gas and solid,respectively,as shown in Fig.2.

The model considers three solid elements for each node in the ?ow direction.Each node considers one element representing the surface volume,which is the solid volume adjacent to the gas?ow, one element for the material next to the surface,and one element for the outer wall next to the ambient air.

Initial/boundary conditions for the model were the initial solid temperature and the inlet?ue gas temperature.The inlet?ue gas temperature was calculated by assuming that all the fuel gas was

https://www.sodocs.net/doc/0b18612094.html,yout of a calculation node.

fully combusted to adiabatic?ame temperature at the bottom of the combustion chamber.By knowing the inlet gas and initial solid temperatures,the temperatures for each position in the stove dur-ing operation can be calculated from the?nite difference approxi-mation of the heat balance,i.e.:

_m g c p

g;j

T p

g;jt1

àT p

g;j

?_Q con vt_Q rade1T

q s;j c p s;j V s;j T pt1s;jàT p s;j

D t?_Q

con v

t_Q radt_Q conde2T

where the subscripts g and s represent gas and solid,respectively, _m g is the gas?ow,c p is the speci?c heat capacity,T is the tempera-ture,q is the density,V is the volume,and D t is the time-step size.

The thermophysical properties of the solid material are temperature-dependent,and in this work they were derived from data obtained from the manufacturer.It was assumed that all channels in the stove can be approximated as circular tubes,and the heat transfer and?ow were assumed to be equal in all channels inside the chequerwork.With these assumptions,the model can be simpli?ed as a single channel.

During the calculation of each node,the heat loss was deter-mined combining the conduction through the stove walls with

the convection from the outer wall to the ambient air.

2.1.Gas model

Convective heat transfer is represented by Newton’s law of cooling,where the convective heat transfer coef?cient,h,can be obtained from the Nusselt number.Depending on the range of the Reynolds number,different correlations can be used to esti-mate the Nusselt number.For the fully developed laminar?ow, for Re d<2300,the Nusselt number is3.66[19].For

Gnielinski developed a correlation[20]with an error less

Nu d?

f

8

eRe dà1000TPr 1t12:7

??

f

8

q

ePr2=3à1T

For the case of Reynolds number where either the laminar and the Gnielinski correlation is invalid,

tion for the laminar extreme and fully turbulent

used which is valid for the range of2100

Pr131t

d

2

2

3

!

l

l s

0:14

e4T

The thermophysical properties of a gas were calculated consid-ering the impacts of pressure,temperature and gas composition.In the calculation of the gas properties,each species in the gas mix-ture has been treated as an ideal gas,and the speci?c heat capacity of the gas mixture can thus be calculated by:

c p;mix?

X

y

i

c p;ie5Twhere y i an

d c p,i ar

e the volumetric fraction and speci?c heat capac-ity o

f species i in the gas mixture,respectively.

Mason and Saxena[21]developed a method which can be used to obtain the thermal conductivity of a known gas mixture:

k m?

X n

i?1

y

i

k i

P n

j?1

0:85y

j

U i;je6Twhere k i is the thermal conductivity of species

tion of species i,and U i,j is the interaction

U i;j?

1tl i l

j

1

2M j

M i

1

4

2

?????????????????????

81tM i

M j

r

Fig.3.Schematic?gure of the solver.

Stove operating scenarios.Left:Common stove operation.Right:

where M i is the molar weight of species i ,and l i is the viscosity of species i .

Wilke [22]developed a method to obtain the dynamic viscosity of a known gas mixture:

l m ?

X n i ?1y i l i

P n j ?1y j U i ;j

e8T

For each species in the gas mixture,the ?tted polynomials from the tabulated data were used for calculating the thermophysical properties which are presented in Appendix A :Gas properties.The pressure drop,D p ,of the gas in the ?ow direction is calcu-lated from the friction factor,f ,by:

D p ?f

q g u 2g

2d

D x e9T

where q is the density,u is the velocity,d the hydraulic diameter,

and D x is the length in the ?ow direction.The friction factor depends on the losses from the friction against the wall and the expansion/contraction of the channel.The friction factor for the fully developed laminar ?ow,Re d <2300[19],can be obtained by:

f w ?

64d

e10T

By assuming smooth tubes,the friction factor in the transitional ?ow region and the fully developed turbulent ?ow can be repre-sented with the correlation developed by Petukhov [23],which is valid for 3000

f w ?e0:790ln eRe D Tà1:64T

à2

e11T

The total friction factor is the summation of the wall friction factor,f w ,and the friction factor for expansion/contraction,f c ,i.e.:

f ?f w tf c e12T

where the friction factor due to sudden expansion/contraction can be found from the cross sectional areas before and after the contraction/expansion:

f c ?

A 1A 2

2

e13T

Baehr and Stephan [24]described the radiative heat transfer from a gas to a grey,opaque and diffuse surface with:

_Q

rad ? s r A s

a g Te1à s T

g T 4

g àa g T 4s

e14T

where e is the emissivity,a the absorptivity and r is the Stefan–Boltzmann constant.The emissivity and absorptivity depend on the partial pressure,temperature and the gas geometry of the radia-tive species which are mostly CO 2and H 2O.With low concentra-tions of CO 2and H 2O the radiative heat transfer between gas and solid can be neglected [19].In this work,the method developed by Modak [25]was used to calculate the emissivity of the gas.2.2.Model structure

An operating scenario can be simulated with the developed model by performing calculations for one full cycle of on-gas and on-blast.A schematic ?gure of the iterative solution used by the model is presented in Fig.3.

The model provides an initial guess of the temperature of each solid element in the beginning of on-gas.After a full cycle the model will compare the initial and ?nal temperatures of each solid element and perform iterative calculations until the difference between initial and ?nal temperatures is less than a set conver-gence criterion.Similar calculations are performed by the model to calculate the hot blast going through the stove and the cold blast to the mixing chamber to deliver the target blast temperature.2.3.Model calibration and validation

The model was calibrated and validated using the process data of the hot blast stove V26at SSAB’s site in Oxel?sund,Sweden.Inputs to the model were based on the measurements carried out for one cycle and the model was validated using the measured temperatures of the hot blast,?ue gas and dome.

The dome temperature was not calculated in the model,how-ever,the measured dome temperature can be compared with the modelled gas temperature at the top of the chequerwork and with the modelled solid temperature of the top layer in the chequerwork.2.4.Case studies

Using the calibrated model,case studies for different techniques to improve the stove performance were conducted.These case studies are described in this section.

2.4.1.Stove oxygen enrichment with ?ue gas recirculation

The stove oxygen enrichment with ?ue gas recirculation (SOE-FGR)developed by Linde gas can be used to replace the combustion air during the ?ring period with recirculated ?ue gas and pure oxy-gen added [26].Using this technique it is possible to either remove the enrichment gas or increase the blast temperature.

In SOE-FGR,the pure oxygen is used to combust the fuel gas,and the ?ue gas is recirculated to decrease the ?ame temperature.In addition to controlling the ?ame temperature,the sensible heat in the ?ue gases can be used and the CO 2-concentration is then increased [26].Since this type of operation is outside of the current operating practices,it is important to use a dynamic model to investigate the impact on the performance on the hot blast stove before the further practical implementation.

Fig.4illustrates a common stove operation with SOE-FGR where COG has been removed.For comparison,the common stove operation is also illustrated in Fig.4.

Table 1

Input parameters for the investigation of ?ue gas recirculation.

Reference case

SOE-FGR Number of stoves

33Blast-/changing-time (min)45/647.5/6Flame temperature (°C)12541254Blast temperature (°C)11141114Total blast ?ow (kN m 3/h)90.090.0Cold blast temperature (°C)

100.0100.0Total fuel gas ?ow (per stove)(kN m 3/h)29.037.6COG in fuel gas (%)

5.220Total ?ue gas ?ow (kN m 3/h)48.644.8LHV fuel (MJ/N m 3) 3.4 2.6Flue gas properties CO 2(%(vol.))24.9641.46N 2(%(vol.))67.0652.59O 2(%(vol.))0.900.90H 2O (%(vol.))

7.08

5.04

Table 2

Scenarios investigated for prolonged cycle time in dynamic model.Scenario Blast time (min)Firing time (min)Ref 001b2f +1+22b4f +2+41b3f +1+32b6f

+2

+6

J.Zetterholm et al./Applied Energy xxx (2016)xxx–xxx

5

In this investigation SOE-FGR has been evaluated in a three-stove system.The system is running in serial mode and each stove in the system has been con?gured with identical physical charac-teristics and calibrations.

For this investigation the amount of O 2added to the recircu-lated ?ue gas was adjusted to reach the same adiabatic ?ame tem-perature as the reference case.The fuel gas ?ow rate was adjusted to reach the same minimum hot blast temperature as for the refer-ence case.Listed in Table 1are the input parameters used for the reference and SOE-FGR case.

