搜档网
当前位置:搜档网 › 用微元法推导无阻尼单摆运动任意角度下的周期公式-论文

用微元法推导无阻尼单摆运动任意角度下的周期公式-论文

用微元法推导无阻尼单摆运动任意角度下的周期公式-论文
用微元法推导无阻尼单摆运动任意角度下的周期公式-论文

单摆周期公式的推导与应用

单摆周期公式的推导与特殊应用 新课程考试大纲与2003年理科综合考试说明(物理部分)相比,有了很大的调整。知识点由原来的92个增加到了131个,并删去了许多限制性的内容。如在振动和波这一章,删去了“不要求推导单摆的周期公式”这一限制性的内容。这就说明,新课程考试大纲要求学生会推导单摆的周期公式。而查看《全日制普通高级中学教科书(试验修订本)物理第一册(必修)》,在关于单摆周期公式的推导中也仅仅讲到单摆受到的回复力F 与其位移x 大小成正比,方向与位移x 的方向相反为止。最后还是通过物理学家的研究才得出了单摆的周期公式。这样一来,前面的推导似乎只是为了想证明单摆的运动是简谐运动。 一.简谐运动物体的运动学特征 作简谐运动的物体要受到回复力的作用,而且这个回复力F 与物体相对于平衡位置的位移x 成正比,方向与位移x 相反,用公式表示可以写成kx F -=,其中k 是比例系数。对于质量为m 的小球,假设t 时刻(位移是x )的加速度为a ,根据牛顿第二运动定律有: kx ma F -==,即x m k a - = 因此小球的加速度a 与它相对平衡位置的位移x 成正比,方向与位移x 相反。因为x (或F )是变 量,所以a 也是变量,小球作变加速运动。把加速度a 写成22dt x d ,并把常数m k 写成2 ω得到 x dt x d 2 2 2ω-=。对此微分方程式,利用高等数学方法,可求得其解为)sin(?ω+=t A x 。这说明小球的位移x 是按正弦曲线的规律随着时间作周期性变化的,其变化的角速度为T m k π ω2= = ,从而得到作简谐运动物体的周期为k m T π 2=。 二.单摆周期公式的推导 单摆是一种理想化的模型,实际的摆只要悬挂小球的摆线不会伸缩,悬线的长度又比球的直径大很多,都可以认为是一个单摆。 当摆球静止在O 点时,摆球受到的重力G 和摆线的拉力T 平衡,如图1所示,这个O 点就是单摆的平衡位置。让摆球偏离平衡位置,此时,摆球受到的重力G 和摆线的拉力T 就不再平衡。在这两个力的作用下,摆球将在平衡位置O 附近来回往复运动。当摆球运动到任一点P 时,重力G 沿着圆弧 切线方向的分力θsin 1mg G =提供给摆球作为来回振动的回复力θsin 1mg G F ==,当偏角θ很 小﹝如θ<0 10﹞时,l x ≈ ≈θθsin ,所以单摆受到的回复力x l mg F - =,式中的l 为摆长,x 是摆球偏离平衡位置的位移,负号表示回复力F 与位移x 的方向相反,由于m 、g 、L 都是确定的常数, 所以l mg 可以用常数k 来表示,于是上式可写成kx F -=。因此,在偏角θ很小时,单摆受到的回 复力与位移成正比,方向与位移方向相反,单摆作的是简谐运动。把l mg k =代入到简谐运动物体 B G G 图 1

