搜档网
当前位置:搜档网 › 最短路径LINGO算法

最短路径LINGO算法

最短路径LINGO算法
最短路径LINGO算法

例7.4 最短路问题 给定N 个点),,2,1(N i p i =组成集合}{i p ,由集合中任一点i p 到另

一点j p 的距离用ij c 表示,如果i p 到j p 没有弧联结,则规定+∞=ij c ,又规定)1(0N i c ii ≤≤=,指定一个终点N p ,要求从i p 点出发到N p 的最短路线。这里我们用动态规划方法来做。用所在的点i p 表示状态,决策集合就是除i p 以外的点,选定一个点j p 以后,得到效益ij c 并转入新状态j p ,当状态是N p 时,过程停止。显然这是一个不定期多阶段决策过程。

定义)(i f 是由i p 点出发至终点N p 的最短路程,由最优化原理可得

?????=-=+=0)(1,,2,1)},({min )(N f N i j f c i f ij j

这是一个函数方程,用LINGO 可以方便的解决。

!最短路问题;

model :

data :

n=10;

enddata

sets :

cities/1..n/: F; !10个城市;

roads(cities,cities)/

1,2 1,3

2,4 2,5 2,6

3,4 3,5 3,6

4,7 4,8

5,7 5,8 5,9

6,8 6,9

7,10

8,10

9,10

/: D, P;

endsets

data :

D=

6 5

3 6 9

7 5 11

9 1

8 7 5

4 10

5

7

9;

enddata

F(n)=0;

@for (cities(i) | i #lt# n:

F(i)=@min (roads(i,j): D(i,j)+F(j));

);

!显然,如果P(i,j)=1,则点i 到点n 的最短路径的第一步是i --> j ,否则就不是。 由此,我们就可方便的确定出最短路径;

@for (roads(i,j):

P(i,j)=@if (F(i) #eq# D(i,j)+F(j),1,0)

); end

最短路径学年论文

摘要:主要介绍最短路径问题中的经典算法——迪杰斯特拉(Dijkstra)算法和弗洛伊德(Floyd)算法,以及在实际生活中的运用。 关键字:Dijkstra算法、Floyd算法、赋权图、最优路径、Matlab 目录 摘要 (1) 1引言 (1) 2最短路 (2) 2.1 最短路的定义 (2) 2.2最短路问题常见算法 (2) 3 Dijkstra算法 (2) 3.1Dijkstra算法描述 (2) 3.2 Dijkstra算法举例 (3) 3.3算法的正确性和计算复杂性 (5) 3.3.1贪心选择性质 (5) 3.3.2最优子结构性质 (6) 3.3.3 计算复杂性 (7) 4 Floyd算法 (7) 4.1Floyd算法描述 (8) 4.2 Floyd算法步骤 (11) 4.3 Floyd算法举例 (11) 5 Dijkstra算法和Floyd算法在求最短路的异同 (11) 6 利用计算机程序模拟算法 (11) 7 附录 (11) 8 论文总结 (13) 9 参考文献 (13)

1 引言 最短路问题是图论理论的一个经典问题。寻找最短路径就是在指定网络中两结点间找一条距离最小的路。最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。 最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。 2 最短路 2.1 最短路的定义 对最短路问题的研究早在上个世纪60年代以前就卓有成效了,其中对赋权图 的有效算法是由荷兰著名计算机专家E.W.Dijkstra 在1959年首次提出的,该算法能够解决两指定点间的最短路,也可以求解图G 中一特定点到其它各顶点的最短路。后来海斯在Dijkstra 算法的基础之上提出了海斯算法。但这两种算法都不能解决含有负权的图的最短路问题。因此由Ford 提出了Ford 算法,它能有效地解决含有负权的最短路问题。但在现实生活中,我们所遇到的问题大都不含负权,所以我们在的() 0ij w ≥的情况下选择Dijkstra 算法。 定义1若图G=G(V,E)中各边e 都赋有一个实数W(e),称为边e 的权,则称这种图为赋权图,记为G=G(V,E,W)。 定义2若图G=G(V,E)是赋权图且()0W e ≥,()e E G ∈,假设[i,j] 的权记为()i j W ,,若i 与j 之间没有边相连接,那么()i j =W ∞,。路径P 的定义为路径中各边的长度之和,记W (P )。图G 的结点u 到结点v 距离记为d(u,v),则u 、v 间的最短路径可定义为 { ()min P 0d(u,v)=,u v W =∞(),不可达时 。 2.2 最短路问题常见算法 在求解网络图上节点间最短路径的方法中,目前国内外一致公认的较好算法有迪杰斯特拉(Dijkstra)及弗罗伊德(Floyd)算法。这两种算法中,网络被抽象为一个图论中定义的有向或无向图,并利用图的节点邻接矩阵记录点间的关联信息。在进行图的遍历以搜索最短路径时,以该矩阵为基础不断进行目标值的最小性判别,直到获得最后的优化路径。 Dijkstra 算法是图论中确定最短路的基本方法,也是其它算法的基础。为了求出赋权图中任意两结点之间的最短路径,通常采用两种方法。一种方法是每次以一个结点为源点,重复执行Dijkstra 算法n 次。另一种方法是由Floyd 于1962年提出的Floyd 算法,其时间复杂度为 ()3O n ,虽然与重复执行Dijkstra 算法n 次的时间复杂度相同,但其形式上略为简单,且实际运 算效果要好于前者。 3 Dijkstra 算法 3.1 Dijkstra 算法描述