2.4.2.Prolonged cycle time

To improve the system performance it might be bene?cial to prolong the cycle time for the stoves.By increasing the cycle time,the ratio of the ?ring time to the blast time increases,which might lead to an increased blast temperature.E.g.increasing the blast time with 1min for each stove in a four stove system operated in serial mode,the ?ring time for each stove will increase with 3min.In this work,the developed model was used to analyse how a change in cycle-time would affect the performance of an individual stove.For the case studies,the inputs to the model were the aver-age values from the calibration period for the gas ?ow rates,gas compositions and gas temperatures.

The changes in cycle-time were investigated to re?ect the increase in blast time with one and two minutes for a three-stove and a four-stove system,respectively.This gives an increase in blast and ?ring time according to Table 2.3.Modelling results and discussion

The model calibration and the case studies performed with the calibrated model are shown in this section.3.1.Model calibration and validation

The model was validated by using the process data of the hot blast stove V26at SSAB Oxel?sund.The measured process data

includes the temperatures of grid,?ue gas,hot blast and dome,and they are illustrated in Fig.5.It should be mentioned that in the beginning of the on-gas and on-blast period,the measured temperatures of hot blast and ?ue gas are unreliable.Therefore,these unreliable experimental data points have been removed in Fig.5.

The model results were compared with the measured tempera-ture.The comparison is shown in Fig.5.

The comparison results illustrated in Fig.5show an overall agreement between modelled and measured values.For the case of the ?ue gas,the model overestimates its temperature in the beginning of the on-gas period,which also corresponds to the lar-gest discrepancy between modelled and measured temperatures with an error of 12.9%.In average,the discrepancy of the modelled and measured ?ue-gas temperatures is with an error of 3.9%.It should be mentioned that in modelling,the ?ue gas temperature refers to the temperature of the gas in the bottom of the chequer-work,while in measurements the detection was located outside of the stove.

For the grid temperature,a system deviation was observed between the modelled and measured results.This deviation is mainly from that the grid temperature was measured on the cast iron support columns for the chequerwork,while the model results represent the temperature of the lowest layer in the chequerwork.Due to this,it is reasonable that the modelled results are higher than the measured values.

As shown in Fig.5,the measured dome temperature agrees well with the modelled gas temperature during ?ring and with the modelled solid temperature during blast.In measurements,a pyrometer was used to measure the dome temperature from radi-ation.During on-gas,the radiation from the hot gases was mea-sured,and during on-blast the radiation from the solid material in the dome was measured.As shown in Fig.5,during the on-gas phase,the uncertainty of the measured temperatures is high,which in part can be explained by variation in the gas ?ows and compositions.The largest error between the modelled and mea-sured temperatures occur in the beginning of the period,however,

6J.Zetterholm et al./Applied Energy xxx (2016)xxx–xxx

the discrepancy is less than 1.5%.For the entire on-blast period,the discrepancy is lower than 0.9%.

For the case of the on-blast period,the model predicts a higher hot blast temperature in the beginning of the on-blast period of 13°C.This corresponds to a maximum error of 1.1%.In average the model is in good agreement with measured values and the dif-ference between modelled ad measured temperatures is lower than 0.6%.

J.Zetterholm et al./Applied Energy xxx (2016)xxx–xxx 7

3.2.Case studies

The results from the case studies performed in the calibrated model are shown and discussed in this section.

3.2.1.SOE-FGR

The scenario for SOE-FGR was studied with the developed model,and the modelled results were compared with those in the reference case.The model results of the hot blast and ?ue gas temperatures are presented for the reference and SOE-FGR cases,respectively,in Fig.6.

The model results shows that by introducing SOE-FGR it is pos-sible to maintain the hot blast temperature while completely removing the usage of COG.For this particular case study the total fuel gas ?ow rate to each speci?c stove was increased from 29to 37.6kN m 3/h to maintain the blast temperature.While there is an increased total ?ow of fuel gas the total energy input to a single stove for one cycle is decreased by 0.9%.

Additionally,there has been a slight decrease in the maximum ?ue gas temperature,from 352to 339°C,as well as the total ?ue gas ?ow rate.This shows that for a stove which is limited by the max-imum ?ue gas temperature or ?ue gas ?ow rate it is possible to use SOE-FGR to improve the performance of the hot blast stove.In addi-tion,it can foresee that with a decrease of the ?ue gas volume it is possible to further increase the fuel gas ?ow rate to make it possible to increase the blast temperature delivered to the BF which can increase the ef?ciency of the entire BF process.In order to quantify how the improvement of the hot blast stove with SOE-FGR operation the implications for the entire steelwork needs to be considered.This includes energy usage for production of oxygen as well as bal-ancing the reduction of COG in the hot blast stove with the possibil-ity to increase the blast temperature and thus reduce the coking rate.The usage of SOE-FGR increases the CO 2content in the ?ue gas.For this case the CO 2content increases from 24.96%to 41.46%.This increase will be of bene?t if carbon capture and storage (CCS)is applied to reduce to CO 2emission from the process.

3.2.2.The effect of prolonged cycle time

The effect of the prolonged cycle time on the hot blast and ?ue gas temperatures for the different cases is presented in Fig.7.For all the cases,the hot blast temperature is increased.For the case of 1b2f (i.e.the blast time prolong 1min while the ?ring time prolong 2min)the hot blast temperature at the end of the blast period is only 0.6°C higher than reference.

Based on the investigation,it is obvious that the ?ue gas tem-perature is increased for all the https://www.sodocs.net/doc/0b18612094.html,ing this information it is possible to improve the performance of this hot blast stove,with respect to blast temperature,by increasing the cycle time.However,this can only be used when the stove is operated with

a ?ue gas temperature lower than the maximum allowed since it will increase the ?ue gas temperature.4.Conclusions

A dynamic model for the hot blast stove operation was devel-oped in this work,extending from one single stove to a full stove system.The model is based on the ?nite difference approximation of the heat balance and calculates the thermophysical properties for both gas and solid with respect to time and position in the stove.The developed model was calibrated by representing the stove V26at SSAB,Oxel?sund,and it shows that the model can be used to represent the stove operation.

The model can be used to investigate the impacts of new oper-ating scenarios.In this work the use of SOE-FGR was investigated as a case study.The investigation shows that the utilisation of SOE-FGR is bene?cial for the stove operation,i.e.(1)it is possible to remove COG in the hot blast stove;(2)the ?ue gas volume is decreased which can make it possible to increase the fuel gas ?ow rate to the hot blast stove to increase the hot blast temperature.With an increase in the hot blast temperature,it is possible to increase the blast temperature which would improve the ef?ciency of the entire BF process;(3)in addition,the high CO 2content in the ?ue gas will be an additional advantage if carbon capture and stor-age (CCS)is applied to mitigate the climate change.

Additionally the effects of prolonging the cycle time on the stove were investigated.It shows that the performance,with respect to blast temperature,of a normally-functioning stove can be increased.This strategy should be possible to implement on stoves in operation where the maximum ?ue gas temperature is lower than that allowed to the stack.Acknowledgements

The authors gratefully acknowledge the European Commission for ?nancial support of this research work (OptiStove,Contract No.RFSR-CT-2012-0003).The Swedish partners would like to express thanks to the Swedish Energy Agency (Energimyn-digheten)for the ?nancial support (Project number:36278-1).Appendix A.Gas properties

Polynomials for the thermophysical properties of the individual species in the gas mixture were developed from tabulated proper-ties.In Table A1?tted curve polynomials for the speci?c heat capac-ity are presented.Temperatures in functions are inserted in kelvins.In Table A2the polynomials for the dynamic viscosity are presented.

In Table A3the polynomials for the ?tted curve for the thermal conductivity are presented.

Table A1

The ?tted curve functions for speci?c heat capacity (kJ/kmol K)of each pure component.

Polynomial

Data source

CO 2

à2:34195á10à19T 6t2:69908á10à15T 5à1:331858á10à11T 4t3:753867á10à8T 3à6:678246á10à5T 2t7:397397á10à2T t20:44229

300–1100K NIST [27]900–3000°C

Kj?llstr?m et al.[28]N 21:738574á10à19T 6à3:421514á10à15T 5t1:890669á10à11T 4à4:663711á10à8T 3t5:505471á10à5T 2à2:392943á10à2T t32:55086300–2000K NIST [27]O 2

4:062268á10à19T 6à4:391720á10à15T 5t1:810703á10à11T 4à3:482057á10à8T 3t2:882807á10à5T 2à9:746809á10à4T t27:78288

300–1000K NIST [27]800–3000°C

Kj?llstr?m et al.[28]H 2O

1:216995á10à18T 6à1:416316á10à14T 5t6:555617á10à11T 4à1:532533á10à7T 3t1:865624á10à4T 2à9:881868á10à2T t54:24358

300–1260K NIST [27]1100–3000°C

Kj?llstr?m et al.[28]

8J.Zetterholm et al./Applied Energy xxx (2016)

xxx–xxx

References

[1]Carpenter A.CO 2abatement in the iron and steel industry;2012.

[2]Xu C,Cang DQ.A brief overview of low CO 2emission technologies for iron and

steel making.J Iron Steel Res Int 2010;17:1–7.https://www.sodocs.net/doc/0b18612094.html,/10.1016/S1006-706X(10)60064-7.