简谐运动的动力学条件和周期公式的推导

简谐运动的动力学条件和周期公式的推导 [摘要]:本文从简谐运动的概念出发, 用数学知识,推理出了简谐运动的动力学条件及弹簧振子的周期公式、单摆做小角度摆动的周期。从逻辑上对机械振动一章的知识有了一 个整体的认识。 [关键词]:简谐运动,动力学条件,周期公式,弹簧振子,单摆 [正文] 课程标准实验教科书《物理》3—4第十一章从运动学的角度对简谐运动进行了定义,恰好从数学课上学生也学到了关于导数的知识。这就为构造简谐运动的逻辑提供了条件,通过这样的一个逻辑构造,可以让学生体会数学在物理学中的应用。同时,也可以让学生充分体会物理学逻辑上的统一美。激发学生学习物理,从理论上探究物理问题的兴趣和决心。 如果质点的位移与时间的关系遵从正弦的规律,即它的振动图象( x —t 图象)是一条正弦,这样的运动叫做简谐运动。 由定义可知,质点的位移时间关系为t A x sin ………………(1)对时间求导数可得速度随时间变化的规律:t A dt dx v cos ………………(2)再次对埋单求导数可得加速度随时间变化的规律:t A dt dv a sin 2 (3) 由牛顿第二定律可知,质点受到的合力为: ma F ………………(4)由(3)(4)可知: t mA F sin 2 (5) 将(1)式代入(5)式可得: x m F 2..................(6)上式中,m 和都是常数,从而可以写成下面的形式kx F (7) 其中2m k ,至此得到了质点做简谐运动的动力学条件:质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置。 对于的弹簧振子来说,(7)式中的k 表示弹簧的劲度系数,对比(6)式可知k m 2,

物理常见公式的推导

(x 为伸长量或压缩量;k 为劲度系数,只与弹簧的原长、粗 细和材料有关 ) (g 随离地面高度、纬度、地质结构而变化;重力约等于地 面上物体受到的地球引力 ) 3、 求F 1 > F 2两个共点力的合力:利用平行四边形定则。 注意:(1)力的合成和分解都均遵从平行四边行法则。 (2)两个力的合力范围: F i — F 2 F F I + F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、 两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物体, 所受合外力为 零。 F 合 =0 或 :F x 合=0 F y 合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2 )有固定转动轴物体的平衡条件:力矩代数和为零. (只要求了解) 力矩:M=FL (L 为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力: 滑动摩擦力:f= F N 说明:①F N 为接触面间的弹力,可以大于 G;也可以等于G;也可以小于G ② 为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢 以及正压力 N 无关. 静摩擦力:其大小与其他力有关, 由物体的平衡条件或牛顿第二定律求解, 不与正压力成正比 大小范围:O f 静f m (f m 为最大静摩擦力,与正压力有关 ) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b 、摩擦力可以做正功,也可以做负功,还可以不做功。 c 、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、 浮力: F= gV (注意单位) 7、 万有引力: F=G 口呼 2 r (1) 适用条件:两质点间的引力(或可以看作质点,如两个均匀球体) 。 (2) G 为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3) 在天体上的应用:(M--天体质量,n —卫星质量,R--天体半径,g--天体表面重力加 速度,h —卫星到天体表 面的高度) 高中物理公式 、力胡克定律: F = kx 1、 重力: G = mg

物理常见公式的推导

高中物理公式 一、力胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料有关) 1、重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受到的地球引力) 3 、求F 1、F2两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围:? F1-F2 ?≤ F≤ F1 + F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物体, 所受合外力为零。 F合=0 或: F x合=0 F y合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力: 滑动摩擦力: f= μ F N 说明:① F N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G ②μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关. 静摩擦力:其大小与其他力有关,由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O≤ f静≤ f m (f m为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b、摩擦力可以做正功,也可以做负功,还可以不做功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、浮力: F= ρgV (注意单位) 7、万有引力: F=G m m r 12 2 (1)适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。 (2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3)在天体上的应用:(M--天体质量,m—卫星质量, R--天体半径,g--天体表面重力加速度,h—卫星到天体表 面的高度) a 、万有引力=向心力 G V R h m R h m T R h 2 2 2 2 2 4 () ()() + =+=+ ω π

