搜档网
当前位置:搜档网 › 热力学基础计算题

热力学基础计算题

热力学基础计算题
热力学基础计算题

《热力学基础》计算题

1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀

至原来的3倍. (普适气体常量R = 1

--??K mol J 1,ln 3=

(1) 计算这个过程中气体对外所作的功.

(2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少

解:(1) 等温过程气体对外作功为

??===

0000333ln d d V V V V RT V V

RT V p W 2分 =×298× J = ×103 J 2分

(2) 绝热过程气体对外作功为

V V V p V p W V V V V d d 000

03003??-==

γγ

RT V p 1

311131001--=--=--γγγ

γ 2分 =×103 J 2分

2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、

等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量E 以及所吸收的热量Q .

(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((211A B A B V V p p W -+==200 J .

ΔE 1=C V (T B -T A )=3(p B V B -p A V A ) /2=750 J

Q =W 1+ΔE 1=950 J . 3分

B →

C : W 2 =0

ΔE 2 =C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .

Q 2 =W 2+ΔE 2=-600 J . 2分

C →A : W 3 = p A (V A -V C )=-100 J . 150)(2

3)(3-=-=-=?C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分

(2) W = W 1 +W 2 +W 3=100 J .

Q = Q 1 +Q 2 +Q 3 =100 J 2分

1 2 3

1 2 O V (10-3 m 3) 5 A B C

3. 0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持

不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热

量、外界对气体所作的功.

(普适气体常量R = 11K mol J --?)

解:氦气为单原子分子理想气体,3=i

(1) 等体过程,V =常量,W =0

据 Q =E +W 可知

)(12T T C M M E Q V mol

-=?==623 J 3分 (2) 定压过程,p = 常量,

)(12T T C M M Q p mol

-==×103 J E 与(1) 相同.

W = Q E =417 J 4分

(3) Q =0,E 与(1) 同

W = E=623 J (负号表示外界作功) 3分

4. 一定量的某单原子分子理想气体装在封闭的汽缸里.此汽缸有可活动的活塞(活塞与

气缸壁之间无摩擦且无漏气).已知气体的初压强p 1=1atm ,体积V 1=1L ,现将该气体在等压

下加热直到体积为原来的两倍,然后在等体积下加热直到压强为原来的2倍,最后作绝热

膨胀,直到温度下降到初温为止,

(1) 在p -V 图上将整个过程表示出来.

(2) 试求在整个过程中气体内能的改变.

(3) 试求在整个过程中气体所吸收的热量.(1 atm =×105 Pa)

(4) 试求在整个过程中气体所作的功.

解:(1) p -V 图如右图. 2分 (2) T 4=T 1E =0 2分

(3)

)()(2312T T C M M T T C M M Q V mol p mol -+-=)]2(2[23)2(25111111p p V V V p -+-= 11211V p ==×102 J 4分 (4) W =Q =×102 J 2分

mol 双原子分子理想气体从状态A (p 1,V 1)沿p V 图所示直线变化到状态B (p 2,V 2),试求:

(1) 气体的内能增量.

(2) 气体对外界所作的功.

(3) 气体吸收的热量.

(4) 此过程的摩尔热容.

(摩尔热容C =T Q ??/,其中Q ?表示1 mol 物质在过

程中升高温度T ?时所吸收的热量.)

T 3 T 4 T 2 T 1 1 2 1 2 (L) p (atm) O

B A O V p 1p p V 1V 2

解:(1) )(25)(112212V p V p T T C E V -=-=? 2分 (2) ))((2

11221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则 )(211122V p V p W -=

. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分

(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中

ΔQ =3Δ(pV ).

由状态方程得 Δ(pV ) =R ΔT ,

故 ΔQ =3R ΔT ,

摩尔热容 C =ΔQ /ΔT =3R . 3分

6. 有1 mol 刚性多原子分子的理想气体,原来的压强为 atm ,温度为27℃,若经过一

绝热过程,使其压强增加到16 atm .试求:

(1) 气体内能的增量;

(2) 在该过程中气体所作的功;

(3) 终态时,气体的分子数密度.

( 1 atm= ×105 Pa , 玻尔兹曼常量k=×10-23 J ·K -1,普适气体常量R = J ·mol -1·K -1 )

解:(1) ∵ 刚性多原子分子 i = 6,3/42=+=

i i γ 1分 ∴ 600)

/(11212==-γγp p T T K 2分

3121048.7)(21)/(?=-=?T T iR M M E mol J 2分 (2) ∵绝热 W =-ΔE =-×103 J (外界对气体作功) 2分

(3) ∵ p 2 = n kT 2

n = p 2 /(kT 2 )=×1026 个/m 3 3分

7. 如果一定量的理想气体,其体积和压强依照p a V /=的规律变化,其中a 为已知

常量.试求:

(1) 气体从体积V 1膨胀到V 2所作的功;

(2) 气体体积为V 1时的温度T 1与体积为V 2时的温度T 2之比.

解:(1) d W = p d V = (a 2 /V 2 )d V

)11()/(2

12222

1V V a dV V a dW W V V -===?? 2分 (2) ∵ p 1V 1 /T 1 = p 2V 2 /T 2

∴ T 1/ T 2 = p 1V 1 / (p 2V 2 )

由 11/p a V =,22/p a V =

得 p 1 / p 2= (V 2 /V 1 )2

∴ T 1/ T 2 = (V 2 /V 1 )2 (V 1 /V 2) = V 2 /V 1 3分

8. 汽缸内有一种刚性双原子分子的理想气体,若经过准静态绝热膨胀后气体的压强减

少了一半,则变化前后气体的内能之比 E 1∶E 2=

解:据 iRT M M E mol 21)/(=, RT M M pV mol )/(= 2分 得 ipV E 2

1= 变化前 11121V ip E =, 变化后2222

1V ip E = 2分 绝热过程 γγ2211V p V p = 即 1221/)/(p p V V

=γ 3分

题设 1221p p =, 则 2

1)/(21=γV V 即 γ/121)21(/=V V ∴ )21/(21/221121V ip V ip E E =γ/1)21(2?=22.121

1==-γ 3分

9. 2 mol 氢气(视为理想气体)开始时处于标准状态,后经等温过程从外界吸取了 400 J

的热量,达到末态.求末态的压强.

(普适气体常量R =·mol -2·K -1)

解:在等温过程中, ΔT = 0

Q = (M /M mol ) RT ln(V 2/V 1)

得 0882.0)/(ln 12==

RT

M M Q V V

mol 即 V 2 /V 1= 3分

末态压强 p 2 = (V 1 /V 2) p 1= atm 2分

10. 为了使刚性双原子分子理想气体在等压膨胀过程中对外作功2 J ,必须传给气体多少

热量

解:等压过程 W = p ΔV =(M /M mol )R ΔT 1分

内能增量 iW T iR M M E mal 2

121)/(==?? 1分 双原子分子

5=i 1分

∴ 721=+=+=?W iW W E Q J 2分

11.两端封闭的水平气缸,被一可动活塞平分为左右两室,

每室体积均为V 0,其中盛有温度相同、压强均为p 0的同种

理想气体.现保持气体温度不变,用外力缓慢移动活塞(忽

略磨擦),使左室气体的体积膨胀为右室的2倍,问外力必

须作多少功

为了使刚性双原子分子理想气体在等压膨胀过程中对外作

功2 J ,必须传给气体多少热量

解:设左、右两室中气体在等温过程中对外作功分别用W 1、W 2表示,外力作功用W ′表示.由

题知气缸总体积为2V 0,左右两室气体初态体积均为V 0,末态体积各为4V 0/3和2V 0/3 .