[3]Suopaj?rvi H,Pongrácz E,Fabritius T.Bioreducer use in Finnish blast furnace

ironmaking –analysis of CO 2emission reduction potential and mitigation cost.Appl Energy 2014;124:82–93.https://www.sodocs.net/doc/0b18612094.html,/10.1016/j.apenergy.2014.03.008.

[4]Wang C,Larsson M,L?vgren J,Nilsson L,Mellin P,Yang W,et al.Injection of

solid biomass products into the blast furnace and its potential effects on an integrated steel plant.Energy Proc 2014;61:2184–7.https://www.sodocs.net/doc/0b18612094.html,/10.1016/j.egypro.2014.12.105.

[5]de Oliveira Junior VB,Pena JGC,Salles JLF.An improved plant-wide multiperiod

optimization model of a byproduct gas supply system in the iron and steel-making process.Appl Energy 2016;164:462–74.https://www.sodocs.net/doc/0b18612094.html,/10.1016/j.apenergy.2015.11.043.

[6]Porzio GF,Fornai B,Amato A,Matarese N,Vannucci M,Chiappelli L,et al.

Reducing the energy consumption and CO 2emissions of energy intensive industries through decision support systems –an example of application to the steel industry.Appl Energy 2013;112:818–33.https://www.sodocs.net/doc/0b18612094.html,/10.1016/j.apenergy.2013.05.005.

[7]Chen W,Yin X,Ma D.A bottom-up analysis of China’s iron and steel industrial

energy consumption and CO 2emissions.Appl Energy 2014;136:1174–83.https://www.sodocs.net/doc/0b18612094.html,/10.1016/j.apenergy.2014.06.002.

[8]Stanek W,Rusinowski H.Identi?cation of the energy characteristics of a

Cowper stove with the application of neural modelling.Energy Convers Manage 2007;48:2810–7.https://www.sodocs.net/doc/0b18612094.html,/10.1016/j.enconman.2007.06.042.[9]International Energy Agency.Tracking industrial energy ef?ciency and CO 2

emissions;2007.

[10]Sahin A,Morari M.Optimizing control of hot blast stoves in staggered parallel

operation.In:IFAC Proc,vol.17;2008.p.1982–7.https://www.sodocs.net/doc/0b18612094.html,/10.3182/20080706-5-KR-1001.3571.

[11]Bisio G.A second-law analysis of the ‘‘hot blast stove/gas turbine”combination

by applying the parameter ‘‘usable exergy”.Energy Convers Manage 1998;39:217–27.https://www.sodocs.net/doc/0b18612094.html,/10.1016/S0196-8904(96)00224-5.

[12]Zhang F,Mao Q,Mei C,Li X,Hu Z.Dome combustion hot blast stove for huge

blast furnace.J Iron Steel Res Int 2012;19:1–7.https://www.sodocs.net/doc/0b18612094.html,/10.1016/S1006-706X(13)60001-1.

[13]Lundgren J,Ekbom T,Hulteberg C,Larsson M,Grip C-E,Nilsson L,et al.

Methanol production from steel-work off-gases and biomass based synthesis

gas.Appl Energy 2013;112:431–9.https://www.sodocs.net/doc/0b18612094.html,/10.1016/j.apenergy.2013.03.010.

[14]

Muske KR,Howse JW,Hansen Ga,Cagliostro DJ.Model-based control of a thermal regenerator.Part 1:Dynamic https://www.sodocs.net/doc/0b18612094.html,put Chem Eng 2000;24:2507–17.https://www.sodocs.net/doc/0b18612094.html,/10.1016/S0098-1354(00)00613-.

[15]Willmott AJ.Simulation of a thermal regenerator under conditions of variable mass ?ow.Int J Heat Mass Transfer 1968;11:1105–16.

[16]

Razelos P,Benjamin https://www.sodocs.net/doc/0b18612094.html,puter model of thermal regenerators with variable mass ?ow rates.Int J Heat Mass Transfer 1978;21:735–44.https://www.sodocs.net/doc/0b18612094.html,/10.1016/0017-9310(78)90035-2.

[17]Martin PM,Hass KP.Mathematical modeling of a blast furnace stove.In:Proc Process Technol Conf,Iron &Steel Soc of AIME;1982,p.179–86.

[18]

Kimura Y,Takatani K,Otsu N.Three-dimensional mathematical modeling and designing of hot stove.ISIJ Int 2010;50:1040–7.https://www.sodocs.net/doc/0b18612094.html,/10.2355/isijinternational.50.1040.

[19]

Incropera FP,DeWitt DP,Bergman TL,Lavine AS.Fundamentals of heat and mass transfer,vol.6.John Wiley &Sons;2007.https://www.sodocs.net/doc/0b18612094.html,/10.1016/j.applthermaleng.2011.03.022.

[20]

Gnielinski V.Neue Gleichungen für den W?rme-und den Stoffübergang in turbulent durchstr?mten Rohren und Kan?len.Forsch Ingenieurwes A 1975;41:8–16.https://www.sodocs.net/doc/0b18612094.html,/10.1007/BF02559682.

[21]Mason EA,Saxena SC.Approximate formula for the thermal conductivity of gas mixtures.Phys Fluids 1958;1:361.https://www.sodocs.net/doc/0b18612094.html,/10.1063/1.1724352.

[22]Wilke CR.A viscosity equation for gas mixtures.J Chem Phys 1950;18:517.https://www.sodocs.net/doc/0b18612094.html,/10.1063/1.1747673.

[23]

Petukhov BS.Heat transfer and friction in turbulent pipe ?ow with variable physical properties.Adv Heat Transfer 1970;6:503–64.https://www.sodocs.net/doc/0b18612094.html,/10.1016/S0065-2717(08)70153-9.

[24]Baehr HD,Stephan K.Heat Mass Transfer 2011.https://www.sodocs.net/doc/0b18612094.html,/10.1007/978-3-642-20021-2.

[25]Modak AT.Radiation from products of combustion.Fire Saf J 1979;1:339–61.https://www.sodocs.net/doc/0b18612094.html,/10.1016/0379-7112(79)90004-3.

[26]

Cameron A,Richardson A,Heine R,Martin PM.Oxy-fuel combustion in cowper stoves.A basis for reducing CO 2emissions by 30%.In:EECR steel 2011–1st conf energy ef?c CO 2reduct steel Ind,Düsseldorf,Germany;2011.

[27]

Lemmon EW,McLinden MO,Friend DG.Thermophysical properties of ?uid systems.In:Linstrom PJ,Mallard WG,editors.NIST Chem.WebBook.NIST Stand Ref Database Number 69.Gaithersburg MD,20899:National Institute of Standards and Technology;2014.

[28]

Kj?llstr?m B,Lindberg J,Keikkala https://www.sodocs.net/doc/0b18612094.html,bustion and gasi?cation in theory and practice.Lule?:Lule?University of Technology;2003.

Table A2

The ?tted curve functions for dynamic viscosity (Pa s)of each pure component.

Polynomial

Source

CO 2

4:489033E à24áT 6à2:239108E à20áT 5t4:425976E à17áT 4à3:846162E à14áT 3à1:958072E à12áT 2t5:629214E à08áT à9:683212E à07

300–1100K NIST [27]

N 22:648376E à15áT 3à1:426279E à11áT 2t4:788639E à08áT t5:361414à06300–2000K NIST [27]O 23:883066E à07áT 0:701617

300–1000K NIST [27]H 2O

à1:588906E à20áT 5t7:577196E à17áT 4à1:442803E à13áT 3t1:317680E à10áT 2à1:585481E à08áT t6:066958E à06

300–1260K NIST [27]Table A3

The ?tted curve functions for thermal conductivity (W/m K)of each pure component.

Polynomial

Source CO 22:194639E à20áT 6à1:048816E à16áT 5t2:085923E à13áT 4à2:201364E à10áT 3t1:132998E à07áT 2t0:000058áT à0:006591300–1100K NIST [27]N 2à1:432105763E à21áT 6t9:798422E à18áT 5à2:513823E à14áT 4t2:987467E à11áT 3à2:275699E à08áT 2t0:000069áT t0:007102300–2000K NIST [27]O 2à3:756882E à20áT 6t1:498853E à16áT 5à2:224563E à13áT 4t1:346780E à10áT 3à2:421736E à08áT 2t0:000075áT t0:004189300–1000K NIST [27]H 2O

4:143100E à20áT 6à2:227280E à16áT 5t5:002103E à13áT 4à6:184705E à10áT 3t4:819193E à07áT 2à0:000106áT t0:020247

300–1260K NIST [27]

J.Zetterholm et al./Applied Energy xxx (2016)xxx–xxx

9

图解blast验证引物教程

图解blast验证引物教程 1、进入网页:https://www.sodocs.net/doc/0b18612094.html,/BLAST/ 2、点击Search for short, nearly exact matches 3、在search栏中输入引物系列: 注:文献报道ABCG2的引物为5’-CTGAGATCCTGAGCCTTTGG-3’; 5’-TGCCCATCACAACATCATCT-3’ (1)输入方法可先输入上游引物,进行blast程序,同样方法在进行下游引物的blast程序。这种方法叫繁琐,而且在结果分析特异性时要看能与上游引物的匹配的系列,还要看与下游引物匹配的系列——之后看两者的交叉。 (2)简便的做法是同时输入上下游引物:有以下两种方法。输入上下游引物系列都从5’——3’。 A、输入上游引物空格输入下游引物