单摆周期公式及影响单摆周期的因素研究

单摆周期公式及影响单摆周期的因素研究 摘要:结合理论知识,基础物理实验,构建线性数学模型。对单摆运动进行分析。其中,理论部分主要依据高等数学及数学物理方法的知识,对单摆运动周期公式进行论证;实验部分主要通过改变单摆摆线长度进行实验;观察、分析单摆运动规律。从而验证单摆周期公式。并对影响单摆周期的因素展开研究。最后总结出影响单摆周期的因素。 关键词:数学模型;单摆运动;周期公式 单摆运动问题是一个古老的问题,无论是中学物理还是大学物理,我们都在学习研究单摆。作为一个重要的理想物理模型,单摆的运动周期规律和实验研究在生产生活中意义重大。单摆问题是物理学中经典问题。从阅读物理学史并可知道,早在1583 年,十九岁的伽利略(1564—1642)在比萨教堂祈祷时注意到因被风吹而摆动的大灯,他利用自己的脉搏来测定大灯的摆动周期,发现了摆的等时性。但现在这个故事的真实性受到怀疑,因为比萨大教堂所保留的许多相关历史文献都表明该吊灯是在伽利略二十三岁那年才首次安装的。专家指出,伽利略是于1602 年注意到单摆运动的等时性,不过伽利略误认为在大摆动条件下等时性也成立,他说:“物体从直立圆环上任一点落到最低位置的时间相同。”随后吉多彼得做实验发现这个结论与实验不符,伽利略解释说可能是由于摩擦力。伽利略从实验中得出单摆周期与摆长的平方根成正比。他还指出周期与摆球质量无关。他说:“因此我取两个球,一个是铅的而另一个是软木的,前者比后者重100 多倍,用两根等长细线把它们悬挂起来、把每一个球从铅直位置拉到旁边,我在同一时刻放开它们,它们就沿着以这些等长线为半径的圆周下落,穿过铅垂位置,并且沿同一路径返回。”最早系统地研究单摆的是惠根斯(ChristiaanH uygens)。由于当时实验技术条件的落后,重力加速度在惠根斯之前是很难精确测出来的,所以惠更斯不可能从实验中总结出或猜出单摆周期公式的系数π2。事实上,反过来重力加速度是1659 年惠更斯根据单摆周期公式首次精确测出来的。他在巴黎用一个周惠更斯期为2s的单摆(即秒摆),测出摆长为 3.0565英尺,从而计算出2 /2.9s g=。惠更斯于1657 年取得了关于摆钟的专利权。惠更斯最伟大的著作《摆式时钟或用于时钟上的摆的运动的几何证明》于1673 年在巴黎问世。这本书共分5部分,第一与或第五部分讨论时钟,第二部分讨论质点在重力作用下的自由落体运动以及沿光滑平面或曲面所作的约束运动,并证明了在大摆动下约束在旋轮线上的物体等时降落的性质,第三部分建立渐屈线理论,第四部分解决了复摆问题。这是人类第一次系统地研究约束运动的论著。1659 年,在对单摆的研究中,他导出了摆动周期和沿着摆的长从静止开始的自由落体时间之间

单摆周期原理及公式推导

关于单摆的回复力 ①在研究摆球沿圆弧的运动情况时,要以不考虑与摆球运动方向垂 直的力,而只考虑沿摆球运动方向的力,如图所示. ②因为F′垂直于v,所以,我们可将重力G 分解到速度v的方向 及垂直于v的方向.且G1=Gsin θ=mg sin θG2=G cos θ=mg cos θ ③说明:正是沿运动方向的合力G1=mg sin θ提供了摆球摆动的回 复力. 单摆做简谐运动的条件 ①推导:在摆角很小时,sin θ=l x 又回复力F=mg sin θ F=mg ·l x (x 表示摆球偏离平衡位置的位移,l表示单摆的摆长) ②在摆角θ很小时,回复力的方向与摆球偏离平衡位置的位移方向相 反,大小成正比,单摆做简谐运动. ③简谐运动的图象是正弦(或余弦曲线),那么在摆角很小的情况下,既然单摆做的是简谐运动,它振动的图象也是正弦或余弦曲线. 单摆周期公式推导 设摆线与垂直线的夹角为θ, 在正下方处时θ=0,逆时针方向为正,反之为负。 则 摆的角速度为θ’( 角度θ对时间t 的一次导数), 角加速度为θ’’( 角度θ对时间t 的二次导数)。对摆进行力学分析, 由牛顿第二运动定律,有 (m)*(l)* θ’’ = - mg*sin θ 即θ’’+ (g/l )*sin θ = 0 令 ω = (g/l)1/2 ,有 θ’’ + (ω2)*sin θ = 0 当 θ很小时, sin θ ≈ θ (这就是考虑单摆运动时通常强调“微”摆的原因) 这时, 有 θ’’ + (ω^2)*θ ≈ 0 该方程的解为 θ = A*sin(ωt+φ) 这是个正弦函数,其周期为 T = 2π/ω = 2π*√(l/g)