外力

1分

据等温过程理想气体做功:

W =(M /M mol )RT ln(V 2 /V 1)

得 34ln 34ln 0000001V p V V V p W == 得 32ln 32ln

0000002V p V V V p W == 2分 现活塞缓慢移动,作用于活塞两边的力应相等,则

W’+W 1=-W 2

21W W W --=')32ln 34(ln 00+-=V p 8

9ln 00V p = 2分

12.一定量的理想气体,从A 态出发,经p -V 图中所示的过程到达B 态,试求在这过程中,该气体吸收的热量.

.

解:由图可得 A 态: =A A V p 8×105 J

B 态: =B B V p 8×105 J

∵ B B A A V p V p =,根据理想气体状态方程可知

B A T T =, E = 0 3分

根据热力学第一定律得:

)()(D B B A C A V V p V V p W Q -+-==6105.1?= J 2分

13. 如图,体积为30L 的圆柱形容器内,有一能上下自由滑动

的活塞(活塞的质量和厚度可忽略),容器内盛有1摩尔、温

度为127℃的单原子分子理想气体.若容器外大气压强为1标

准大气压,气温为27℃,求当容器内气体与周围达到平衡时需

向外放热多少(普适气体常量 R = J ·mol -1·K -1)

解:开始时气体体积与温度分别为 V 1 =30×10-3 m 3,T 1=127+273=

400 K

∴气体的压强为 p 1=RT 1/V 1 =×105 Pa

大气压p 0=×105 Pa , p 1>p 0

可见,气体的降温过程分为两个阶段:第一个阶段等体降温,直至气体压强p 2 = p 0,此时温

度为T 2,放热Q 1;第二个阶段等压降温,直至温度T 3= T 0=27+273 =300 K ,放热Q 2

(1) )(2

3)(21211T T R T T C Q V -=-= K

∴ Q 1= 428 J 5分

(2) )(2

5)(32322T T R T T C Q p -=

-==1365 J ∴ 总计放热 Q = Q 1 + Q 2 = ×103 J 5分

A C

B D p (105 Pa)O V (m 3)2 5814 活塞

14.一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中

(1) 气体对外作的功;

(2) 气体内能的增量;

(3) 气体吸收的热量.(1 atm =×105 Pa) 解:(1) 气体对外作的功等于线段c a 下所围的面积 W =(1/2)×(1+3)××105×2×103 J = J

3分

(2) 由图看出 P a V a =P c V c ∴T a =T c 2分

内能增量 0=?E . 2分

(3) 由热力学第一定律得

Q =E ? +W = J . 3分

15. 一定量的理想气体在标准状态下体积为 ×102 m 3,求下列过程中气体吸收的热量:

(1) 等温膨胀到体积为 ×102 m 3;

(2) 先等体冷却,再等压膨胀到 (1) 中所到达的终态.

已知1 atm= ×105 Pa ,并设气体的C V = 5R / 2.

解:(1) 如图,在A →B 的等温过程中,0=?T E , 1分 ∴ ??==

=2

121d d 11V V V V T T V V

V p V p W Q )/ln(1211V V V p = 3分 将p 1=×105 Pa ,V 1=×102 m 3和V 2=×102 m 3 代入上式,得 Q T ≈×102 J 1分 (2) A →C 等体和C →B 等压过程中 ∵A 、B 两态温度相同,∴ ΔE ABC = 0 ∴ Q ACB =W ACB =W CB =P 2(V 2-V 1)

3分

又 p 2=(V 1/V 2)p 1= atm 1分

∴ Q ACB =××105×-×102 J ≈×102 J 1分

16. 将1 mol 理想气体等压加热,使其温度升高72 K ,传给它的热量等于×103 J ,求:

(1) 气体所作的功W ;

(2) 气体内能的增量E ?;

(3) 比热容比.

(普适气体常量1

1K mol J 31.8--??=R )

解:(1) 598===??T R V p W J 2分 (2) 31000.1?=-=?W Q E

J 1分

(3) 11K mol J 2.22--??==?T

Q C p 11K mol J 9.13--??=-=R C C p V 6.1==V p

C C γ 2分

17. 一定量的某种理想气体,开始时处于压强、体积、温度分别为p 0=×106 Pa ,V 0=×10-

3m 3,T 0 =300 K 的初态,后经过一等体过程,温度升高到T 1

=450 K ,再经过一等温过程,压 0 1 2 3 1 2 3 a b c V (L) p (atm) 1 p 2 V V V 2

A B C 等温

强降到p = p 0的末态.已知该理想气体的等压摩尔热容与等体摩尔热容之比C p / C V =5/3.求:

(1) 该理想气体的等压摩尔热容C p 和等体摩尔热容C V .

(2) 气体从始态变到末态的全过程中从外界吸收的热量.

(普适气体常量R = J·mol -1·K -1)

解:(1) 由 3

5=

V p C C 和 R C C V p =- 可解得 R C p 25= 和 R C V 2

3= 2分 (2) 该理想气体的摩尔数 ==000RT V p ν 4 mol 在全过程中气体内能的改变量为 △E =C V (T 1-T 2)=×103 J 2分

全过程中气体对外作的功为 0

11ln p p RT W ν= 式中 p 1 ∕p 0=T 1 ∕T 0

则 30

111006.6ln ?==T T RT W ν J . 2分 全过程中气体从外界吸的热量为 Q = △E +W =×104 J . 2分

18.如图所示,AB 、DC 是绝热过程,CEA 是等温过程,BED

是任意过程,组成一个循环。若图中EDCE 所包围的面积为

70 J ,EABE 所包围的面积为30 J ,过程中系统放热100 J ,

求BED 过程中系统吸热为多少 解:正循环EDCE 包围的面积为70 J ,表示系统对外作正功70 J ;EABE 的面积为30 J ,因图中表示为逆循环,故系统对

外作负功,所以整个循环过程系统对外

作功为: W =70+(-30)=40 J 1

设CEA 过程中吸热Q 1,BED 过程中吸热Q 2 ,由热一律,

W =Q 1+ Q 2 =40 J 2

Q 2 = W -Q 1 =40-(-100)=140 J

BED 过程中系统从外界吸收140焦耳热. 2

19. 1 mol 理想气体在T 1 = 400 K 的高温热源与T 2 = 300 K 的低温热源间作卡诺循

环(可逆的),在400 K 的等温线上起始体积为V 1 = 0.001 m 3,终止体积为V 2 = 0.005

m 3,试求此气体在每一循环中

p V O A B

E D C

(1) 从高温热源吸收的热量Q 1

(2) 气体所作的净功W

(3) 气体传给低温热源的热量Q 2

解:(1) 312111035.5)/ln(?==V V RT Q J 3

(2) 25.0112=-=T T η. 311034.1?==Q W η J

4分

(3) 3121001.4?=-=W Q Q J

3分

20.一定量的某种理想气体进行如图所示的循环过程.已知气体在状态A 的温度为T A =300 K ,求

(1) 气体在状态B 、C 的温度; (2) 各过程中气体对外所作的功;

(3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和). 解:由图,p A =300 Pa ,p B = p C =100 Pa ;V A =V C =1 m 3,V B =3

m 3. (1) C →A 为等体过程,据方程p A /T A = p C /T C 得 T C = T A p C / p A =100

K . 2分

B →

C 为等压过程,据方程V B /T B =V C /T C 得

T B =T C V B /V C =300 K . 2分

(2) 各过程中气体所作的功分别为

A →

B : ))((2

11C B B A V V p p W -+==400 J . B →C : W 2 = p B (V C -V B ) = 200 J .