最短路径流程图及算法详解

:算法的设计思想 本算法采用分支定界算法实现。构造解空间树为:第一个城市为根结点,与第一个城市相邻的城市为根节点的第一层子节点,依此类推;每个父节点的子节点均是和它相邻的城市;并且从第一个根节点到当前节点的路径上不能出现重复的城市。 本算法将具有最佳路线下界的节点作为最有希望的节点来展开解空间树,用优先队列实现。算法的流程如下:从第一个城市出发,找出和它相邻的所有城市,计算它们的路线下界和费用,若路线下界或费用不满足要求,将该节点代表的子树剪去,否则将它们保存到优先队列中,并选择具有最短路线下界的节点作为最有希望的节点,并保证路径上没有回路。当找到一个可行解时,就和以前的可行解比较,选择一个较小的解作为当前的较优解,当优先队列为空时,当前的较优解就是最优解。算法中首先用Dijkstra算法算出所有点到代表乙城市的点的最短距离。算法采用的下界一个是关于路径长度的下界,它的值为从甲城市到当前城市的路线的长度与用Dijkstra算法算出的当前城市到乙城市的最短路线长度的和;另一个是总耗费要小于1500。 伪代码 算法AlgBB() 读文件m1和m2中的数据到矩阵length和cost中 Dijkstra(length) Dijkstra(cost) while true do for i←1 to 50 do //选择和node节点相邻的城市节点 if shortestlength>optimal or mincost>1500 pruning else if i=50 optimal=min(optimal,tmpopt)//选当前可行解和最优解的 较小值做最优解 else if looped //如果出现回路 pruning //剪枝 else 将城市i插入到优先队列中 end for while true do if 优先队列为空 输出结果 else 取优先队列中的最小节点 if 这个最小节点node的路径下界大于当前的较优解 continue

最短路径的Dijkstra算法及Matlab程序

两个指定顶点之间的最短路径 问题如下:给出了一个连接若干个城镇的铁路网络,在这个网络的两个指定城镇间,找一条最短铁路线。 以各城镇为图G 的顶点,两城镇间的直通铁路为图G 相应两顶点间的边,得图G 。对G 的每一边e ,赋以一个实数)(e w —直通铁路的长度,称为e 的权,得到赋权图G 。G 的子图的权是指子图的各边的权和。问题就是求赋权图G 中指定的两个顶点00,v u 间的具最小权的轨。这条轨叫做00,v u 间的最短路,它的权叫做00,v u 间的距离,亦记作),(00v u d 。 求最短路已有成熟的算法:迪克斯特拉(Dijkstra )算法,其基本思想是按距0u 从近到远为顺序,依次求得0u 到G 的各顶点的最短路和距离,直至0v (或直至G 的所有顶点),算法结束。为避免重复并保留每一步的计算信息,采用了标号算法。下面是该算法。 (i) 令0)(0=u l ,对0u v ≠,令∞=)(v l ,}{00u S =,0=i 。 (ii) 对每个i S v ∈(i i S V S \=),用 )}()(),({min uv w u l v l i S u +∈ 代替)(v l 。计算)}({min v l i S v ∈,把达到这个最小值的一个顶点记为1+i u ,令}{11++=i i i u S S 。 (iii). 若1||-=V i ,停止;若1||-

lingo用法总结

ji例程1、 model: sets: quarters/1..4/:dem,rp,op,inv; endsets min=@sum(quarters:400*rp+450*op+20*inv); @for(quarters(i):rp<=40); @for(quarters(i)|i#gt#1: inv(i)=inv(i-1)+rp(i)+op(i)-dem(i);); inv(1)=10+rp(1)+op(1)-dem(1); data: dem=40 60 75 25; enddata end 例程2、 model: sets: quarters/1..4/:dem,rp,op,inv; endsets min=@sum(quarters:400*rp+450*op+20*inv); @for(quarters(i):rp<=40); @for(quarters(i)|i#gt#1: inv(i)=inv(i-1)+rp(i)+op(i)-dem(i);); inv(1)=a+rp(1)+op(1)-dem(1); data: dem=40 60 75 25; a=? enddata end ?LINGO总是根据“MAX=”或“MIN=”寻找目标函数,而除注释语句和TITLE语句外的其他语句都是约束条件,因此语句的顺序并不重要。 ?LINGO中函数一律需要以“@”开头 ?Lingo中的每个语句都以分号结尾 ?用LINGO解优化模型时已假定所有变量非负(除非用限定变量取值范围的函数@free或@sub或@slb另行说明)。 ?以感叹号开始的是说明语句(说明语句也需要以分号结束)) ?理解LINGO建模语言最重要的是理解集合(Set)及其属性(Attribute)的概念。 ?一般来说,LINGO中建立的优化模型可以由5个部分组成,或称为5“段” (SECTION): (1)集合段(SETS):以“ SETS:” 开始,“ENDSETS”结束,定义