单摆周期公式的推导

单摆周期公式的推导 2010-12-16 14:50 来源:文字大小:【大】【中】【小】 平动非惯性参考系中单摆的周期问题在一些竞赛题中经常考到,学生们多是运用等效的物理思想,求得等效重力加速度,代替惯性参考系中在只有重力和摆线张力作用下的单 摆的周期公式中的重力加速度值,从而得到答案。这里的加速度是指除摆线的张力外,摆球所受其他力的合力所产生的加速度。下面举两个例子试说明之: 例以加速度向上加速的电梯顶上挂一摆线长为的单摆,摆球质量为,则单摆的周期为? 图 解:摆球所受的除摆线张力之外的力只有竖直向下的重力和竖直向下的惯性力 ,如图1所示,这两个力的合力所产生的加速度即为等效重力加速度,为, 代替上式中的,即得此单摆的周期。 例以加速度向右加速运动的小车顶上挂一摆长为的单摆,摆球质量为,则单摆的周期为? 图 解:摆球所受的除摆线张力之外的力只有竖直向下的重力和水平向左的惯性力 ,如图所示,这两个力的合力所产生的加速度即为等效重力加速度,为, 代替上式中的,即得此单摆的周期。 上述两例均是从等效原理出发,找到等效重力加速度代入公式即得。但很多时候学生往往不能接受这种等效处理方式,认为有些牵强。而且这种做法也的确是机械的代公式求答案,对学生思维能力的提高并没有提供很好的帮助。

笔者在给竞赛班学生上课时给出了平动非惯性参考系中单摆周期公式的一般性推导,其过程如下: 如图所示,为惯性参考系,为相对于系以加速度 运动的非惯性平动参考系,其中为在惯性参考系中的坐标。在 系中,摆球受重力,摆线张力及惯性力三个力的作用。 如图,设摆球在平衡位置时偏离竖直方向角,摆球在平衡位置时切向力为零 则有方程 又因为 解得 如图所示,在系中,假设摆球任一时刻相对于平衡位置的摆角为 摆球受重力,摆线张力及惯性力三个力的作用。切向力与角位移反号,促使小球返回平衡位置。设为摆角角加速度,则沿摆球运动切向有方程

物理常见公式的推导

物理常见公式的推导 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-

高中物理公式 一、力胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料有关) 1、重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受到的地球引力) 3 、求F 1 、F2两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: F1-F2 F F1 + F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物 体,所受合外力为零。 F合=0 或: F x合=0 F y合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2 )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力: 滑动摩擦力: f= F N 说明:① F N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G ②为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关. 静摩擦力:其大小与其他力有关,由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O f静 f m (f m为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b、摩擦力可以做正功,也可以做负功,还可以不做功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、浮力: F= gV (注意单位) 7、万有引力: F=G m m r 12 2 (1)适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。 (2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3)在天体上的应用:(M--天体质量,m—卫星质量, R--天体半径,g--天体表面重力加速度,h—卫星到天体表 面的高度) a 、万有引力=向心力 G Mm R h m () + = 2 V R h m R h m T R h 2 2 2 2 2 4 () ()() + =+=+ ω π

单摆的周期实验报告

深圳大学实验报告课程名称:大学物理实验(三) 课程编号: 实验名称:基础设计性实验2 单摆的运动周期 学院: 组号指导教师: 报告人:学号:班级: 实验地点实验时间: 实验报告提交时间:

一、实验设计方案 、实验目的 测量单摆的周期 研究摆线长短、摆线粗细、摆球质量或摆球体积对周期的影响 、实验设计 1.由实验原理可知,单摆运动的本质是简谐运动。它的回复力是右重力的分力提供,一般来说,单摆运动的摆动角度范围是:α<5°。 测量单摆周期 思路:单摆运动的本质是简谐运动,因此它的运动具有周期性,往返时间相同。选择一个线长,摆球质量都一定的摆锤(L=75cm m=15g),测摆锤往返N次的时间T,则此单摆的周期为:t=T/N. 但实验室中的光电门传感器记录的数据是单摆往返一个周期所用的时间,因此可以利用测量多个周期,求平均周期。 单摆的周期。 要研究单摆的周期跟某一变量是否有关系,必须使其他变量或因素不变,因此须采取控制变量法。 单摆的周期是否与摆线长度有关? 思路:让摆球的质量(m=10g)、体积不变,摆动的幅度不变,摆线的粗细不变,取3根相同材料、长度不同(L1=47cm, L2=64cm, L3=75cm)的摆线和摆球分别从某一高度释放,α<5°,利用传感器和Datastudio获得三次摆动的周期,进行比较。 单摆的周期是否与摆球的质量有关? 思路:众可能制约因素不变,取摆长相同(l=75cm)、质量不同(m1=5g, m2=10g, m3=15g)的摆球从同一高度释放。利用传感器和Datastudio获得单摆周期,进行比较。 单摆周期是否与摆线粗细有关? 思路:众可能制约因素不变,取摆长相同、质量相同、摆线粗细不同(1-6根线)的摆球从同一高度释放,利用传感器和Datastudio获得单摆周期,进行比较 选用仪器 仪器名称型号主要参数用途 750接口CI7650阻抗1 MΩ。最大的有效输入电压范围±10 V数据采集处理 计算机和DataStudio CI6874——数据采集平台、

单摆周期公式理解及应用专题

单摆周期公式理解及的应用专题 1、准确把握摆长的概念。 2014-11-9(2特优) 如图1所示,摆球运动的轨迹是一个圆弧,所以单摆做的是一个非完整的圆周运动,而摆长则为该圆周运动的轨道半径。即:“L”为质点到圆心的距离。 【例1】一个在夏天走时很准的钟,若到冬天,则走时是变慢还是变快? 【例2】【例2】在以下三个问题中均不计空气阻力: (1)如图2所示,长为L的轻绳一端固定于天花板上的O点,另一端系一小球(可看成质点),在悬点的正下方L/3处有一钉子,今将小球拉离平衡位置(摆角很小)由静止释放,求小球摆动的周期。 (2)如图3所示,两根长为L的轻绳一端分别固定于天花板上的A点和B点,另一端共同系一小球(可看成质点),平衡时,两绳与水平的夹角均为θ。今将小球沿垂直纸面向外拉离平衡位置(摆角很小)由静止释放,求小球摆动的周期。 (3)如图4所示,三绳长均为L,上面两绳一端固定在天花板上,拉直时与水平成θ角,今将小球沿垂直纸面向外拉离平衡位置(摆角很小)由静止释放,求小球摆动的周期。 【例3】在光滑的水平导轨上有一个滚轮A,质量为2m,轴上系一根长为L的轻质细线,下端悬一质量为m的摆球B,A、B的直径均远小于L,如图5所示。今将B球稍微拉离竖直位置后释放,摆球作小幅度的振动,不计空气阻力,求其振动周期。 2、准确把握重力加速度的概念。 根据公式 2 T=可知,单摆的周期与重力加速度有关,同时在教学中,我们也带领学生通过实验测定了本地的重力加速度的数值,然而不同地点的重力加速度值是有差异的,所以即使是同一个完全相同的单摆,在不同的地点摆动时,周期也存在差异。 【例4】一个在广州走时很准的摆钟,若到了莫斯科,则走时是变慢还是变快? 【例5】一个在山脚下走时很准的摆钟,若到山顶上,则走时是变慢还是变快? 【例6】一个在地球表面上走时很准的摆钟,若到了月球表面上,则走时是变慢还是变快? 3、单摆周期公式等效思想在单摆和类单摆问题中的应用。 3.1 平动非惯性参考系中单摆周期公式的一般性推导 如图所示,K xoy -为惯性参考系,K x o y '''' -为相对于K系以加速度 a。=a x + a y 运动的非惯性平动参考系,其中00 (,) x y为o'在惯性参考系中的坐标。在K'系中, 摆球受重力mg,摆线张力 T F及惯性力三个力的作用。