C →A : W 3 =0 3分

(3) 整个循环过程中气体所作总功为

W = W 1 +W 2 +W 3 =200 J .

因为循环过程气体内能增量为ΔE =0,因此该循环中气体总吸热

Q =W +ΔE =200

J . 3分 mol 氦气作如图所示的可逆循环过程,

其中ab 和cd 是绝热过程, bc 和da 为等体过程,已知 V 1 = 16.4 L ,V 2 = 32.8 L ,p a = 1 atm ,p b = atm ,p c = 4 atm ,p d = atm ,试求:

(1)在各态氦气的温度. (2)在态氦气的内能. (3)在一循环过程中氦气所作的净功.

(1 atm = ×105 Pa)

(普适气体常量R = J· mol 1· K 1) A B C O V (m 3)100200

300 O p c p a p d p b a b c d V (L)V 12

解:(1) T a = p a V 2/R =400 K

T b = p b V 1/R =636 K

T c = p c V 1/R =800 K

T d = p d V 2/R =504 K 4分

(2) E c =(i /2)RT c =×103 J 2分

(3) b -c 等体吸热

Q 1=C V (T c T b )=×103 J 1分

d -a 等体放热

Q 2=C V (T d T a )=×103 J 1分

W =Q 1Q 2=×103 J 2分

22.比热容比=的理想气体进行如图所示的循环.已知状态A 的温度为300 K .求:

(1) 状态B 、C 的温度;

(2) 每一过程中气体所吸收的净热量. (普适气体常量R = 11K mol J --??)

解:由图得 p A =400 Pa , p B =p C =100 Pa , V A =V B =2 m 3,V C =6

m 3.

(1) C →A 为等体过程,据方程p A /T A = p C /T C 得

T C = T A p C / p A =75 K 1分

B →

C 为等压过程,据方程 V B /T B =V C T C 得

T B = T C V B / V C =225 K 1分

(2) 根据理想气体状态方程求出气体的物质的量(即摩尔数)为

p A V A RT A mol

由=知该气体为双原子分子气体,R C V 25=

,R C P 27= B →C 等压过程吸热 1400)(2

72-=-=

B C T T R Q ν J . 2分 C →A 等体过程吸热 1500)(2

53=-=C A T T R Q ν J . 2分 循环过程ΔE =0,整个循环过程净吸热 600))((21=--=

=C B C A V V p p W Q J . ∴ A →B 过程净吸热: Q 1=Q -Q 2-Q 3=500 J

4分

23. 一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每

次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环

对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:

(1) 第二个循环的热机效率;

(2) 第二个循环的高温热源的温度. p (Pa) V (m 3)

A B C

O 2 6 100 200 300 400

解:(1) 1211211T T T Q Q Q Q W -=-==η 2111T T T W

Q -= 且 1212T T Q Q = ∴ Q 2 = T 2 Q 1 /T 1

即 2

12122112T T T W T T T T T Q -=?-=

=24000 J 4分 由于第二循环吸热 221

Q W Q W Q +'='+'=' ( ∵ 22Q Q =') 3分 =''='1

/Q W η% 1分 (2) ='-='η121T T 425 K 2分

24.气缸内贮有36 g 水蒸汽(视为刚性分子理想气体),经abcda 循环过程如图所示.其中a -

b 、

c -

d 为等体过程,b -c 为等温过程,d -a

为等压过程.试求:

(1) d -a 过程中水蒸气作的功W da

(2) a -b 过程中水蒸气内能的增量ab

(3) 循环过程水蒸汽作的净功W (4) 循环效率 (注:循环效率=W /Q 1,W 为循环过程水蒸汽对外作的净功,Q 1为循环过程水蒸汽吸收

的热量,1 atm= ×105 Pa)

解:水蒸汽的质量M =36×10-3 kg

水蒸汽的摩尔质量M mol =18×10-3 kg ,i = 6

(1) W da = p a (V a -V d )=-×103 J 2分

(2) ΔE ab =(M /M mol )(i /2)R (T b -T a )

=(i /2)V a (p b - p a )

=×104 J 2分

(3) 914)/(==R

M M V p T mol a b b K W bc = (M /M mol )RT b ln(V c /V b ) =×104 J

净功 W =W bc +W da =×103 J 3分

(4) Q 1=Q ab +Q bc =ΔE ab +W bc =×104 J

η=W / Q 1=13% 3分

mol 的理想气体,完成了由两个等体过程和两个等压过程构成的循环过程(如图),已知状态1的温度为T 1,状态3的温度为T 3,且状态2

和4在同一条等温线上.试求气体在这一循环过程中作的功.

解:设状态“2”和“4”的温度为T )()(132341T T R T T R W W W -+-=+= RT T T R 2)(3

1-+= 2分

p (atm ) V (L) O a b c d

25 50 2 6 p O 1234

∵ p 1 = p 4,p 2 = p 3,V 1 = V 2,V 3 = V 4

而 111RT V p =,333RT V p =,RT V p =22,RT V p =44

∴ 2331131/R V p V p T T =,

244222/R V p V p T = .

得 312T T T =,即 2/131)

(T T T = ∴ ])(2[2/13131T T T T R W -+= 3分

26. 一卡诺循环的热机,高温热源温度是 400 K .每一循环从此热源吸进 100 J 热量并向一低温热源放出80 J 热量.求:

(1) 低温热源温度;

(2) 这循环的热机效率.

解:(1) 对卡诺循环有: T 1 / T 2 = Q 1 /Q 2

∴ T 2 = T 1Q 2 /Q 1 = 320 K

即:低温热源的温度为 320 K . 3分

(2) 热机效率: %2011

2=-=Q Q η 2分

27.如图所示,有一定量的理想气体,从初状态a (p 1,V 1)开始,经过一个等体过程达到压强为p 1/4的b 态,再经过一个等压过程达

到状态c ,最后经等温过程而完成一个循环.求该循环过程中系统对外作的功W 和所吸的热量Q . 解:设c 状态的体积为V 2,则由于a ,c 两状态的温度相同,p 1V 1= p 1V 2 /4 故 V 2 = 4 V 1

2分

循环过程 ΔE = 0 , Q =W .

而在a →b 等体过程中功 W 1= 0.

在b →c 等压过程中功

W 2 =p 1(V 2-V 1) /4 = p 1(4V 1-V 1)/4=3 p 1V 1/4 2分

在c →a 等温过程中功

W 3 =p 1 V 1 ln (V 2/V 1) = p 1V 1ln 4 2分 ∴ W =W 1 +W 2 +W 3 =[(3/4)-ln4] p 1V 1 1分

Q =W=[(3/4)-ln4] p 1V 1 3分

p p 1 p 1/4V 1a c b

28.比热容比=γ的理想气体,进行如图所示的ABCA

循环,状态A 的温度为300 K .