gis计算最短路径的Dijkstra算法详细讲解

最短路径之Dijkstra算法详细讲解 1最短路径算法 在日常生活中,我们如果需要常常往返A地区和B 地区之间,我们最希望知道的可能是从A地区到B地区间的众多路径中,那一条路径的路途最短。最短路径问题是图论研究中的一个经典算法问题,旨在寻找图(由结点和路径组成的)中两结点之间的最短路径。算法具体的形式包括: (1)确定起点的最短路径问题:即已知起始结点,求最短路径的问题。 (2)确定终点的最短路径问题:与确定起点的问题相反,该问题是已知终结结点,求最短路径的问题。在无向图中该问题与确定起点的问题完全等同,在有向图中该问题等同于把所有路径方向反转的确定起点的问题。 (3)确定起点终点的最短路径问题:即已知起点和终点,求两结点之间的最短路径。 (4)全局最短路径问题:求图中所有的最短路径。 用于解决最短路径问题的算法被称做“最短路径算法”,有时被简称作“路径算法”。最常用的路径算法

有:Dijkstra算法、A*算法、Bellman-Ford算法、Floyd-Warshall算法、Johnson算法。 本文主要研究Dijkstra算法的单源算法。 2Dijkstra算法 2.1 Dijkstra算法 Dijkstra算法是典型最短路算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法能得出最短路径的最优解,但由于它遍历计算的节点很多,所以效率低。 Dijkstra算法是很有代表性的最短路算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。 2.2 Dijkstra算法思想 Dijkstra算法思想为:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径, 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U 表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S 中的顶点为中间顶点的当前最短路径长度。 2.3 Dijkstra算法具体步骤 (1)初始时,S只包含源点,即S=,v的距离为0。U包含除v外的其他顶点,U中顶点u距离为边上的权(若v与u有边)或)(若u不是v的出边邻接点)。 (2)从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。 (3)以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u(u U)的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u 的距离值,修改后的距离值的顶点k的距离加上边上的权。 (4)重复步骤(2)和(3)直到所有顶点都包含在S中。 2.4 Dijkstra算法举例说明 如下图,设A为源点,求A到其他各顶点(B、C、D、E、F)的最短路径。线上所标注为相邻线段之间的距离,即权值。(注:此图为随意所画,其相邻顶点间的距离与图中的目视长度不能一一对等)

方案比较法(第七章)

7 矿井设计的方案比较法 7.1 概述 方案比较法是工程设计中最基本和最常用的设计方法,既能解决总体的又能解决局部的设计问题,常被称为万能的设计方法。近代出现的“最优化设计”方法(实际上方案比较法也是优化方法之一)也是在此基础上发展起来的。我国自五十年代初,在矿井设计中一直沿用方案比较法,尤其在方案设计或可行性研究中,多用此法。 7.1.1方案比较法的实质 在进行工程设计时,根据已知条件列出在技术上可行的若干个方案,然后进行具体的技术分析和经济比较,从中选出相对最优越的一种方案。这种设计方法就称为方案比较法。7.1.2方案比较法的步骤 (1)首先要明确设计的内容、性质、要求(这些要求在《设计任务书》中有具体文字说明),以及设计要达到的目标(主要参数和额定指标)等。 (2)然后熟悉和掌握设计任务或设计中所要解决的总体或局部课题的内部及外部条件。对矿井设计来说,主要是:井田的地质地形条件;交通情况;与邻井的关系;与其他企业关系等。 (3)根据内部及外部条件,依设计任务的内容和目标,提出可行的方案。 (4)对提出的可行方案进行技术和经济分析,从中选取(3~5)个较优方案。 (5)对选出的较优方案进行详细的技术和经济计算与比较,明确各方案在技术上和经济上的差异,全面衡量各方案的利弊。然后从各方案中选出最优的方案,做为设计最终方案。 (6)最后按设计任务的要求,对方案做出详细描述的文字说明(包括各项参数),并绘出方案的图纸。 7.2矿井设计方案的技术分析 由于矿井地质条件的多样性和技术装备的不断发展,一个井田的开拓可以提出若干技术上可行的设计方案。从这些可行的设计方案中选择技术上先进、经济上合理的方案,就是方案比较的任务。 井田开拓方案比较内容包括井筒形式、生产能力、井筒(平硐)位置、水平划分、通风方式、运输大巷布置、大巷运输方式、总回风道布置、采区划分等项。 7.2.1井筒形式方案比较内容 在技术上可用平硐开拓也可用斜井开拓的井田,或可用斜井开拓也可用立井开拓的井田,或可用单一方式开拓也可用综合式开拓的井田,其井筒形式往往需要进行大量的方案比较工作。