B、输入上游引物回车输入下游引物 4、在options for advanced blasting中: select from 栏通过菜单选择Homo sapiens【ORGN】Expect后面的数字改为10 5、在format中: select from 栏通过菜单选择Homo sapiens【ORGN】Expect后面的数字填上0 10

6、点击网页中最下面的“BLAST!” 7、出现新的网页,点击Format! 果。

(1)图形格式: 图中①代表这些序列与上游引物匹配、并与下游引物互补的得分值都位于40~50分 图中②代表这些序列与上游引物匹配的得分值位于40~50分,而与下游引物不互补 图中③代表这些序列与下游引物互补的得分值小于40分,而与上游引物不匹配 通过点击相应的bar可以得到匹配情况的详细信息。 (2)结果信息概要: 从左到右分别为: A、数据库系列的身份证:点击之后可以获得该序列的信息 B、系列的简单描述 C、高比值片段对(high-scoring segment pairs, HSP)的字符得分。按照得分的高低由大到小排列。得分的计算公式=匹配的碱基×2+0.1。举例:如果有20个碱基匹配,则其得分为40.1。 D、E值:代表被比对的两个序列不相关的可能性。【The E value decreases exponentially as the Score (S) that is assigned to a match between two sequences increases】。E值最低的最有意义,也就是说序列的相似性最大。设定的E值是我们限定的上限,E值太高的就不显示了 E、最后一栏有的有UEG的字样,其中: U代表:Unigene数据库 E代表:GEO profiles数据库 G代表:Gene数据库

古代晋灵公不君、齐晋鞌之战原文及译文

晋灵公不君(宣公二年) 原文: 晋灵公不君。厚敛以雕墙。从台上弹人,而观其辟丸也。宰夫胹熊蹯不熟,杀之,寘诸畚,使妇人载以过朝。赵盾、士季见其手,问其故而患之。将谏,士季曰:“谏而不入,则莫之继也。会请先,不入,则子继之。”三进及溜,而后视之,曰:“吾知所过矣,将改之。”稽首而对曰:“人谁无过?过而能改,善莫大焉。诗曰:‘靡不有初,鲜克有终。’夫如是,则能补过者鲜矣。君能有终,则社稷之固也,岂惟群臣赖之。又曰:‘衮职有阙,惟仲山甫补之。’能补过也。君能补过,衮不废矣。” 犹不改。宣子骤谏,公患之,使鉏麑贼之。晨往,寝门辟矣,盛服将朝。尚早,坐而假寐。麑退,叹而言曰:“不忘恭敬,民之主也。贼民之主,不忠;弃君之命,不信。有一于此,不如死也!”触槐而死。 秋九月,晋侯饮赵盾酒,伏甲将攻之。其右提弥明知之,趋登曰:“臣侍君宴,过三爵,非礼也。”遂扶以下。公嗾夫獒焉。明搏而杀之。盾曰:“弃人用犬,虽猛何为!”斗且出。提弥明死之。 初,宣子田于首山,舍于翳桑。见灵辄饿,问其病。曰:“不食三日矣!”食之,舍其半。问之,曰:“宦三年矣,未知母之存否。今近焉,请以遗之。”使尽之,而为之箪食与肉,寘诸橐以与之。既而与为公介,倒戟以御公徒,而免之。问何故,对曰:“翳桑之饿人也。”问其名居,不告而退。——遂自亡也。 乙丑,赵穿①攻灵公于桃园。宣子未出山而复。大史书曰:“赵盾弑其君。”以示于朝。宣子曰:“不然。”对曰:“子为正卿,亡不越竟,反不讨贼,非子而谁?”宣子曰:“呜呼!‘我之怀矣,自诒伊戚。’其我之谓矣。” 孔子曰:“董狐,古之良史也,书法不隐。赵宣子,古之良大夫也,为法受恶。惜也,越竞乃免。” 译文: 晋灵公不行君王之道。他向人民收取沉重的税赋以雕饰宫墙。他从高台上用弹弓弹人,然后观赏他们躲避弹丸的样子。他的厨子做熊掌,没有炖熟,晋灵公就把他杀了,把他的尸体装在草筐中,让宫女用车载着经过朝廷。赵盾和士季看到露出来的手臂,询问原由后感到很忧虑。他们准备向晋灵公进谏,士季说:“如果您去进谏而君王不听,那就没有人能够再接着进谏了。还请让我先来吧,不行的话,您再接着来。”士季往前走了三回,行了三回礼,一直到屋檐下,晋灵公才抬头看他。晋灵公说:“我知道我的过错了,我会改过的。”士季叩头回答道:“谁能没有过错呢?有过错而能改掉,这就是最大的善事了。《诗经》说:‘没有人向善没有一个开始的,但却很少有坚持到底的。’如果是这样,那么能弥补过失的人是很少的。您如能坚持向善,那么江山就稳固了,不只是大臣们有所依靠啊。

Blast本地化详细流程

Blast 2.4.0+本地化详细流程(基于Windows系统) 1.程序获得。从NCBI上下载Blast本地化程序,下载地址: ftp://https://www.sodocs.net/doc/0b18612094.html,/blast/executables/blast+/LATEST/ 64×安装版▲ 64×解压(绿色)版▲ 最好安装或解压到X盘根目录:如X:\blast,尽量简短,方便后边命令输入。 2.原始序列获得。方法1:找到转录组测序数据unigene数据库文件:unigene.fasta 或unigene.fa,若为unigene.fa则直接改后缀为.fasta即可。找到或修改后将数据库文件移动至Blast本地化程序目录“X:\blast\bin”。方法2:从NCBI中的ftp 库下载所需要库,链ftp://https://www.sodocs.net/doc/0b18612094.html,/blast/db/FASTA/,其中nr.gz为非冗余的数据库,nt.gz为核酸数据库,month.nt.gz为最近一个月的核酸序列数据。下载的month.nt.gz先用WINRAR解压缩,然后用makeblastdb.exe格式化。方法3:利用新版blast自带的update_blastdb.pl进行下载,这需要安装perl程序。 注释:上述三种方法各有优缺点,前两种下载速度较快,但是每次进行检索都需要对数据库进行格式化(转化成二进制数据),第三种方法下载速度较慢,但是NCBI 中已经格式化好的,在进行本地检索时不需再进行格式化,直接用即可。 3.用文本编辑器(txt文件改名字及后缀)创建一个ncbi.ini文件,文件包含下 面内容:[NCBI]Data="C:\blast\data\" 先新建TXT文件,然后改属性,将ncbi.ini文件存放到C:\Windows 4.将Blast本地化程序目录添加路径中(该步骤非必须,但会给以后的操作带来 方便),方法: a)右击我的电脑选择属性,选择高级,点击环境变量,设置环境变量 b)系统变量中,选择Path,点击“编辑”,在变量值的后面添加Blast本地化 程序所在路径,E:\blast 点击确定,将安装路径添加到path。 5.运行MS-DOC。打开DOC窗口(点击开始,选择运行,打开的输入框中输 入“CMD”,确定),访问Blast本地化程序所在文件夹,依次输入:(1)X: 回车;(2)cd blast\bin,回车。

NCBI在线BLAST使用方法与结果详解

N C B I在线B L A S T使用方法与结果详解 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

N C B I在线B L A S T使用方法与结果详解 BLAST(BasicLocalAlignmentSearchTool)是一套在蛋白质数据库或DNA数据库中进行相似性比较的分析工具。BLAST程序能迅速与公开数据库进行相似性序列比较。BLAST结果中的得分是对一种对相似性的统计说明。 BLAST采用一种局部的算法获得两个序列中具有相似性的序列。 Blast中常用的程序介绍: 1、BLASTP是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐一地同每条所查序列作一对一的序列比对。 2、BLASTX是核酸序列到蛋白库中的一种查询。先将核酸序列翻译成蛋白序列(一条核酸序列会被翻译成可能的六条蛋白),再对每一条作一对一的蛋白序列比对。 3、BLASTN是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将同所查序列作一对一地核酸序列比对。 4、TBLASTN是蛋白序列到核酸库中的一种查询。与BLASTX相反,它是将库中的核酸序列翻译成蛋白序列,再同所查序列作蛋白与蛋白的比对。 5、TBLASTX是核酸序列到核酸库中的一种查询。此种查询将库中的核酸序列和所查的核酸序列都翻译成蛋白(每条核酸序列会产生6条可能的蛋白序列),这样每次比对会产生36种比对阵列。 NCBI的在线BLAST: 下面是具体操作方法 1,进入在线BLAST界面,可以选择blast特定的物种(如人,小鼠,水稻等),也可以选择blast所有的核酸或蛋白序列。不同的blast程序上面已经有了介绍。这里以常用的核酸库作为例子。 2,粘贴fasta格式的序列。选择一个要比对的数据库。关于数据库的说明请看NCBI在线blast数据库的简要说明。一般的话参数默认。 3,blast参数的设置。注意显示的最大的结果数跟E值,E值是比较重要的。筛选的标准。最后会说明一下。 4,注意一下你输入的序列长度。注意一下比对的数据库的说明。 5,blast结果的图形显示。没啥好说的。 6,blast结果的描述区域。注意分值与E值。分值越大越靠前了,E值越小也是这样。7,blast结果的详细比对结果。注意比对到的序列长度。评价一个blast结果的标准主要有三项,E值(Expect),一致性(Identities),缺失或插入(Gaps)。加上长度的话,就有四个标准了。如图中显示,比对到的序列长度为1405,看Identities这一值,才匹配到1344bp,而输入的序列长度也是为1344bp(看上面的图),就说明比对到的序列要长一