(1) 求状态B 、C 的温度; (2) 计算各过程中气体所吸收的热量、气体所作的

功和气体内能的增量. (普适气体常量 11K m ol J 31.8--??=R )

解:(1) C →A 等体过程有 p A /T A = p C /T C ∴ 75)(==A

c A C p p T T K 1分

B →

C 等压过程有 V B /V B =V C / T C

∴ 225)(

==C B C B V V T T K 1分 (2) 气体的摩尔数为 321.0mol ===A

A A RT V p M M ν 1分 由 γ= 可知气体为双原子分子气体,

故 R C V 25=,R C p 2

7= 1分 C →A 等体吸热过程 W CA =0

Q CA =ΔE CA = v C V (T A -T C ) =1500 J 2分

B →

C 等压压缩过程 W BC =P B (V C -V B ) =-400 J

ΔE BC = v C V (T C -T B ) =-1000 J

Q BC =ΔE BC + W BC =-1400 J 2分

A →

B 膨胀过程 1000J )26()100400(2

1=-+=AB W J ΔE AB = v C V (T B -T A ) =-500 J

Q AB =ΔE AB + W AB =500 J 2分

29. 一气缸内盛有一定量的单原子理想气体.若绝热压缩使其体积减半,问气体分子的平均速率为原来的几倍

解:设绝热压缩前气体的体积为V 1,温度为T 1;压缩后的体积为V 2=V 1 /2,温度为T 2;气体的比热比为

由绝热方程得: 212111T V T V --=γγ

∴ T 2=T 1(V 1/V 2)γ-1=2γ-1T 1

2分

设绝热压缩前后,气体分子的平均速率分别为 1v 和 2v ,

∵ T ∝v ∴ 1212/T T /=v v

将关系式T 2/ T 1= 2γ-1 代入上式, 得 2/)1(122-=γv v / 1

单原子理想气体 =5/3≈ , 1分 故 12v v /≈ 1分

V (m 3) 246A B C O

30. 一定量的氦气(理想气体),原来的压强为p 1 =1 atm ,温度为T 1 = 300 K ,若经过一绝热过程,使其压强增加到p 2 = 32 atm .求:

(1) 末态时气体的温度T 2.

(2) 末态时气体分子数密度n .

(玻尔兹曼常量 k =×10-23 J·K -1, 1atm=×105 Pa )

解:(1) 根据绝热过程方程 C T p =--γγ1

有 γγ/)1(1212)(-=p p T T ∴ γγ/)1(1212)(-=p p T T 氦为单原子分子,=γ5/3

T 2=1200 K 3分 (2)

26221096.1?==kT p n m 3 2分

热力学基础计算题详细版.doc

《热力学基础》计算题 1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀 至原来的3倍. (普适气体常量R =8.31 1 --??K mol J 1,ln 3=1.0986) (1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? 解:(1) 等温过程气体对外作功为 ??=== 0000333ln d d V V V V RT V V RT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分 (2) 绝热过程气体对外作功为 V V V p V p W V V V V d d 000 03003??-== γγ RT V p 1 311131001--=--=--γγγ γ 2分 =2.20×103 J 2分 2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、 等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量?E 以及所吸收的热量Q . (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J . 3分 B → C : W 2 =0 ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J . Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J . 150)(2 3)(3-=-=-=?C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分 1 2 3 1 2 O V (10-3 m 3) 5 A B C

第七章、统计热力学基础习题和答案

统计热力学基础 一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2. 在研究N、V、U有确定值的粒子体系的统计分布时,令刀n i = N,刀n i & i = U , 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的C 3. 假定某种分子的许可能级是0、&、2 £和3 &,简并度分别为1、1、2、3四个这样的分子构成的定域体系,其总能量为3£时,体系的微观状态数为:() A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法A 5. 对于玻尔兹曼分布定律n i =(N/q) ? g i ? exp( - £ i/kT)的说法:(1) n i是第i能级上的粒子分布数; (2) 随着能级升高,£ i 增大,n i 总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6. 对于分布在某一能级£ i上的粒子数n i,下列说法中正确是:() A. n i 与能级的简并度无关 B. £ i 值越小,n i 值就越大 C. n i 称为一种分布 D. 任何分布的n i 都可以用波尔兹曼分布公式求出B 7. 15?在已知温度T时,某种粒子的能级£ j = 2 £ i,简并度g i = 2g j,则「和£ i上 分布的粒子数之比为:( ) A. 0.5exp( j/2£kT) B. 2exp(- £j/2kT) C. 0.5exp( -£j/kT) D. 2exp( 2 j/k£T) C 8. I2的振动特征温度? v= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9. 下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度?v是物质的重要性质之一,下列正确的说法是: ( ) A. ? v越高,表示温度越高 B. ?v越高,表示分子振动能越小 C. ?越高,表示分子处于激发态的百分数越小 D. ?越高,表示分子处于基态的百分数越小 C 11. 下列几种运动中哪些运动对热力学函数G与

工程热力学习题集答案

工程热力学习题集答案一、填空题 1.常规新 2.能量物质 3.强度量 4.54KPa 5.准平衡耗散 6.干饱和蒸汽过热蒸汽 7.高多 8.等于零 9.与外界热交换 10.7 2g R 11.一次二次12.热量 13.两 14.173KPa 15.系统和外界16.定温绝热可逆17.小大 18.小于零 19.不可逆因素 20.7 2g R 21、(压力)、(温度)、(体积)。 22、(单值)。 23、(系统内部及系统与外界之间各种不平衡的热力势差为零)。 24、(熵产)。 25、(两个可逆定温和两个可逆绝热) 26、(方向)、(限度)、(条件)。

31.孤立系; 32.开尔文(K); 33.-w s =h 2-h 1 或 -w t =h 2-h 1 34.小于 35. 2 2 1 t 0 t t C C > 36. ∑=ω ωn 1 i i i i i M /M / 37.热量 38.65.29% 39.环境 40.增压比 41.孤立 42热力学能、宏观动能、重力位能 43.650 44.c v (T 2-T 1) 45.c n ln 1 2T T 46.22.12 47.当地音速 48.环境温度 49.多级压缩、中间冷却 50.0与1 51.(物质) 52.(绝对压力)。 53.(q=(h 2-h 1)+(C 22 -C 12 )/2+g(Z 2-Z 1)+w S )。 54.(温度) 55. (0.657)kJ/kgK 。 56. (定熵线)

57.(逆向循环)。 58.(两个可逆定温过程和两个可逆绝热过程) 59.(预热阶段、汽化阶段、过热阶段)。 60.(增大) 二、单项选择题 1.C 2.D 3.D 4.A 5.C 6.B 7.A 8.A 9.C 10.B 11.A 12.B 13.B 14.B 15.D 16.B 17.A 18.B 19.B 20.C 21.C 22.C 23.A 三、判断题 1.√2.√3.?4.√5.?6.?7.?8.?9.?10.? 11.?12.?13.?14.√15.?16.?17.?18.√19.√20.√ 21.(×)22.(√)23.(×)24.(×)25.(√)26.(×)27.(√)28.(√) 29.(×)30.(√) 四、简答题 1.它们共同处都是在无限小势差作用下,非常缓慢地进行,由无限接近平衡 状态的状态组成的过程。 它们的区别在于准平衡过程不排斥摩擦能量损耗现象的存在,可逆过程不会产生任何能量的损耗。 一个可逆过程一定是一个准平衡过程,没有摩擦的准平衡过程就是可逆过程。 2.1kg气体:pv=R r T mkg气体:pV=mR r T 1kmol气体:pV m=RT nkmol气体:pV=nRT R r是气体常数与物性有关,R是摩尔气体常数与物性无关。 3.干饱和蒸汽:x=1,p=p s t=t s v=v″,h=h″s=s″