Dijkstra算法

5.3.4 附录E 最短路径算法——Dijkstra 算法 在路由选择算法中都要用到求最短路径算法。最出名的求最短路径算法有两个,即Bellman-Ford 算法和Dijkstra 算法。这两种算法的思路不同,但得出的结果是相同的。我们在下面只介绍Dijkstra 算法,它的已知条件是整个网络拓扑和各链路的长度。 应注意到,若将已知的各链路长度改为链路时延或费用,这就相当于求任意两结点之间具有最小时延或最小费用的路径。因此,求最短路径的算法具有普遍的应用价值。 令v 部分: 不直接相连与结点若结点 1 v ? ?∞在用计算机进行求解时,可以用一个比任何路径长度大得多的数值代替∞。对于上述例子, 可以使D (v ) = 99。 (2) 寻找一个不在N 中的结点w ,其D (w )值为最小。把w 加入到N 中。然后对所有不在N 中的结点v ,用[D (v ), D (w ) + l (w , v )]中的较小的值去更新原有的D (v )值,即: D (v )←Min[D (v ), D (w ) + l (w , v )] (E-1) (3) 重复步骤(2),直到所有的网络结点都在N 中为止。 表E-1是对图E-1的网络进行求解的详细步骤。可以看出,上述的步骤(2)共执行了5次。表中带圆圈的数字是在每一次执行步骤(2)时所寻找的具有最小值的D (w ) 值。当第5次执行步骤(2)并得出了结果后,所有网络结点都已包含在N 之中,整个算法即告结束。 表E-1 计算图E-1的网络的最短路径

现在我们对以上的最短路径树的找出过程进行一些解释。 因为选择了结点1为源结点,因此一开始在集合N中只有结点1。结点1只和结点2, 3和4直接相连,因此在初始化时,在D(2),D(3)和D(4)下面就填入结点1到这些结点相应的距离,而在D(5)和D(6)下面填入∞。 下面执行步骤1。在结点1以外的结点中,找出一个距结点1最近的结点w,这应当是w = 4,因为在D(2),D(3)和D(4)中,D(4) = 1,它的之值最小。于是将结点4加入到结点集合N中。这时,我们在步骤1这一行和D(4)这一列下面写入①,数字1表示结点4到结点1的距离,数字1的圆圈表示结点4在这个步骤加入到结点集合N中了。 接着就要对所有不在集合N中的结点(即结点2, 3, 5和6)逐个执行(E-1)式。 对于结点2,原来的D(2) = 2。现在D(w) + l(w, v) = D(4) + l(4, 2) = 1 + 2 = 3 > D(2)。因此结点2到结点1距离不变,仍为2。 对于结点3,原来的D(3) = 5。现在D(w) + l(w, v) = D(4) + l(4, 3) = 1 + 3 = 4 < D(3)。因此结点3到结点1的距离要更新,从5减小到4。 对于结点5,原来的D(5) = ∞。现在D(w) + l(w, v) = D(4) + l(4, 5) = 1 + 1 = 2 < D(5)。因此结点5到结点1的距离要更新,从∞减小到2。 对于结点6,现在到结点1的距离仍为∞。 步骤1的计算到此就结束了。 下面执行步骤2。在结点1和4以外的结点中,找出一个距结点1最近的结点w。现在有两个结点(结点2和5)到结点1的距离一样,都是2。我们选择结点5(当然也可以选择结点2,最后得出的结果还是一样的)。以后的详细步骤这里就省略了,读者可以自行完 1的路由表。此路由表指出对于发往某个目的结点的分组,从结点1发出后的下一跳结点(在算法中常称为“后继结点”)和距离。当然,像这样的路由表,在所有其他各结点中都有一个。但这就需要分别以这些结点为源结点,重新执行算法,然后才能找出以这个结点为根的最短路径树和相应的路由表。