单摆周期公式的一般性推导

单摆周期公式的一般性推导 平动非惯性参考系中单摆的周期问题在一些竞赛题中经常考到,学生们多是运用等效的物理思想,求得等效重力加速度a',代替惯性参考系中在只有重力和摆线张力作用下的单 摆的周期公式2 T=中的重力加速度值g,从而得到答案。这里的加速度a'是指除摆 线的张力外,摆球所受其他力的合力所产生的加速度。下面举两个例子试说明之: 例1以加速度a向上加速的电梯顶上挂一摆线长为l的单摆,摆球质量为m,则单摆的周期为? 图1 解:摆球所受的除摆线张力之外的力只有竖直向下的重力mg和竖直向下的惯性力ma,如图1所示,这两个力的合力所产生的加速度即为等效重力加速度,为a g a '=+,代替上 式中的g ,即得此单摆的周期2 T=。 例2以加速度a向右加速运动的小车顶上挂一摆长为l的单摆,摆球质量为m,则单摆的周期为? 图2 解:摆球所受的除摆线张力之外的力只有竖直向下的重力mg和水平向左的惯性力ma, 如图2 所示,这两个力的合力所产生的加速度即为等效重力加速度,为a'= a a a a

替上式中的g ,即得此单摆的周期2T = 上述两例均是从等效原理出发,找到等效重力加速度代入公式即得。但很多时候学生往往不能接受这种等效处理方式,认为有些牵强。而且这种做法也的确是机械的代公式求答案,对学生思维能力的提高并没有提供很好的帮助。 笔者在给竞赛班学生上课时给出了平动非惯性参考系中单摆周期公式的一般性推导,其过程如下: 如图3所示,K x o y -为惯性参考系,K x o y ''''-为 相对于K 系以加速度000()a x i y j =+ 运动的非惯性平动参考系,其中00(,)x y 为o '在惯性参考系中的坐标。在K '系中,摆球受重力mg ,摆线张力T F 及惯性力00()f m x i y j =-+ 惯三个力的作用。 如图3,设摆球在平衡位置时偏离竖直方向0θ角,摆球在平衡位置时切向力为零 则有方程 0000()sin cos (1)mg my mx θθ+= 又因为 2 200sin cos 1 (2)θθ+= 解(1)(2)得 0sin θ= 0cos (4)θ= x y x ' 图3

简谐振动及其周期推导与证明

简谐振动及其周期公式的推导与证明 简谐振动:如果做机械振动的物体,其位移与时间的关系遵从正弦(或余弦)函数规律, 这样的振动叫做简谐振动。 位移:用x 表示,指振动物体相对于平衡位置的位置变化,由简谐振动定义可以得出x 的 一 般式:)cos(?ω+=t A x (下文会逐步解释各个物理符号的定义); 振幅:用A 表示,指物体相对平衡位置的最大位移; 全振动:从任一时刻起,物体的运动状态(位置、速度、加速度),再次恢复到与该时刻完 全相同所经历的过程; 频率:在单位时间内物体完成全振动的次数叫频率,用f 表示; 周期:物体完成一次全振动所用的时间,用T 表示; 角频率:用ω表示,频率的2π倍叫角频率,角频率也是描述物体振动快慢的物理量。角频 率、周期、频率三者的关系为:ω=2π/T =2πf ; 相位:?ωφ+=t 表示相位,相位是以角度的形式出现便于讨论振动细节,相位的变化率 就是角频率,即dt d φω=; 初相:位移一般式中?表示初相,即t =0时的相位,描述简谐振动的初始状态; 回复力:使物体返回平衡位置并总指向平衡位置的力。(因此回复力同向心力是一种效果力) 如果用F 表示物体受到的回复力,用x 表示小球对于平衡位置的位移,对x 求二阶导即得: )cos(2?ωω+-=t A a 又因为F=ma ,最后可以得出F 与x 关系式: kx x m F -=-=2ω 由此可见,回复力大小与物体相对平衡位置的位移大小成正比。 式中的k 是振动系统的回复力系数(只是在弹簧振子系统中k 恰好为劲度系数),负号的意思是:回复力的方向总跟物体位移的方向相反。 简谐振动周期公式:k m T π 2=,该公式为简谐振动普适公式,式中k 是振动系统的回复力 系数,切记与弹簧劲度系数无关。 单摆周期公式:首先必须明确只有在偏角不太大的情况(一般认为小于10°)下,单摆的运 动可以近似地视为简谐振动。 我们设偏角为θ,单摆位移为x ,摆长为L ,当θ很小时,有关系式: L x ≈≈≈θθθtan sin , 而单摆运动的回复力为 F=mgsin θ,