第九章统计热力学初步学习指导

第九章统计热力学初步8+2学时 本章从最可几分布引出配分函数的概念,得出配分函数与热力学函数的关系。由配分函数的分离与计算可求得简单分子的热力学函数与理想气体简单反应的平衡常数。使学生了解系统的热力学宏观性质可以通过微观性质计算出来。基本要求: 1、理解统计热力学中涉及的一些基本概念如(定域子系统与非定位系统、独立粒子系统与相依粒子系统、微观状态、分布、最可几分布与平衡分布、配分函数) 2、理解统计力学的三个基本假定。理解麦克斯韦–玻尔兹曼分布公式的不同表示形式及其适用条件。 3、理解粒子配分函数的物理意义和析因子性质。 4、明确配分函数与热力学函数间的关系 5、了解平动、转动、振动对热力学函数的贡献,了解公式的推导过程。 6、学会利用物质的吉布斯自由能函数、焓函数计算化学反应的平衡常数与热效应。 7、学会由配分函数直接求平衡常数的方法 重点:1.平衡分布和玻耳兹曼分布公式; 2.粒子配分函数的定义、物理意义及析因子性质; 3.双原子分子的平动、转动和振动配分函数的计算; 4.热力学能与配分函数的关系式; 5.熵与配分函数的关系式;玻耳兹曼熵定理。 难点:1. 粒子配分函数的定义、物理意义及析因子性质; 2. 双原子分子的平动、转动和振动配分函数的计算。 第九章统计热力学初步 主要公式及其适用条件 1. 分子能级为各种独立运动能级之和

2. 粒子各运动形式的能级及能级的简并度 (1)三维平动子 简并度:当a = b = c时有简并,()相等的能级为简并的。(2)刚性转子(双原子分子): 其中 。 简并度为:g r,J = 2J +1。 (3)一维谐振子 其中分子振动基频为 ,k为力常数,μ为分子折合质量。 简并度为1,即g v,ν = 1。 (4)电子及原子核 全部粒子的电子运动及核运动均处于基态。电子运动及核运动基态的简并度为常数。 3.能级分布微态数 定域子系统:

热力学基础计算题-答案

《热力学基础》计算题答案全 1. 温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀 至原来的3倍. (普适气体常量R =8.31 1 --??K mol J 1,ln 3=1.0986) (1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? 解:(1) 等温过程气体对外作功为 ??=== 0000333ln d d V V V V RT V V RT V p W 2分 =8.31×298×1.0986 J = 2.72×103 J 2分 (2) 绝热过程气体对外作功为 V V V p V p W V V V V d d 000 03003??-== γγ RT V p 1 311131001--=--=--γγγ γ 2分 =2.20×103 J 2分 2.一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、 等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量?E 以及所吸收的热量Q . (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J . 3分 B → C : W 2 =0 ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J . Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J . 150)(2 3)(3-=-=-=?C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分 1 2 3 1 2 O V (10-3 m 3) 5 A B C

第七章、统计热力学基础习题和答案

统计热力学基础 题 择 一、选 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2.在研究N、V、U 有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U, 3.这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的 C 4.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 5. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律 6.时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法 A 7.对于玻尔兹曼分布定律n i =(N/q) ·g i·exp( -εi/kT)的说法:(1) n i 是第i 能级上的 粒子分布数; (2) 随着能级升高,εi 增大,n i 总是减少的; (3) 它只适用于可区分的独 8.立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 9.对于分布在某一能级εi 上的粒子数n i ,下列说法中正确是:( ) 10.A. n i 与能级的简并度无关 B. εi 值越小,n i 值就越大 C. n i 称为一种分布 D.任何分布的n i 都可以用波尔兹曼分布公式求出 B 11. 15.在已知温度T 时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj 和εi 上分布的粒子数之比为:( ) A. 0.5exp( j/2εk T) B. 2exp(- εj/2kT) C. 0.5exp( -εj/kT) D. 2exp( 2 j/kεT) C 12. I2 的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2 的温度 13.是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 14.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 15. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是: ( ) A.Θv 越高,表示温度越高 B.Θv 越高,表示分子振动能越小 C. Θv 越高,表示分子处于激发态的百分数越小 D. Θv 越高,表示分子处于基态的百分数越小 C 16.下列几种运动中哪些运动对热力学函数G 与A 贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动 D 17.三维平动子的平动能为εt = 7h 2 /(4mV2/ 3 ),能级的简并度为:( )

哈工大工程热力学习题答案——杨玉顺版

第二章 热力学第一定律 思 考 题 1. 热量和热力学能有什么区别?有什么联系? 答:热量和热力学能是有明显区别的两个概念:热量指的是热力系通过界面与外界进行的热能交换量,是与热力过程有关的过程量。热力系经历不同的过程与外界交换的热量是不同的;而热力学能指的是热力系内部大量微观粒子本身所具有的能量的总合,是与热力过程无关而与热力系所处的热力状态有关的状态量。简言之,热量是热能的传输量,热力学能是能量?的储存量。二者的联系可由热力学第一定律表达式 d d q u p v δ=+ 看出;热量的传输除了可能引起做功或者消耗功外还会引起热力学能的变化。 2. 如果将能量方程写为 d d q u p v δ=+ 或 d d q h v p δ=- 那么它们的适用范围如何? 答:二式均适用于任意工质组成的闭口系所进行的无摩擦的内部平衡过程。因为 u h pv =-,()du d h pv dh pdv vdp =-=-- 对闭口系将 du 代入第一式得 q dh pdv vdp pdv δ=--+ 即 q dh vdp δ=-。 3. 能量方程 δq u p v =+d d (变大) 与焓的微分式 ()d d d h u pv =+(变大) 很相像,为什么热量 q 不是状态参数,而焓 h 是状态参数? 答:尽管能量方程 q du pdv δ=+ 与焓的微分式 ()d d d h u pv =+(变大)似乎相象,但两者 的数学本质不同,前者不是全微分的形式,而后者是全微分的形式。是否状态参数的数学检验就是,看该参数的循环积分是否为零。对焓的微分式来说,其循环积分:()dh du d pv =+??? 因为 0du =?,()0d pv =? 所以 0dh =?, 因此焓是状态参数。 而 对 于 能 量 方 程 来 说 ,其循环积分:

第五版物理化学第九章习题答案

第九章 统计热力学初步 1.按照能量均分定律,每摩尔气体分子在各平动自由度上的平均动能为2RT 。现有1 mol CO 气体于0 oC、101.325 kPa 条件下置于立方容器中,试求: (1)每个CO 分子的平动能ε; (2)能量与此ε相当的CO 分子的平动量子数平方和( ) 222x y y n n n ++ 解:(1)CO 分子有三个自由度,因此, 2123 338.314273.15 5.65710 J 22 6.02210RT L ε-??= ==??? (2)由三维势箱中粒子的能级公式 ()(){}22222 23 223222 22 2221 23342620 8888828.0104 5.6571018.314273.15101.325106.626110 6.02210 3.81110x y z x y z h n n n ma ma mV m nRT n n n h h h p εεεε-=++??∴++=== ??? ??????? = ???????=? 2.2.某平动能级的()452 22 =++z y x n n n ,使球该能级的统计权重。 解:根据计算可知,x n 、 y n 和z n 只有分别取2,4,5时上式成立。因此,该能级的统计权重 为g = 3! = 6,对应于状态452245425254245,,,,ψψψψψ542ψ。 3.气体CO 分子的转动惯量2 46m kg 1045.1??=-I ,试求转动量子数J 为4与3两能级的能量 差ε?,并求K 300=T 时的kT ε?。 解:假设该分子可用刚性转子描述,其能级公式为 ()()J 10077.31045.1810626.61220 ,8122 46 23422 ---?=????-=?+=πεπεI h J J J 222 10429.710233807.130010077.3--?=???=?kT ε 4.三维谐振子的能级公式为 ()ν εh s s ?? ? ?? +=23,式中s 为量子数,即