如何翻译古文

如何翻译古文 学习古代汉语,需要经常把古文译成现代汉语。因为古文今译的过程是加深理解和全面运用古汉语知识解决实际问题的过程,也是综合考察古代汉语水平的过程。学习古代汉语,应该重视古文翻译的训练。 古文翻译的要求一般归纳为信、达、雅三项。“信”是指译文要准确地反映原作的含义,避免曲解原文内容。“达”是指译文应该通顺、晓畅,符合现代汉语语法规范。“信”和“达”是紧密相关的。脱离了“信”而求“达”,不能称为翻译;只求“信”而不顾“达”,也不是好的译文。因此“信”和“达”是文言文翻译的基本要求。“雅”是指译文不仅准确、通顺,而且生动、优美,能再现原作的风格神韵。这是很高的要求,在目前学习阶段,我们只要能做到“信”和“达”就可以了。 做好古文翻译,重要的问题是准确地理解古文,这是翻译的基础。但翻译方法也很重要。这里主要谈谈翻译方法方面的问题。 一、直译和意译 直译和意译是古文今译的两大类型,也是两种不同的今译方法。 1.关于直译。所谓直译,是指紧扣原文,按原文的字词和句子进行对等翻译的今译方法。它要求忠实于原文,一丝不苟,确切表达原意,保持原文的本来面貌。例如: 原文:樊迟请学稼,子曰:“吾不如老农。”请学为圃。子曰:“吾不如老圃。”(《论语?子路》) 译文:樊迟请求学种庄稼。孔子道:“我不如老农民。”又请求学种菜蔬。孔子道:“我不如老菜农。”(杨伯峻《论语译注》) 原文:齐宣王问曰:“汤放桀,武王伐纣,有诸?”(《孟子?梁惠王下》) 译文:齐宣王问道:“商汤流放夏桀,武王讨伐殷纣,真有这回事吗?(杨伯峻《孟子译注》) 上面两段译文紧扣原文,字词落实,句法结构基本上与原文对等,属于直译。 但对直译又不能作简单化理解。由于古今汉语在文字、词汇、语法等方面的差异,今译时对原文作一些适当的调整,是必要的,并不破坏直译。例如: 原文:逐之,三周华不注。(《齐晋鞌之战》) 译文:〔晋军〕追赶齐军,围着华不注山绕了三圈。

本地blast的详细用法∷柳城

本地blast的详细用法 Posted on 03 四月 2009 by 柳城,阅读 9,626 本地blast的详细使用方法 blast all -p blastn -i myRNA.fasta -d humanRNA.fasta -o myresult.blastout -a 2 -F F -T T -e 1e-10 解释如下: blastall: 这是本地化/命令行执行blast时的程序名字!(Tips:blastall直接回车就会给出你所有的参数帮助,但是英文的) -p: p 是program的简写,program在计算机领域中是程序的意思。此参数是指定要使用何种子程序,所谓子程序,就是针对不同的需要,如核酸序列和核酸序列进行比对、蛋白质序列和蛋白质序列进行比对、假设翻译后核酸序列于蛋白质序列进行比对,选择相应的子程序: blastn 是用于核酸对核酸 blastp 是蛋白质对蛋白质序列等等,一共5个自程序。 -i: i 是input的简写,意思是输入文件,就是你自己的要进行比对的序列文件(fasta格式) -d: d是database的简写,意思是要比对的目标数据库,在例子中就是humanRNA.fasta (别忘了要formatdb) -o: o是output的简写,意思是结果文件名字,这个根据你自己的习惯起名字,可以带路径,(上边两个参数-i -d 也都可以带路径) *注意以上4个参数是必须的,缺一不可,下面的参数是为了得到更好的结果自己可调的参数,如果你不加也没有关系,blastall程序本身会给一个默认值! -a: 是指计算时要用的CPU个数,我的机器有两个CPU,所以用-a 2,这样可以并行化进行计算,提高速度,当然你的计算机就一个CPU,可以不用这个参数,系统默认值为1,就是一个CPU -F: 是filter的简写,blastall程序中有对简单的重复序列和低复杂度的一些repeats过滤调,默认是T (注意以后的有几种参数就两个选项,T/F T就是ture,真,你可以理解为打开该功能; F就是false,假,理解为关闭该功能) -T: 是HTML的简写,是指blast结果文件是否用HTML格式,默认是F!如果你想用IE看,我建议用-T T -e: 是Expectation value,期望值,默认是10,我用的10-10! BLASTALL 用法 a.格式化序列数据库 格式化序列数据库— —formatdb formatdb简单介绍: formatdb处理的都是格式为 ASN.1和FASTA,而且不论是核苷酸序列数据库,还是蛋白质序列数据库;不论是使用Blastall ,还是Blastpgp,Mega Blast应用程序,这一步都是不可少的。 formatdb命令行参数: formatdb - 得到formatdb 所有的参数显示(见附录二)和介绍, 主要参数的说明:

齐晋鞌之战原文和译文

鞌之战选自《左传》又名《鞍之战》原文:楚癸酉,师陈于鞌(1)。邴夏御侯,逢丑父为右②。晋解张御克,郑丘缓为右(3)。侯日:“余姑翦灭此而朝食(4)”。不介马而驰之⑤。克伤于矢,流血及屦2 未尽∧6),曰:“余病矣(7)!”张侯曰:“自始合(8),而矢贯余手及肘(9),余折以御,左轮朱殷(10),岂敢言病吾子忍之!”缓曰:“自始合,苟有险,余必下推车,子岂_识之(11)然子病矣!”张侯曰:“师之耳目,在吾旗鼓,进退从之。此车一人殿之(12),可以集事(13),若之何其以病败君之大事也擐甲执兵(14),固即死也(15);病未及死,吾子勉之(16)!”左并辔(17) ,右援拐鼓(18)。马逸不能止(19),师从之,师败绩。逐之,三周华不注(20) 韩厥梦子舆谓己曰:“旦辟左右!”故中御而从齐侯。邴夏曰:“射其御者,君子也。”公曰:“谓之君子而射之,非礼也。”射其左,越于车下;射其右,毙于车中。綦毋张丧车,从韩厥,曰:“请寓乘。”从左右,皆肘之,使立于后。韩厥俛,定其右。逢丑父与公易位。将及华泉,骖絓于木而止。丑父寝于轏中,蛇出于其下,以肱击之,伤而匿之,故不能推车而及。韩厥执絷马前,再拜稽首,奉觞加璧以进,曰:“寡君使群臣为鲁、卫请,曰:‘无令舆师陷入君地。’下臣不幸,属当戎行,无所逃隐。且惧奔辟而忝两君,臣辱戎士,敢告不敏,摄官承乏。” 丑父使公下,如华泉取饮。郑周父御佐车,宛茷为右,载齐侯以免。韩厥献丑父,郤献子将戮之。呼曰:“自今无有代其君任患者,有一于此,将为戮乎”郤子曰:“人不难以死免其君,我戮之不祥。赦之,以劝事君者。”乃免之。译文1:在癸酉这天,双方的军队在鞌这个地方摆开了阵势。齐国一方是邴夏为齐侯赶车,逢丑父当车右。晋军一方是解张为主帅郤克赶车,郑丘缓当车右。齐侯说:“我姑且消灭了这些人再吃早饭。”不给马披甲就冲向了晋军。郤克被箭射伤,血流到了鞋上,但是仍不停止擂鼓继续指挥战斗。他说:“我受重伤了。”解张说:“从一开始接战,一只箭就射穿了我的手和肘,左边的车轮都被我的血染成了黑红色,我哪敢说受伤您忍着点吧!”郑丘缓说:“从一开始接战,如果遇到道路不平的地方,我必定(冒着生命危险)下去推车,您难道了解这些吗不过,您真是受重伤了。”daier 解张说:“军队的耳朵和眼睛,都集中在我们的战旗和鼓声,前进后退都要听从它。这辆车上还有一个人镇守住它,战事就可以成功。为什么为了伤痛而败坏国君的大事呢身披盔甲,手执武器,本来就是去走向死亡,伤痛还没到死的地步,您还是尽力而为吧。”一边说,一边用左手把右手的缰绳攥在一起,用空出的右手抓过郤克手中的鼓棰就擂起鼓来。(由于一手控马,)马飞快奔跑而不能停止,晋军队伍跟着指挥车冲上去,把齐军打得打败。晋军随即追赶齐军,三次围绕着华不注山奔跑。韩厥梦见他去世的父亲对他说:“明天早晨作战时要避开战车左边和右边的位置。”因此韩厥就站在中间担任赶车的来追赶齐侯的战车。邴夏说:“射那个赶车的,他是个君子。”齐侯说: “称他为君子却又去射他,这不合于礼。”daier 于是射车左,车左中箭掉下了车。又射右边的,车右也中箭倒在了车里。(晋军的)将军綦毋张损坏了自己的战车,跟在韩厥的车后说: “请允许我搭乗你的战车。”他上车后,无论是站在车的左边,还是站在车的右边,韩厥都用肘推他,让他站在自己身后——战车的中间。韩厥又低下头安定了一下受伤倒在车中的那位自己的车右。于是逢丑父和齐侯(乘韩厥低头之机)互相调换了位置。将要到达华泉时,齐侯战车的骖马被树木绊住而不能继续逃跑而停了下来。(头天晚上)逢丑父睡在栈车里,有一条蛇从他身子底下爬出来,他用小臂去打蛇,小臂受伤,但他(为了能当车右)隐瞒了这件事。由于这样,他不能用臂推车前进,因而被韩厥追上了。韩厥拿着拴马绳走到齐侯的马前,两次下拜并行稽首礼,捧着一杯酒并加上一块玉璧给齐侯送上去,