Lingo软件在求解数学优化问题的使用技巧

Lingo软件在求解数学优化问题的使用技巧 LINGO是一种专门用于求解数学规划问题的软件包。由于LINGO执行速度快,易于方便地输入、求解和分析数学规划问题,因此在教学、科研和工业界得到广泛应用。LINGO 主要用于求解线性规划、非线性规划、二次规划和整数规划等问题,也可以用于求解一些线性和非线性方程组及代数方程求根等。 LINGO的最新版本为LINGO7.0,但解密版通常为4.0和5.0版本,本书就以LINGO5.0为参照而编写。 1.LINGO编写格式 LINGO模型以MODEL开始,以END结束。中间为语句,分为四大部分(SECTION):(1)集合部分(SETS):这部分以“SETS:”开始,以“ENDSETS”结束。这部分的作用在于定义必要的变量,便于后面进行编程进行大规模计算,就象C语言在在程序的第一部分定义变量和数组一样。在LINGO中称为集合(SET)及其元素(MEMBER或ELEMENT,类似于数组的下标)和属性(A TTRIBUTE,类似于数组)。 LINGO中的集合有两类:一类是原始集合(PRIMITIVE SETS),其定义的格式为:SETNAME/member list(or 1..n)/:attribute,attribute,etc。 另一类是是导出集合(DERIVED SETS),即引用其它集合定义的集合,其定义的格式为: SETNAME(set1,set2,etc。):attribute,attribute,etc。 如果要在程序中使用数组,就必须在该部分进行定义,否则可不需要该部分。(2)目标与约束:这部分定义了目标函数、约束条件等。一般要用到LINGO的内部函数,可在后面的具体应用中体会其功能与用法。求解优化问题时,该部分是必须的。(3)数据部分(DA TA):这部分以“DA TA:”开始,以“END DA TA”结束。其作用在于对集合的属性(数组)输入必要的数值。格式为:attribut=value_list。该部分主要是方便数据的输入。 (4)初始化部分(INIT):这部分以“INIT:”开始,以“END INIT”结束。作用在于对集合的属性(数组)定义初值。格式为:attribute=value_list。由于非线性规划求解时,通常得到的是局部最优解,而局部最优解受输入的初值影响。通常可改变初值来得到不同的解,从而发现更好的解。 编写LINGO程序要注意的几点: 1.所有的语句除SETS、ENDSETS、DA TA、ENDDA TA、INIT、ENDINIT和MODEL,END 之外必须以一个分号“;”结尾。 2.LINGO求解非线性规划时已约定各变量非负。 LINGO内部函数使用详解。 LINGO建立优化模型时可以引用大量的内部函数,这些函数以“@”符号打头。 (1)常用数学函数 @ABS(X) 返回变量X的绝对数值。 @COS( X) 返回X的余弦值,X的单位为弧度 @EXP( X)

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例

最短路径问题的算法分析及建模案例 一.摘要 (3) 二.网络最短路径问题的基础知识 (5) 2.1有向图 (7) 2.2连通性................... 错误!未定义书签。 2.3割集....................... 错误!未定义书签。 2.4最短路问题 (8) 三.最短路径的算法研究.. 错误!未定义书签。 3.1最短路问题的提出 (9) 3.2 Bellman最短路方程错误!未定义书签。 3.3 Bellman-Ford算法的基本思想错误!未定义书签 3.4 Bellman-Ford算法的步骤错误!未定义书签。 3.5实例....................... 错误!未定义书签。 3.6 Bellman-FORD算法的建模应用举例错误!未定义 3.7 Dijkstra算法的基本思想 (9) 3.8 Dijkstra算法的理论依据 (9) 3.9 Dijkstra算法的计算步骤 (9) 3.10 Dijstre算法的建模应用举例 (10) 3.11 两种算法的分析错误!未定义书签。

1.Diklstra算法和Bellman-Ford算法 思想有很大的区别错误!未定义书签。 Bellman-Ford算法在求解过程中,每 次循环都要修改所有顶点的权值,也就 是说源点到各顶点最短路径长度一直 要到Bellman-Ford算法结束才确定下 来。...................... 错误!未定义书签。 2.Diklstra算法和Bellman-Ford算法 的限制.................. 错误!未定义书签。 3.Bellman-Ford算法的另外一种理解错误!未定 4.Bellman-Ford算法的改进错误!未定义书签。 摘要 近年来计算机发展迅猛,图论的研究也得到了很大程度的发展,而最短路径 问题一直是图论中的一个典型问题,它已应用在地理信息科学,计算机科学等 诸多领域。而在交通路网中两个城市之间的最短行车路线就是最短路径问题的 一个典型例子。 由于最短路径问题在各方面广泛应用,以及研究人员对最短路径的深入研究, 使得在最短路径问题中也产生了很多经典的算法。在本课题中我将提出一些最 短路径问题的算法以及各算法之间的比较,最后将这些算法再应用于实际问题