《大学物理学》热力学基础练习题

《大学物理学》热力学基础 一、选择题 13-1.如图所示,bca 为理想气体的绝热过程,b 1a 和b 2a 是任意过程,则上述两过程中气体做功与吸收热量的情况是 ( ) (A )b 1a 过程放热、作负功,b 2a 过程放热、作负功; (B )b 1a 过程吸热、作负功,b 2a 过程放热、作负功; (C )b 1a 过程吸热、作正功,b 2a 过程吸热、作负功; (D )b 1a 过程放热、作正功,b 2a 过程吸热、作正功。 【提示:体积压缩,气体作负功;三个过程中a 和b 两点之间的内能变化相同,bca 线是绝热过程,既不吸热也不放热,b 1a 过程作的负功比b 2a 过程作的负功多,由Q W E =+?知b 2a 过程放热,b 1a 过程吸热】 13-2.如图,一定量的理想气体,由平衡态A 变到平衡态B ,且他们的压强相等,即A B P P =。问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然 ( ) (A )对外作正功;(B )内能增加; (C )从外界吸热;(D )向外界放热。 【提示:由于A B T T <,必有A B E E <;而功、热量是 过程量,与过程有关】 13-3.两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性理想气体),开始时它们的压强和温度都相同,现将3 J 的热量传给氦气,使之升高到一定的温度,若氢气也升高到同样的温度,则应向氢气传递热量为 ( ) (A )6J ; (B )3J ; (C )5J ; (D )10J 。 【提示:等体过程不做功,有Q E =?,而2 mol M i E R T M ?= ?,所以需传5J 】 13-4.有人想象了如图所示的四个理想气体的循环过程,则在理论上可以实现的是( ) A () C () B () D ()

09应化统计热力学试题

2010-2011第二学期09应化《统计热力学》考试试题 一、选择题(共60分,每小题2分) 1.下列各体系中,何者属独立子体系? A. 绝对零度的晶体 B. 理想液体混合物 C. 纯气体 D. 理想气体的混合物 2.实际气体是 A. 定域的独立子体系 B. 离域的独立子体系 C. 离域的非独立子体系 D. 定域的非独立子体系 3.玻尔兹曼统计一般不适用于 A. 独立子体系 B. 单个粒子 C. 理想气体 D. 理想晶体 4.对于服从玻尔兹曼分布定律的体系,其分布规律为: A. 能量最低的单个量子态上的粒子数最多。 B. 第一激发能级上的粒子数最多。 C. 能量最低能级上的粒子数最多。 D. 视具体的条件而定 5.分子的平动、转动和振动的能级间隔的大小顺序是: A. 振动能>转动能>平动能 B. 振动能>平动能>转动能 C. 平动能>振动能>转动能 D. 转动能>平动能>振动能 6.玻尔兹曼分布 A. 是最概然分布,但不是平衡分布 B. 是平衡分布,但不是最概然分布 C. 既是最概然分布,又是平衡分布 D. 不是最概然分布,也不是平衡分布 7.双原子分了以平衡位置为能量零点,其振动的零点能为: A. kT B. 1/2kT C. h υ D. 1/2h υ 8.三维平动子的平动能,则简并度 g 为: A. 1 B. 3 C. 6 D. 9 9.在分子运动的各配分函数中与压力有关的是 A. 平动配分函数 B. 振动配分函数 C. 转动配分函数 D. 电子运动配分函数 10.能量零点的不同选择,对下列中均有影响的是 A. U.H.S.G B. U.S.Cv. A C. U.H.S.Cv D. U.H.A.G 11.热力学函数与配分函数的关系式对于定域子体系和离域子体系都相同的是: A. U.A.S B. U.H.Cv C. U.H.S D. H.G.Cv

工程热力学课后题答案

习题及部分解答 第一篇 工程热力学 第一章 基本概念 1. 指出下列各物理量中哪些是状态量,哪些是过程量: 答:压力,温度,位能,热能,热量,功量,密度。 2. 指出下列物理量中哪些是强度量:答:体积,速度,比体积,位能,热能,热量,功量, 密度。 3. 用水银差压计测量容器中气体的压力,为防止有毒的水银蒸汽产生,在水银柱上加一段水。若水柱高mm 200,水银柱高mm 800,如图2-26所示。已知大气压力为mm 735Hg ,试求容器中气体的绝对压力为多少kPa ?解:根据压力单位换算 kPa p p p p kPa Pa p kPa p Hg O H b Hg O H 6.206)6.106961.1(0.98)(6.10610006.132.133800.96.110961.180665.92002253=++=++==?=?==?=?= 4. 锅炉烟道中的烟气常用上部开口的斜管测量,如图2-27所示。若已知斜管倾角 30=α , 压力计中使用 3 /8.0cm g =ρ的煤油,斜管液体长度 mm L 200=,当地大气压力 MPa p b 1.0=,求烟气的绝对压力(用MPa 表示)解: MPa Pa g L p 6108.7848.7845.081.98.0200sin -?==???==α ρ MPa p p p v b 0992.0108.7841.06=?-=-=- 5.一容器被刚性壁分成两部分,并在各部装有测压表计,如图2-28所示,其中C 为压力表,读数为 kPa 110,B 为真空表,读数为kPa 45。若当地大气压kPa p b 97=,求压力表A 的读数(用kPa 表示) kPa p gA 155= 6. 试述按下列三种方式去系统时,系统与外界见换的能量形式是什么。 (1).取水为系统; (2).取电阻丝、容器和水为系统; (3).取图中虚线内空间为系统。

工程热力学试题

工程热力学试题 (本试题的答案必须全部写在答题纸上,写在试题及草稿纸上无效) 说明: 1)答题前请考生务必认真阅读说明; 2)考生允许携带计算器; 3)重力加速度g=9.80m/s2; 4)本套试题中所用到的双原子理想气体绝热指数K=; 5)理想气体通用气体常数R=(mol·k); 6)标准大气压Pa=; 7)氧原子量取16,氢原子量取1,碳原子量取12,N原子量取14; 8)空气分子量取29,空气的定压比热Cp=(kg·K)。 一、是非题(每题2分,共20分;正确的打√,错误的打×。) 1、系统从同一始态出发,分别经历可逆过程和不可逆过程到达同一终态,则两个过程该系统的熵变相同。() 2、循环功越大,热效率越高。() 3、对于由单相物质组成的系统而言,均匀必平衡,平衡必均匀。() 4、系统经历不可逆过程后,熵一定增大。() 5、湿空气相对湿度越高,含湿量越大。() 6、理想气体绝热节流前后温度不变。()