blast验证引物教程1

图解blast验证引物教程 ——以文献报道的人类的ABCG2的引物为例 1、进入网页:https://www.sodocs.net/doc/0b18612094.html,/BLAST/ 2、点击Basic BLAST中的nucleotide blast选项 3、完成2操作后就进入了Basic Local Alignment Search Tool界面 (1)在Enter Query Sequence栏中输入引物序列: 注:文献报道ABCG2的引物为5’-CTGAGATCCTGAGCCTTTGG-3’; 5’-TGCCCATCACAACATCATCT-3’ 简便的做法是同时输入上下游引物。输入上下游引物系列都从5’—3’。输入上游引物后,加上≥20个字母n,再输入下游引物,如下图:

(2)在Choose Search Set栏中: Database根据预操作基因的种属定了,本引物可选Human genomic + transcript或 Others (nr etc.)。本人倾向于选后者,觉得此库信息更多。如下图: (3)在Program Selection中:选择Somewhat similar sequences (blastn)项,如下图: (4)在此界面最下面:如下图 Show results in a new window项是显示界面的形式,可选可不选,在此我们选上了。关键要点击Algorithm parameters参数设置,进入参数设置界面。 4. 参数设置: (1)在General Parameters中:Expect thresshold期望阈值须改为1000,大于1000也可以; 在Word size的下拉框将数字改为7。如下图:

《鞌之战》阅读答案(附翻译)原文及翻译

《鞌之战》阅读答案(附翻译)原文及翻 译 鞌之战[1] 选自《左传成公二年(即公元前589年)》 【原文】 癸酉,师陈于鞌[2]。邴夏御齐侯[3],逢丑父为右[4]。晋解张御郤克,郑丘缓为右[5]。齐侯曰:余姑翦灭此而朝食[6]。不介马而驰之[7]。郤克伤于矢,流血及屦,未绝鼓音[8],曰:余病[9]矣!张侯[10]曰:自始合,而矢贯余手及肘[11],余折以御,左轮朱殷[12],岂敢言病。吾子[13]忍之!缓曰:自始合,苟有险[14],余必下推车,子岂识之[15]?然子病矣!张侯曰:师之耳目,在吾旗鼓,进退从之[16]。此车一人殿之[17],可以集事[18],若之何其以病败君之大事也[19]?擐甲执兵,固即死也[20]。病未及死,吾子勉之[21]!左并辔[22],右援枹而鼓[23],马逸不能止[24],师从之。齐师败绩[25]。逐之,三周华不注[26]。 【注释】 [1]鞌之战:春秋时期的著名战役之一。战争的实质是齐、晋争霸。由于齐侯骄傲轻敌,而晋军同仇敌忾、士气旺盛,战役以齐败晋胜而告终。鞌:通鞍,齐国地名,在今山东济南西北。 [2]癸酉:成公二年的六月十七日。师,指齐晋两国军队。陈,

列阵,摆开阵势。 [3]邴夏:齐国大夫。御,动词,驾车。御齐侯,给齐侯驾车。齐侯,齐国国君,指齐顷公。 [4]逢丑父:齐国大夫。右:车右。 [5]解张、郑丘缓:都是晋臣,郑丘是复姓。郤(x )克,晋国大夫,是这次战争中晋军的主帅。又称郤献子、郤子等。 [6]姑:副词,姑且。翦灭:消灭,灭掉。朝食:早饭。这里是吃早饭的意思。这句话是成语灭此朝食的出处。 [7]不介马:不给马披甲。介:甲。这里用作动词,披甲。驰之:驱马追击敌人。之:代词,指晋军。 [8] 未绝鼓音:鼓声不断。古代车战,主帅居中,亲掌旗鼓,指挥军队。兵以鼓进,击鼓是进军的号令。 [9] 病:负伤。 [10]张侯,即解张。张是字,侯是名,人名、字连用,先字后名。 [11]合:交战。贯:穿。肘:胳膊。 [12]朱:大红色。殷:深红色、黑红色。 [13]吾子:您,尊敬。比说子更亲切。 [14]苟:连词,表示假设。险:险阻,指难走的路。 [15]识:知道。之,代词,代苟有险,余必下推车这件事,可不译。 [16]师之耳目:军队的耳、目(指注意力)。在吾旗鼓:在我们

图解blast验证引物教程1

图解blast 验证引物教程 ——以文献报道的人类的ABCG2的引物为例 1、 进入网页:https://www.sodocs.net/doc/0b18612094.html,/BLAST/ 2、 点击Basic BLAST 中的nucleotide blast 选项 3、 完成2操作后就进入了Basic Local Alignment Search Tool 界面 (1)在Enter Query Sequence 栏中输入引物序列: 注:文献报道ABCG2的引物为5’-CTGAGATCCTGAGCCTTTGG-3’; 5’-TGCCCATCACAACATCATCT-3’ 简便的做法是同时输入上下游引物。输入上下游引物系列都从5’— 3’。 输入上游引物后,加上≥20个字母n ,再输入下游引物,如下图: 生 物 秀

(2)在Choose Search Set 栏中: Database 根据预操作基因的种属定了,本引物可选Human genomic + transcript 或Others (nr etc.)。本人倾向于选后者,觉得此库信息更多。如下图: (3)在Program Selection 中:选择Somewhat similar sequences (blastn)项,如下图: (4)在此界面最下面:如下图 生物秀-专心做生物 w w w .b b i o o .c o m

Show results in a new window 项是显示界面的形式,可选可不选,在此我们选上了。关键要点击Algorithm parameters 参数设置,进入参数设置界面。 4. 参数设置: (1)在General Parameters 中:Expect thresshold 期望阈值须改为1000,大于1000也可以;在Word size 的下拉框将数字改为7。如下图: (2)Scoring Parameters 无须修改 (3)Filters and Masking 中,一般来说也没有必要改 5.点击最下面一栏的BLAST 按钮,如图: 6.点击BLAST 按钮后,跳转出现如下界面: 7. 等待若干秒之后,自动跳转出现显示BLAST 结果的网页。该网页用三种形式来显示blast 的结果。 生物秀-专心做生物 w w w .b b i o o .c o m

《鞌之战》阅读答案附翻译

《鞌之战》阅读答案(附翻译) 《鞌之战》阅读答案(附翻译) 鞌之战[1] 选自《左传·成公二年(即公元前589年)》 【原文】 癸酉,师陈于鞌[2]。邴夏御齐侯[3],逢丑父为右[4]。晋解张御郤克,郑丘缓为右[5]。齐侯曰:“余姑 翦灭此而朝食[6]。”不介马而驰之[7]。郤克伤于矢, 流血及屦,未绝鼓音[8],曰:“余病[9]矣!”张侯[10]曰:“自始合,而矢贯余手及肘[11],余折以御,左轮 朱殷[12],岂敢言病。吾子[13]忍之!”缓曰:“自始合,苟有险[14],余必下推车,子岂识之[15]?——然 子病矣!”张侯曰:“师之耳目,在吾旗鼓,进退从之[16]。此车一人殿之[17],可以集事[18],若之何其以 病败君之大事也[19]?擐甲执兵,固即死也[20]。病未 及死,吾子勉之[21]!”左并辔[22],右援枹而鼓[23],马逸不能止[24],师从之。齐师败绩[25]。逐之,三周 华不注[26]。 【注释】 [1]鞌之战:春秋时期的著名战役之一。战争的实质是齐、晋争霸。由于齐侯骄傲轻敌,而晋军同仇敌忾、 士气旺盛,战役以齐败晋胜而告终。鞌:通“鞍”,齐