计算最短路径的Dijkstra算法的编程实现

计算最短路径的Dijkstra算法的编程实现 实验环境: C++ 为了进行网络最短路径路径分析,需将网络转换成有向图。如果要计算最短路径,则权重设置为两个节点的实际距离,Dijkstra算法可以用于计算从有向图中任意一个节点到其他节点的最短路径。 算法描述: 1)用带权的邻接矩阵来表示带权的n个节点的有向图,road[i][j]表示弧< vertex i, vertex j>的权值,如果从vertex i到vertex j不连通,则road road[i][j]=无穷大=9999。引进一个辅助向量Distance,每个Distance[i]表示从起始点到终点vertex i的最短路径长度。设起始点为first,则Distance[i]= road[first][i]。令S为已经找到的从起点出发的最短路径的终点的集合。 2)选择vertex j使得Distance[j]=Min{ Distance[i]| vertexi∈V-S},vertex j就是当前求得的一条从起始点出的的最短路径的终点的,令S=S∪{ vertex j} 3)修改从起始点到集合V-S中任意一个顶点vertex k的最短路径长度。如果Distance[j]+ road[j][k]< Distance[k],则修改Distance[k]为:Distance[k]= Distance[j]+ road[j][k]。 4)重复2,3步骤操作共n-1次,由此求得从起始点出发到图上各个顶点的最短路径长度递增的序列。 算法复杂度为O(n2)。 程序代码如下: #include #include "Dijkstra.h" int main() { int Graph_list_search[max][max]={{0,3,2,5,9999,9999}, {9999,0,9999,2,9999,9999}, {9999,9999,0,1,9999,9999}, {9999,9999,9999,0,9999,5}, {9999,9999,5,3,0,1}, {9999,9999,9999,9999,9999,0}}; printf_edge(Graph_list_search); Dijkstra(Graph_list_search,0,5); return 0; }

弗洛伊德算法求解最短路径

课程设计任务书

目录 第1章概要设计 (1) 1.1题目的内容与要求 (1) 1.2总体结构 (1) 第2章详细设计 (2) 2.1主模块 (2) 2.2构建城市无向图 (3) 2.3添加城市 (4) 2.4修改城市距离 (5) 2.5求最短路径 (6) 第3章调试分析 (7) 3.1调试初期 (7) 3.2调试中期 (7) 3.3调试末期 (7) 第4章测试及运行结果 (7) 附页(程序清单) (10)

第1章概要设计 1.1题目的内容与要求 内容:给出一张无向图,图上的每个顶点表示一个城市,顶点间的边表示城市间存在路径,边上的权值表示城市间的距离。试编写程序求解从某一个城市出发到达任意其他任意城市的最短路径问题。 要求: 1)能够提供简单友好的用户操作界面,可以输入城市的基本信息,包括城市名 称,城市编号等; 2)利用矩阵保存城市间的距离; 3)利用Floyd算法求最短路径; 4)独立完成系统的设计,编码和调试; 5)系统利用C语言完成; 6)按照课程设计规范书写课程设计报告。 1.2总体结构 本程序主要分为四个模块(功能模块见图1.1):主模块对整个程序起一主导作用,开始构建一城市无向图,对其进行添加城市顶点,以及对原来的距离数据进行修改,整体构建结束可以实现求一城市到其他城市的最短路径问题。 图1.1 功能模块图

第2章详细设计 2.1主模块 用户根据屏幕上显示的操作提示输入要进行操作的模块,通过调用相对应的模块程序,达到用户所想进行操作。程序的总框架大致分为四个模块:1.建立城市无向图2.添加城市模块3.修改城市距离4.求最短路径。具体实现过程见2.2:建立城市无向图2.3:添加城市2.4:修改城市距离2.5:求最短路径。流程图中通过输入n,由n的值来选择调用相对应子函数,实现所选择的功能,调用完后可以返回调用主函数进行下一次选择,从而实现反复调用子函数而实现四个模块的功能等。 图2.1 主模块流程图

第7讲最优化问题.pdf

第7讲最优化问题 一、知识要点 在日常生活和生产中,我们经常会遇到下面的问题:完成一件事情,怎样 合理安排才能做到用的时间最少,效果最佳。这类问题在数学中称为统筹问题。 我们还会遇到“费用最省”、“面积最大”、“损耗最小”等等问题,这些问 题往往可以从极端情况去探讨它的最大(小)值,这类问题在数学中称为极值 问题。以上的问题实际上都是“最优化问题”。 二、精讲精练 【例题1】用一只平底锅煎饼,每次只能放两个,剪一个饼需要2分钟(规定正反面各需要1分钟)。问煎3个饼至少需要多少分钟? 练习1: 1、烤面包时,第一面需要2分钟,第二面只要烤1分钟,即烤一片面包需要3分钟。小丽用来烤面包的架子,一次只能放两片面包,她每天早上吃3片面包,至少要烤多少分钟? 2、用一只平底锅烙大饼,锅里只能同时放两个。烙熟大饼的一面需要3分钟,现在要烙3个大饼,最少要用几分钟? 1