7、系统吸热,熵一定增大;系统放热,熵一定减小。() 8、对于具有活塞的封闭系统,气体膨胀时一定对外做功。() 9、可逆过程必是准静态过程,准静态过程不一定是可逆过程。() 10、对于实际气体,由焓和温度可以确定其状态。() 二、填空题(每题5分,共50分) 1、某气体的分子量为44,则该气体的气体常数为。 2、某甲烷与氮的混合气,两组分的体积百分含量分别为70%和30%,则该混气的平均分子量为。 3、300k对应的华氏温度为。 4、卡诺循环热机,从200℃热源吸热,向30℃冷源放热,若吸热率是10kw,则输出功率为。 5、自动升降机每分钟把50kg的砖块升高12m,则升降机的功率为。 6、、30℃的氦气经节流阀后压力降至100kpa,若节流前后速度相等,则节流前管径与节流后管径的比值为。 7、某双原子理想气体的定压比热为,则其定容比热可近似认为等于。 8、容积2m3的空气由、40℃被可逆压缩到1MPa、0.6m3,则该过程的多变指数为。 9、空气可逆绝热地流经某收缩喷管,若进口压力为2MPa,出口

工程热力学习题集附答案

工程热力学习题集 一、填空题 1.能源按使用程度和技术可分为 能源和 能源。 2.孤立系是与外界无任何 和 交换的热力系。 3.单位质量的广延量参数具有 参数的性质,称为比参数。 4.测得容器的真空度48V p KPa =,大气压力MPa p b 102.0=,则容器内的绝对压力为 。 5.只有 过程且过程中无任何 效应的过程是可逆过程。 6.饱和水线和饱和蒸汽线将压容图和温熵图分成三个区域,位于三区和二线上的水和水蒸气呈现五种状态:未饱和水 饱和水 湿蒸气、 和 。 7.在湿空气温度一定条件下,露点温度越高说明湿空气中水蒸气分压力越 、水蒸气含量越 ,湿空气越潮湿。(填高、低和多、少) 8.克劳修斯积分/Q T δ? 为可逆循环。 9.熵流是由 引起的。 10.多原子理想气体的定值比热容V c = 。 11.能源按其有无加工、转换可分为 能源和 能源。 12.绝热系是与外界无 交换的热力系。 13.状态公理指出,对于简单可压缩系,只要给定 个相互独立的状态参数就可以确定它的平衡状态。 14.测得容器的表压力75g p KPa =,大气压力MPa p b 098.0=,则容器内的绝对压力为 。 15.如果系统完成某一热力过程后,再沿原来路径逆向进行时,能使 都返回原来状态而不留下任何变化,则这一过程称为可逆过程。 16.卡诺循环是由两个 和两个 过程所构成。 17.相对湿度越 ,湿空气越干燥,吸收水分的能力越 。(填大、小) 18.克劳修斯积分/Q T δ? 为不可逆循环。 19.熵产是由 引起的。 20.双原子理想气体的定值比热容p c = 。 21、基本热力学状态参数有:( )、( )、( )。 22、理想气体的热力学能是温度的( )函数。 23、热力平衡的充要条件是:( )。 24、不可逆绝热过程中,由于不可逆因素导致的熵增量,叫做( )。 25、卡诺循环由( )热力学过程组成。 26、熵增原理指出了热力过程进行的( )、( )、( )。 31.当热力系与外界既没有能量交换也没有物质交换时,该热力系为_______。 32.在国际单位制中温度的单位是_______。

热力学基础计算题-答案

《热力学基础》计算题答案全 1.温度为25℃、压强为1 atm 的1 mol 刚性双原子分子理想气体,经等温过程体积膨胀至原来的3倍.(普适气体常量R =8.31 1 --??K mol J 1 ,ln3=1.0986) (1) 计算这个过程中气体对外所作的功. (2) 假若气体经绝热过程体积膨胀为原来的3倍,那么气体对外作的功又是多少? 解:(1) 等温过程气体对外作功为 ? ?== = 333ln d d V V V V RT V V RT V p W 2分 =8.31×298×1.0986 J =2.72×103 J 2分 (2) 绝热过程气体对外作功为 V V V p V p W V V V V d d 0 300 3??-== γ γ RT V p 1 311131001--=--=--γγγγ 2分 =2.20×103 J 2分 2.一定量的单原子分子理想气体,从初态A 出发, 沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量?E 以及所吸收的热 量Q . (2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和). 解:(1) A →B :))((2 11A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 J Q =W 1+ΔE 1=950 J . 3分 B → C :W 2 =0 ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J . Q 2 =W 2+ΔE 2=-600 J . 2分 C →A :W 3 = p A (V A -V C )=-100 J . 150)(2 3 )(3-=-= -=?C C A A C A V V p V p T T C E ν J . Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1+W 2+W 3=100 J . Q = Q 1+Q 2+Q 3 =100 J 2分 3.0.02 kg 的氦气(视为理想气体),温度由17℃升为27℃.若在升温过程中,(1) 体积保持不变;(2) 压强保持不变;(3) 不与外界交换热量;试分别求出气体内能的改变、吸收的热量、外界对气体所作的功. (普适气体常量R =8.31 1 1 K mol J --?) 解:氦气为单原子分子理想气体,3=i 1 2 3 1 2 O V (10-3 m 3 ) 5 A B C

统计热力学基本方法

第五章 统计热力学基本方法 在第四章我们论证了最概然分布的微观状态数lnt m 可以代替平衡系统的总微观状态数ln Ω,而最概然分布的微观状态数又可以用粒子配分函数来表示。在此基础上,为了达到从粒子的微观性质计算系统的宏观热力学性质之目的,本章还需重点解决以下两个问题:(1)导出系统的热力学量与分子配分函数之间的定量关系;(2)解决分子配分函数的计算问题。 §5.1 热力学量与配分函数的关系 本节的主要目的是推导出系统的热力学函数与表征分子微观性质的分子配分函数间的定量关系。在此之前先证明β = - 1/(kT ) 一 求待定乘子β 对独立可别粒子系统: ln Ω = ln t m = ln (N !∏i i i ! g i N N ) = ln N ! +i i i ln g N ∑ - ∑i i !ln N 将Stirling 近似公式代入、展开得 ln Ω = N ln N +i i i ln g N ∑ - ∑i i i ln N N 代入Boltzmann 关系式 (4—6)得 S = k (N ln N +i i i ln g N ∑ - ∑i i i ln N N ) 按Boltzmann 分布律公式 N i = q N g i exp (βεi ) ,代入上式的ln N i 中,利用粒子数与能量守恒关系得 独立可别粒子系统: S = k (N ln q -βU ) (5—1a) 独立不可别粒子系统: S = k (N ln q -βU - ln N ! ) (5—1b) 上式表明S 是(U ,N ,β)的函数,而β是U ,N ,V 的函数,当N 一定时,根据复合函数的偏微分法则 N V N U N N V U S U S U S ,,,,??? ? ??????? ????+??? ????=??? ????βββ 对(5—1a,b )式微分结果均为 N V U S ,??? ????N V N V U U q N k k ,,ln ??? ??????? ?????-???? ????+-=βββ (5—2) 又 q = )ex p(g i i i βε ∑ 所以 N V q ,ln ???? ????β = N V q q ,1???? ????β= )ex p(g 1i i i i βεε∑q =N U (5—3) 代入(5—2)式得 N V U S ,? ?? ????= - k β 对照热力学中的特征偏微商关系 T U S N V 1,= ? ?? ???? 便可以得到 kT 1-=β