国地名,在今山东济南西北。 [2]癸酉:成公二年的六月十七日。师,指齐晋两国军队。陈,列阵,摆开阵势。 [3]邴夏:齐国大夫。御,动词,驾车。御齐侯,给齐侯驾车。齐侯,齐国国君,指齐顷公。 [4]逢丑父:齐国大夫。右:车右。 [5]解张、郑丘缓:都是晋臣,“郑丘”是复姓。郤(xì)克,晋国大夫,是这次战争中晋军的主帅。又称郤献子、郤子等。 [6]姑:副词,姑且。翦灭:消灭,灭掉。朝食:早饭。这里是“吃早饭”的意思。这句话是成语“灭此朝食”的出处。 [7]不介马:不给马披甲。介:甲。这里用作动词,披甲。驰之:驱马追击敌人。之:代词,指晋军。 [8]未绝鼓音:鼓声不断。古代车战,主帅居中,亲掌旗鼓,指挥军队。“兵以鼓进”,击鼓是进军的号令。 [9]病:负伤。 [10]张侯,即解张。“张”是字,“侯”是名,人名、字连用,先字后名。 [11]合:交战。贯:穿。肘:胳膊。 [12]朱:大红色。殷:深红色、黑红色。 [13]吾子:您,尊敬。比说“子”更亲切。

本地Blast

本地Blast使用说明 一、软件的下载安装 1.1安装流程 建议安装在非系统盘,如将下载的 BLAST 程序安装到 E:\blast,生成bin、doc 两个子目录,其中 bin 是程序目录,doc 是文档目录,这样就安装完毕了。 1.2 设置环境变量 右键点击“我的电脑”-“属性”,然后选择“高级系统设置”标签-“环境变量”(图1),在用户变量下方“Path”随安装过程已自动添加其变量值,即“E:\Blast\bin”。此时点击“新建”-变量名“BLASTDB”,变量值为“E:\Blast\db”(即数据库路径,图2)。 二、查看程序版本信息 点击 Windows 的“开始”菜单下的“运行”,输入“cmd”调出 MS-DOS 命令行,转到 Blast 安装目录,输入命令“blastn -version”即可查看版本,若能显示说明本地blast 已经安装成功。 三、使用 3.1本地数据库的构建 下载所需的数据(Fasta格式),将X 放到E:\blast\db 文件夹下,然后调出MS-DOS 命令行,转到E:\blast\db 文件夹下运行以下命令:格式化

数据库,命令为: makeblastdb -in 数据库文件 -dbtype 序列类型(核酸:nul;蛋白:prot)-title database_title-parse_seqids -out database_name-logfile File_Name 格式化数据库后,创建三个主要的文件——库索引(indices),序列(sequences)和头(headers)文件。生成的文件的扩展名分别是:.pin、.psq、.phr(对蛋白质序列)或.nin、.nsq、.nhr(对核酸序列)。而其他的序列识别符和索引则包含在.psi和.psd(或.nsi 和.nsd)中。 3.2核酸序列相似性搜索 blastn -db database_name -query input_file -out output_file -outfmt "7 qacc sacc qstart qend sstart send length bitscore evalue pident ppos" 备注:qacc:查询序列Acession号;sacc:目标序列Acession号; qstart qend:分别表示查询序列比对上的起始、终止位置; sstart send:分别表示目标序列比对上的起始、终止位置; length:长度; bitscore:得分; evalue:E-Value值; pident:一致性; ppos:相似性 3.3 查看并获取目标序列: blastdbcmd -db refseq_rna -entry 224071016 -out test.fa 可以从数据库中提取gi号为224071016的序列,并且以fasta格式存入文 件 3.4蛋白质序列相似性搜索 Blastp -db database_name-query input_file -out output_file -outfmt "7 qacc sacc qstart qend sstart send length bitscore evalue pident ppos" 3.5 查看并获取目标序列:重复3.3

核酸BLAST

核酸BLAST: ?blastn程式——核酸序列比对。 ?MegaBLAST——可搜寻一批EST序列、长序列cDNA或基因体序列。 BLAST——Basic Local Alignment Search Tool——核酸与蛋白质序列比对工具。BLAST网页提供BLAST(Basic Local Alignment Search Tool)程式、概述、使用说明与常见问题解答(网址:https://www.sodocs.net/doc/0b18612094.html,/BLAST/)。 BLAST Program Selection Guide: https://www.sodocs.net/doc/0b18612094.html,/blast/producttable.shtml#tab31

在做BLASTn的时候,系统会给出三个程序选项,分别是Highly similar sequences (megablast), More dissimilar sequences (discontiguous megablast),Somewhat similar sequences (blastn) 。 第一个选项megablast是对高度相似DNA序列间的比较。鉴别一段未知DNA序列的最好办法就是看看在公共数据库中这段序列是否存在。Megablast就是对那些具有高度相似(相似性95% 以上)的长序列片断所特别设计的一种序列比较工具。Megablast除了提供序列联配的显著性期望值域之外,还提供了一种百分值域。在进行序列比较时,用户可以同时调整这两个参数以优化搜索结果。 第二个选项discontiguous megablast,当序列之间的差异比megablast大时,一般选用这个程序。其算法的基本原理是将查询序列分为一个一个的小片断,我们把它叫做字,通过字与数据库序列相比较,如果能够精确匹配,则以这个字为种子向两边延伸,从而获得符合我们要求的相似性序列。discontiguous megablast所应用的字是不连续的,这使得他的搜索精确性在三种搜索程序中是最高的。其模板类型选项分为三种编码(0),非编码(1),两者都有(2)。在编码模式中,根据第三位碱基的摆动原理,只要第一个和第二个碱基能够精确匹配,那么第三个碱基可以忽略,不做比较。在字的长度相同的情况下,discontiguous megablast的精确度要高于blastn。 第三个选项Somewhat similar sequences (blastn),这个程序比较的序列其相似程度可以非常低。它采用的算法与discontiguous megablast相同,只不过它的字是连续的。Blastn的字要比megablast短,所以其精确度要高于megablast,但是运算速度要慢一些。 注:字是影响blast灵敏度的一个主要参数,其取值要根据具体情况具体而定。 NCBI BLASTn: https://www.sodocs.net/doc/0b18612094.html,/public_documents/vibe/details/NcbiBlastn.html

左传《齐晋鞌之战》原文+翻译+注释

左传《齐晋鞌之战》原文+翻译+注释 楚癸酉,师陈于鞌(1)。邴夏御侯,逢丑父为右②。晋解张御克,郑丘缓 为右(3)。侯日:“余姑翦灭此而朝食(4)”。不介马而驰之⑤。克伤于矢, 流血及屦2未尽∧?6),曰:“余病矣(7)!”张侯曰:“自始合(8),而矢贯余手 及肘(9),余折以御,左轮朱殷(10),岂敢言病?吾子忍之!”缓曰:“自始合,苟有险,余必下推车,子岂_识之(11)?然子病矣!”张侯曰:“师之耳目,在 吾旗鼓,进退从之。此车一人殿之(12),可以集事(13),若之何其以病败君之大事也?擐甲执兵(14),固即死也(15);病未及死,吾子勉之(16)!”左并辔(17) ,右援拐?鼓(18)。马逸不能止(19),师从之,师败绩。逐之,三周华不注(20) 韩厥梦子舆谓己曰:“旦辟左右!”故中御而从齐侯。邴夏曰:“射其御者,君子也。”公曰:“谓之君子而射之,非礼也。”射其左,越于车下;射其右,毙于车中。綦毋张丧车,从韩厥,曰:“请寓乘。”从左右,皆肘之,使立于后。韩厥俛,定其右。逢丑父与公易位。将及华泉,骖絓于木而止。丑父寝于轏中,蛇出于其下,以肱击之,伤而匿之,故不能推车而及。韩厥执絷马前,再拜稽首,奉觞加璧以进,曰:“寡君使群臣为鲁、卫请,曰:‘无令舆师陷入君地。’下臣不幸,属当戎行,无所逃隐。且惧奔辟而忝两君,臣辱戎士,敢告不敏,摄官承乏。”丑父使公下,如华泉取饮。郑周父御佐车,宛茷为右,载齐侯以免。韩厥献丑父,郤献子将戮之。呼曰:“自今无有代其君任患者,有一于此,将为戮乎?”郤子曰:“人不难以死免其君,我戮之不祥。赦之,以劝事君者。”乃免之。 在癸酉这天,双方的军队在鞌这个地方摆开了阵势。齐国一方是邴夏为齐侯赶车,逢丑父当车右。晋军一方是解张为主帅郤克赶车,郑丘缓当车右。齐侯说:“我姑且消灭了这些人再吃早饭。”不给马披甲就冲向了晋军。郤克被箭射伤,血流到了鞋上,但是仍不停止擂鼓继续指挥战斗。他说:“我受重伤了。”解张说:“从一开始接战,一只箭就射穿了我的手和肘,左边的车轮都被我的血染成了黑红色,我哪敢说受伤?您忍着点吧!”郑丘缓说:“从一开始接战,如果遇到道路不平的地方,我必定(冒着生命危险)下去推车,您难道了解这些吗?不过,您真是受重伤了。”daier解张说:“军队的耳朵和眼睛,都集中在我们的战旗和鼓声,前进后退都要听从它。这辆车上还有一个人镇守住它,战事就可以成功。为什么为了伤痛而败坏国君的大事呢?身披盔甲,手执武器,本来就是去走向死亡,伤痛还没到死的地步,您还是尽力而为吧。”一边说,一边用左手把右手的缰绳攥在一起,用空出的右手抓过郤克手中的鼓棰就擂起鼓来。(由于一手控马,)马飞快奔跑而不能停止,晋军队伍跟着指挥车冲上去,把齐军打得打败。晋军随即追赶齐军,三次围绕着华不注山奔跑。