【例题2】妈妈让小明给客人烧水沏茶。洗水壶需要1分钟,烧开水需要15分钟,洗茶壶需要1分钟,洗茶杯需要1分钟。要让客人喝上茶,最少需要多少分钟? 练习2: 1、小虎早晨要完成这样几件事:烧一壶开水需要10分钟,把开水灌进热 水瓶需要2分钟,取奶需要5分钟,整理书包需要4分钟。他完成这几件事最少需要多少分钟? 2、小强给客人沏茶,烧开水需要12分钟,洗茶杯要2分钟,买茶叶要8 分钟,放茶叶泡茶要1分钟。为了让客人早点喝上茶,你认为最合理的安排, 多少分钟就可以了? 2

【例题3】五(1)班赵明、孙勇、李佳三位同学同时到达学校卫生室,等 候校医治病。赵明打针需要5分钟,孙勇包纱布需要3分钟,李佳点眼药水需要1分钟。卫生室只有一位校医,校医如何安排三位同学的治病次序,才能使 三位同学留在卫生室的时间总和最短? 练习3: 1、甲、乙、丙三人分别拿着2个、3个、1个热水瓶同时到达开水供应点打热水。热水龙头只有一个,怎样安排他们打水的次序,可以使他们打热水所 花的总时间最少? 2、甲、乙、丙三人到商场批发部洽谈业务,甲、乙、丙三人需要的时间分 别是10分钟、16分钟和8分钟。怎样安排,使3人所花的时间最少?最少时间是多少? 3

数据结构课程设计报告Dijkstra算法求最短路径

中南大学 《数据结构》课程设计 题目第9题 Dijkstra算法求最短路径 学生姓名 XXXX 指导教师 XXXX 学院信息科学与工程学院 专业班级 XXXXXXX 完成时间 XXXXXXX

目录 第一章问题分析与任务定义---------------------------------------------------------------------3 1.1 课程设计题目-----------------------------------------------------------------------------3 1.2 原始数据的输入格式--------------------------------------------------------------------3 1.3 实现功能-----------------------------------------------------------------------------------3 1.4 测试用例-----------------------------------------------------------------------------------3 1.5 问题分析-----------------------------------------------------------------------------------3 第二章数据结构的选择和概要设计------------------------------------------------------------4 2.1 数据结构的选择--------------------------------------------------------------------------4 2.2 概要设计-----------------------------------------------------------------------------------4 第三章详细设计与编码-----------------------------------------------------------------------------6 3.1 框架的建立---------------------------------------------------------------------------------6 3.2 点结构体的定义---------------------------------------------------------------------------7 3.3 创立带权值有向图------------------------------------------------------------------------8 3.4 邻接矩阵的显示---------------------------------------------------------------------------9 3.5 递归函数的应用---------------------------------------------------------------------------10 3.6 Dijkstra算法实现最短路径--------------------------------------------------------------10 第四章上机调试------------------------------------------------------------------------------------11 4.1 记录调试过程中错误和问题的处理---------------------------------------------------11 4.2 算法的时间课空间性能分析------------------------------------------------------------11 4.3 算法的设计、调试经验和体会---------------------------------------------------------11 第五章测试结果-----------------------------------------------------------------------------------12 第六章学习心得体会-----------------------------------------------------------------------------12 第七章参考文献-----------------------------------------------------------------------------------12 附录------------------------------------------------------------------------------------------------------12

实验四图的最短路径弗洛伊德算法实现

数据结构与算法课程实验报告实验四:图的相关算法应用 姓名:王连平 班级:09信科2班 学号:I09630221

实验四图的相关算法应用 一、实验内容 求有向网络中任意两点之间的最短路。 二、实验目的 掌握图和网络的定义,掌握图的邻接矩阵、邻接表和十字链表等存储表示。掌握图的深度和广度遍历算法,掌握求网络的最短路的标号法和floyd算法。 三、问题描述 对于下面一张若干个城市以及城市间距离的地图,从地图中所有可能的路径中求出任意两个城市间的最短距离及路径,给出任意两个城市间的最短距离值及途径的各个城市。 四、问题的实现 4.1数据结构的抽象数据类型定义和说明 1) typedef struct ArcCell{//储存弧信息 int Distance; ArcCell *info;//此项用来保存弧信息,,在本实验中没有相关信息要保存 }ArcCell,AdjMatrix[ MAX_VERTEX_NUM][ MAX_VERTEX_NUM]; typedef struct{//储存顶点信息 string vexs[ MAX_VERTEX_NUM];//顶点向量