【良心出品】工程热力学计算练习题和证明题

工程热力学计算练习题 1、设工质在K T H 1200=的恒温热源和K T L 300=的恒温冷源间按热力循环工作,已知吸热量为150kJ ,求热效率和循环净功。 2、5kg 氧气初态为p 1=0.8MPa 、T 1=800K ,经可逆定压加热过程达到1200K 。设氧气为理想气体,比热容为定值,摩尔质量M =32×10-3kg/mol ,试求氧气终态的体积V 2、热力学能变量ΔU 、焓变量ΔH 、 熵变量ΔS 。 3、有人设计一台循环装置,在温度为1100K 和350K 的两个恒温热源之间工作,且能输出净功1250kJ ,而向冷源放热500kJ 。试判断该装置在理论上是否可行? 4、空气流经喷管作定熵流动,已知进口截面上空气的压力p 1=7bar 、温度t 1=947℃,出口截面上空气的压力p 2=1.4bar ,质量流量q m =0.5kg/s 。空气的比定压热容c p =1.004kJ/(kg ·K),气体常数Rg =0.287 kJ/(kg ·K),k =1.4,试确定喷管外形、出口截面上空气的流速和出口截面面积。

证明题 1、试证明可逆过程的功?= -2 121pdV W 。 证明:设有质量为m 的气体工质在气缸中进行可逆膨胀, 其变化过程如图中连续曲线1-2表示。 由于过程是可逆的,所以工质施加在活塞上的力F 与外界作用在活塞上的各种反力之总和随时只相差一无 穷小量。按照功的力学定义,工质推动活塞移动距离dx 时,反抗斥力所作的膨胀功为 pdV pAdx Fdx W ===δ 式中,A 为活塞面积,dV 是工质体积微元变化量。 在工质从状态1到状态2的膨胀过程中,所作的 膨胀功为?=-2 121pdV W 2、试证明理想气体的比定压热容仅仅是温度的函数。 证明:引用热力学第一定律解析式,对于可逆过程有vdp dh q -=δ 定压过程p p p p T h dT vdp dh dT q c )()()(??=-==δ 对于理想气体T R u pv u h g +=+=,显然焓值与压力无关,也只是温度的单值函 数,即()T f h h =,故dT dh T h c p =??=)( 理想气体的比定压热容仅仅是温度的函数。

《热力学第一定律》练习题1

二、填空题 1. 封闭系统由某一始态出发,经历一循环过程,此过程的_____U ?=;_____H ?=;Q 与W 的关系是______________________,但Q 与W 的数值________________________,因为_________________________。 2. 状态函数在数学上的主要特征是________________________________。 3. 系统的宏观性质可分为___________________________________,凡与系统物质的量成正比的物理量均称为___________________________。 4. 在300K 的常压下,2mol 的某固体物质完全升华过程的体积功_________e W =。 5. 某化学反应:A(l) + 0.5B(g) → C(g)在500K 恒容条件下进行,反应进度为1mol 时放热10k J ,若反应在同样温度恒容条件下进行,反应进度为1mol 时放热_____________________。 6. 已知水在100℃的摩尔蒸发焓40.668ap m H ν?=kJ·mol -1,1mol 水蒸气在100℃、101.325kPa 条件下凝结为液体水,此过程的_______Q =;_____W =;_____U ?=;_____H ?=。 7. 一定量单原子理想气体经历某过程的()20pV ?=k J ,则此过程的_____U ?=;_____H ?=。 8. 一定量理想气体,恒压下体积工随温度的变化率____________e p W T δ? ? = ????。 9. 封闭系统过程的H U ?=?的条件:(1) 对于理想气体单纯pVT 变化过程,其条件是_____________________;(2)对于有理想气体参加的化学反应,其条件是______________________________________。 10. 压力恒定为100kPa 下的一定量单原子理想气体,其_____________p H V ???= ? ???kP a 。 11. 体积恒定为2dm 3的一定量双原子理想气体,其_______________V U p ???= ????m 3 。 12. 化学反应的标准摩尔反应焓随温度的变化率θ r m d _______d H T ?=;在一定的温度范围内标准摩尔反应焓与温 度无关的条件是__________________。 13. 系统内部及系统与环境之间,在____________________________________过程中,称为可逆过程。 14. 在一个体积恒定为2m 3 ,'0W =的绝热反应器中, 发生某化学反应使系统温度升高1200℃,压力增加300kP a ,此过程的_____U ?=;_____H ?=。 15. 在一定温度下,c f m m H H θ θ?=?石墨 ______________;2,()c m H g f m H H θθ ?=?_____________。 16. 在25℃时乙烷C 2H 6(g)的c m c m H U θθ ?-?=______________________。

第六章统计热力学初步练习题

第六章统计热力学初步练习题 一、判断题: 1.当系统的U,V,N一定时,由于粒子可以处于不同的能级上,因而分布数不同,所以系统的总微态数Ω不能确定。 2.当系统的U,V,N一定时,由于各粒子都分布在确定的能级上,且不随时间变化,因而系统的总微态数Ω一定。 3.当系统的U,V,N一定时,系统宏观上处于热力学平衡态,这时从微观上看系统只能处于最概然分布的那些微观状态上。 4.玻尔兹曼分布就是最概然分布,也是平衡分布。 5.分子能量零点的选择不同,各能级的能量值也不同。 6.分子能量零点的选择不同,各能级的玻尔兹曼因子也不同。 7.分子能量零点的选择不同,分子在各能级上的分布数也不同。 8.分子能量零点的选择不同,分子的配分函数值也不同。 9.分子能量零点的选择不同,玻尔兹曼公式也不同。 10.分子能量零点的选择不同,U,H,A,G四个热力学函数的数值因此而改变,但四个函数值变化的差值是相同的。 11.分子能量零点的选择不同,所有热力学函数的值都要改变。 12.对于单原子理想气体在室温下的一般物理化学过程,若要通过配分函数来求过程热力学函数的变化值,只须知道q t这一配分函数值就行了。 13.根据统计热力学的方法可以计算出U、V、N确定的系统熵的绝对值。 14.在计算系统的熵时,用ln W B(W B最可几分布微观状态数)代替1nΩ,因此可以认为W B与Ω大小差不多。 15.在低温下可以用q r = T/σΘr来计算双原子分子的转动配分函数。 二、单选题: 1.下面有关统计热力学的描述,正确的是: (A) 统计热力学研究的是大量分子的微观平衡体系; (B) 统计热力学研究的是大量分子的宏观平衡体系; (C) 统计热力学是热力学的理论基础; (D) 统计热力学和热力学是相互独立互不相关的两门学科。 2.在统计热力学中,物系的分类常按其组成的粒子能否被辨别来进行,按此原则,下列 说法正确的是: (A) 晶体属离域物系而气体属定域物系;(B) 气体和晶体皆属离域物系; (C) 气体和晶体皆属定域物系;(D) 气体属离域物系而晶体属定域物系。 3.在研究N、V、U有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U,这是因为 所研究的体系是: (A) 体系是封闭的,粒子是独立的;(B) 体系是孤立的,粒子是相依的; (C) 体系是孤立的,粒子是独立的;(D) 体系是封闭的,粒子是相依的。

相关主题