NCBI中Blast种类及使用简介

NCBI中Blast种类及使用简介 NCBI中Blast种类简介 1. Blast Assembled Genomes 在一个选择的物种基因组序列中去搜索。 2.Basic Blast 2.1 nucleotide blast--- 用核酸序列到核酸数据库中进行搜索,包括3个程序 2.1.1 Blastn----核酸序列(n)到核酸序列数据库中搜索,是一种标准的搜索。 2.1.2 megablast----该程序使用“模糊算法”加快了比较速度,可以用于快速比较两大系列序列。可以用来搜索一匹ESTs序列和大的cDNA或基因组序列, 适用于由于测序或者其他原因形成的轻微的差别的序列之间的比较 2.1.3 discontiguous megablast----与megablast不同的是主要用来比较来自不同物种之间的相似性较低的分歧序列。 2.2 Protein Blast 2.2.1 Blastp ---蛋白质序列到蛋白质序列数据库中搜索,是一种标准的搜索。 2.2.2 psi-blast---位点特异迭代BLAST —用蛋白查询来搜索蛋白资料库的一个程式。所有被BLAST发现的统计有效的对齐被总和起来形成一个多次对齐,从这个对齐,一个位置特异的分值矩阵建立起来。这个矩阵被用来搜索资料库,以找到额外的显著对齐,这个过程可能被反复迭代一直到没有新的对齐可以被发现。 2.2.3 PHI-BLAST---以常规的表达模型为特别位置进行PSI - BLAST检索,找出和待查询序列具有一样的表达模型且具有同源性的蛋白质序列。 2.3 Translating BLAST 2.3.1 blastx----先将待查询的核酸序列按6 种读框翻译成蛋白质序列,然后将翻译出的蛋白质序列与NCBI 蛋白质序列数据库比较。 2.3.2 tblastn-----先将核酸序列数据库中的核酸序列按6 种读框翻译成

Blast本地化安装图解

Blast本地化:window平台下blast软件的安装boyun发表于 2009-07-09 17:08 | 阅读 1 views 1.对于windows 2000/xp 用户,下载blast- 2.2.18-ia32-win32.exe安装文件 ftp://https://www.sodocs.net/doc/0b18612094.html,/blast/executables/LATEST/blast- 2.2.18-ia32-win32.exe 2.创建一个新目录,例如C:\blast,将下载的文件blast-2.2.18-ia32-win32.exe复制到该目录,双击这个文件,自解压产生bin、data、doc 三个目录,bin是程序目录,data是程序使用数据的目录,doc是文档目录。 表:bin目录中的程序 程序说明 bl2seq.exe进行两条序列比对 blastall.exe做普通的blast比对 blastclust.exe blastpgp.exe copymat.exe fastacmd.exe通过gi号,接收号等,在数据库中检索序 列 formatdb.exe格式化数据库 formatrpsdb.exe impala.exe makemat.exe megablast.exe megablast程序 rpsblast.exe seedtop.exe 3.用文本编辑器创建一个ncbi.ini文件,文件包含下面内容:[NCBI] Data="C:\blast\data\" 将ncbi.ini文件存放到系统的Windows 或者 WINNT目录。 4.将”C:\blast\bin”目录添加路径中(该步骤非必须,但会给以后的操作带来方便),方法:

《鞌之战》阅读答案(附翻译)

鞌之战[1]选自《左传·成公二年(即公元前589年)》【原文】癸酉,师陈于鞌[2]。邴夏御齐侯[3],逢丑父为右[4]。晋解张御郤克,郑丘缓为右[5]。齐侯曰:“余姑翦灭此而朝食[6]。”不介马而驰之[7]。郤克伤于矢,流血及屦,未绝鼓音[8],曰:“余病[9]矣!”张侯[10]曰:“自始合,而矢贯余手及肘[11],余折以御,左轮朱殷[12],岂敢言病。吾子[13]忍之!”缓曰:“自始合,苟有险[14],余必下推车,子岂识之[15]?——然子病矣!”张侯曰:“师之耳目,在吾旗鼓,进退从之[16]。此车一人殿之[17],可以集事[18],若之何其以病败君之大事也[19]?擐甲执兵,固即死也[20]。病未及死,吾子勉之[21]!”左并辔[22],右援枹而鼓[23],马逸不能止[24],师从之。齐师败绩[25]。逐之,三周华不注[26]。【注释】 [1]鞌之战:春秋时期的著名战役之一。战争的实质是齐、晋争霸。由于齐侯骄傲轻敌,而晋军同仇敌忾、士气旺盛,战役以齐败晋胜而告终。鞌:通“鞍”,齐国地名,在今山东济南西北。 [2]癸酉:成公二年的六月十七日。师,指齐晋两国军队。陈,列阵,摆开阵势。 [3]邴夏:齐国大夫。御,动词,驾车。御齐侯,给齐侯驾车。齐侯,齐国国君,指齐顷公。 [4]逢丑父:齐国大夫。右:车右。 [5]解张、郑丘缓:都是晋臣,“郑丘”是复姓。郤(xì)克,晋国大夫,是这次战争中晋军的主帅。又称郤献子、郤子等。 [6]姑:副词,姑且。翦灭:消灭,灭掉。朝食:早饭。这里是“吃早饭”的意思。这句话是成语“灭此朝食”的出处。 [7]不介马:不给马披甲。介:甲。这里用作动词,披甲。驰之:驱马追击敌人。之:代词,指晋军。 [8] 未绝鼓音:鼓声不断。古代车战,主帅居中,亲掌旗鼓,指挥军队。“兵以鼓进”,击鼓是进军的号令。 [9] 病:负伤。 [10]张侯,即解张。“张”是字,“侯”是名,人名、字连用,先字后名。 [11]合:交战。贯:穿。肘:胳膊。 [12]朱:大红色。殷:深红色、黑红色。 [13]吾子:您,尊敬。比说“子”更亲切。 [14]苟:连词,表示假设。险:险阻,指难走的路。 [15]识:知道。之,代词,代“苟有险,余必下推车”这件事,可不译。 [16]师之耳目:军队的耳、目(指注意力)。在吾旗鼓:在我们的旗子和鼓声上。进退从之:前进、后退都听从它们。 [17]殿之:镇守它。殿:镇守。 [18]可以集事:可以(之)集事,可以靠它(主帅的车)成事。集事:成事,指战事成功。 [19]若之何:固定格式,一般相当于“对……怎么办”“怎么办”。这里是和语助词“其”配合,放在谓语动词前加强反问,相当于“怎么”“怎么能”。以,介词,因为。败,坏,毁坏。君,国君。大事,感情。古代国家大事有两件:祭祀与战争。这里指战争。 [20]擐:穿上。执兵,拿起武器。 [21]勉,努力。 [22]并,动词,合并。辔(pèi):马缰绳。古代一般是四匹马拉一车,共八条马缰绳,两边的两条系在车上,六条在御者手中,御者双手执之。“左并辔”是说解张把马缰绳全合并到左手里握着。 [23]援:拿过来。枹(fú):击鼓槌。鼓:动词,敲鼓。 [24]逸:奔跑,狂奔。 [25] 败绩:大败。 [26] 周:环绕。华不注:山名,在今山东济南东北。【译文】六月十七日,齐晋两军在鞌地摆开阵势。邴夏为齐侯驾车,逢丑父担任车右做齐侯的护卫。晋军解张替郤克驾车,郑丘缓做了郤克的护卫。齐侯说:“我姑且消灭了晋军再吃早饭!”齐军没有给马披甲就驱车进击晋军。郤克被箭射伤,血一直流到鞋上,但他一直没有停止击鼓进。并说:“我受重伤了!”解张说:“从开始交战,箭就射穿了我的手和胳膊肘,我折断箭杆继续驾车,左边的车轮被血染得深红色,哪里敢说受了重伤?您还是忍住吧。”郑丘缓说:“从开始交战,只要遇到险峻难走的路,我必定要下去推车,您哪里知道这种情况呢?——不过您确实受重伤了!”解张说:“我们的旗帜和战鼓是军队的耳目,或进或退都听从旗鼓指挥。这辆战车只要一人镇守,就可以凭它成事。怎么能因为受伤而败坏国君的大事呢?穿上铠甲,拿起武器,本来就抱定了必死的决心。您虽然受了重伤还没有到死的地步,您就尽最大的努力啊!”于是左手把马缰绳全部握在一起,右手取过鼓槌来击鼓。战马狂奔不止,晋军跟着主帅的车前进。齐军大败,晋军追击齐军,绕着华不注山追了三圈。

相关主题