AdjMatrix arcs;//邻接矩阵 int vexnum , arcnum;//图的当前顶点数和弧数 }MGraph; 顶点信息和弧信息都是用来建立一个有向网G 2) d[v][w];//G中各对顶点的带权长度 若P[v][w][u]为TRUE,则u是从v到w当前求得最短路径上的顶点 4.2主要的实现思路 首先通过一个函数(CreateDN)建立图的邻接矩阵储存方式,一次输入某条弧的起点,终点,和权值。通过调用Locate函数来找到该弧在邻接矩阵中的相应位置。 其次运用弗洛伊德算法来求各定点的最短路劲,具体思路为:如果从v到w有弧,则存在一条长度为arcs[v][w]的路径,该路径不一定是最短路径。考虑路径(v,u,w)是否存在,若存在,比较(v,w)和(v,u,w)的长度,取较短者为从v到w的中间点序号不大于0的最短路径。以此类推,每次增加一个点,从而求出任意两点间的最短路径。这样,经过n次比较后,所求得的必为从v到w的最短路径。按此方法,可以同时求得任意两点间的最短路径。 五、主要源程序代码(包含程序备注) #include #include using namespace std; #define INfinity 10000//最大值 # define MAX_VERTEX_NUM 10//最大顶点数 typedef struct ArcCell{//储存弧信息 int Distance; ArcCell *info; }ArcCell,AdjMatrix[ MAX_VERTEX_NUM][ MAX_VERTEX_NUM]; typedef struct{//储存顶点信息 string vexs[ MAX_VERTEX_NUM];//顶点向量 AdjMatrix arcs;//邻接矩阵 int vexnum , arcnum;//图的当前顶点数和弧数 }MGraph; int Locate(MGraph &G,string v) { int a=0; for (int i=0;i

Lingo基本用法总结

Lingo基本用法总结(除集函数部分)LINGO是用来求解线性和非线性优化问题的简易工具。Lingo免费版可以支持30个未知数,lingo破解版可以支持几万个未知数、几万个约束条件。 当你在windows下开始运行LINGO系统时,会得到类似下面的一个窗口: 外层是主框架窗口,包含了所有菜单命令和工具条,其它所有的窗口将被包含在主窗口之下。在主窗口内的标题为LINGO Model–LINGO1的窗口是LINGO的默认模型窗口,建立的模型都都要在该窗口内编码实现。下面举两个例子。 例1.1如何在LINGO中求解如下的LP问题: 在模型窗口中输入如下代码: min=2*x1+3*x2; x1+x2>=350; x1>=100; 2*x1+x2<=600; 然后点击工具条上的按钮即可。 得到如下结果: 所以当x1为250,x2为100时目标函数得到最大值。 算术运算符 Lingo中变量不区分大小写,以字母开头不超过32个字符 算术运算符是针对数值进行操作的。LINGO提供了5种二元运算符: ^乘方﹡乘/除﹢加﹣减 LINGO唯一的一元算术运算符是取反函数“﹣”。 这些运算符的优先级由高到底为: 高﹣(取反) ^ ﹡/ 低﹢﹣ 运算符的运算次序为从左到右按优先级高低来执行。运算的次序可以用圆括号“()” 来改变。 例:在x1+x2>=350,x1>=100,2*x1+x2<=600的条件下求2*x1+3*x2的最小值 在代码窗口中编写 min=2*x1+3*x2; x1+x2>=350; x1>=100; 2*x1+x2<=600; 然后单击上面菜单lingo菜单下solve键即可。

单源最短路径的Dijkstra算法

单源最短路径的Dijkstra算法: 问题描述: 给定一个带权有向图G=(V,E),其中每条边的权是非负实数。另外,还给定V中的一个顶点,称为源。现在要计算从源到所有其他各顶点的最短路长度。这里路的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。算法描述: Dijkstra算法是解单源最短路径的一个贪心算法。基本思想是:设置顶点集合S并不断地做贪心选择来扩充这个集合。一个顶点属于S当且仅当从源到该顶点的最短路径长度已知。初始时,S中仅含有源。设u是G的某一个顶点,把从源到u且中间只经过S中顶点的路称为从源到u的特殊路径,并用数组dist记录当前每个顶点所对应的最短特殊路径长度。Dijkstra算法每次从V-S中取出具有最短特殊路长度的顶点u,将u添加到S中,同时对数组dist做必要的修改。一旦S包含了所有V中顶点,dist就记录了从源到所有其他顶点之间的最短路径长度。 源代码: #include #define MAX 1000 #define LEN 100 int k=0, b[LEN]; using namespace std;

//-------------------------------------数据声明------------------------------------------------//c[i][j]表示边(i,j)的权 //dist[i]表示当前从源到顶点i的最短特殊路径长度 //prev[i]记录从源到顶点i的最短路径上的i的前一个顶点 //--------------------------------------------------------------------------------------------- void Dijkstra(int n, int v, int dist[], int prev[], int c[][LEN]) { bool s[LEN]; // 判断是否已存入该点到S集合中 for (int i = 1; i <= n; i++) { dist[i] = c[v][i]; s[i] = false; //初始都未用过该点 if (dist[i] == MAX) prev[i] = 0; //表示v到i前一顶点不存在 else prev[i] = v; } dist[v] = 0; s[v] = true; for (int i = 1; i < n; i++)

相关主题