高中物理单摆周期公式的理解和应用专题辅导

单摆周期公式的理解和应用 河南 黄正平 单摆是一种理想的物理模型,它由理想化的摆球和摆线组成.摆线由质量不计、不可伸缩的细线提供;摆球密度较大,而且球的半径比摆线的长度小得多,这样才可以将摆球看做质点,由摆线和摆球构成单摆.在满足偏角α<10°的条件下,单摆的周期g l 2T π=.从公式中可看出,单摆周期与振幅和摆球质量无关.从受力角度分析,单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力,偏角越大,回复力越大,加速度(gsin α)越大,在相等时间内走过的弧长也越大,所以周期与振幅、质量无关,只与摆长l 和重力加速度g 有关.在有些振动系统中l 不一定是绳长,g 也不一定为9.8m/s 2,因此出现了等效摆长和等效重力加速度的问题. 物理上有些问题与单摆类似,经过一些等效可以套用单摆的周期公式,这类问题称为“等效单摆”.等效单摆在生活中比较常见.除等效单摆外,单摆模型在其他问题中也有应用. 一、等效单摆 等效单摆分等效摆长单摆、等效重力加速度单摆,以及摆长、重力加速度双重等效单摆.等效单摆的周期公式为g L 2T ' 'π=. 1、等效摆长单摆.等效摆长不再是悬点到摆球球心的距离,但g ′=g .摆长L ′是指摆动圆弧的圆心到摆球重心的距离,摆动圆弧的圆心即为等效单摆的悬点. 例1 双线摆由两根长为L 的细线下端拴一质量为m 的小球构成,两线夹角为2α,如图1所示,今使摆球在垂直纸面的平面内做小幅度摆动,求其周期. 解析:当双线摆在垂直纸面的平面内做小幅度摆动时可以等效为以AB 的中心为悬点,OO ′长为摆长的单摆,其等效摆长α='cos L L ,故此摆周期g cos L 2T απ=。 2、等效重力加速度单摆.该类单摆的等效重力加速度g ′≠g ,但摆长仍为悬点到球心的距离.等效重力加速度g ′与单摆所在的空间位置、单摆系统的运动状态和单摆所处的物理环境有关. (1)公式中的g ′由单摆所在的空间位置决定,由2R M G g ' ='知,g ′随地球表面不同位置、不同高度而变化,在不同星球上也不相同,因此应求出单摆所在处的等效值g ′代入公式,即g 不一定等于9.8m/s 2. (2)g ′由单摆系统的运动状态决定,等效重力加速度等于摆球处于平衡位置不振动时,等效摆长“绳子”上拉力对摆球产生的加速度.具体求法为等效重力加速度g ′等于摆 球相对系统静止在平衡位置时摆线的张力(视重)T 与摆球质量m 的比值,即m T g ='.

单摆周期计算

单摆周期的计算 【摘要】计算单摆的振动周期,首先要对摆球进行受力分析,写出摆球受的回复力的表达式,其次找出简谐运动的比例系数k的值,然后将k的值代入简谐振动的周期公式f=2π〖kf(〗〖sx(〗m〖〗k 〖sx)〗〖kf)〗中,就可以求出单摆做简谐运动的周期。 【关键词】简谐运动、回复力、周期 pendulum senconds cycle computation yang shuilian 【abstract】 the computation pendulum senconds’ period of vibration, must first to suspend the ball to carry on the stress analysis, writes suspends the force of restitution expression which the ball receives, next discovers the simple harmonic motion the scale-up factor k value, then the k value substitution simple harmonic oscillation’s cyclical formula f=2π〖kf(〗〖sx(〗m〖〗k〖sx)〗〖kf)〗, may extract the pendulum senconds to do simple harmonic motion the cycle. 【key words】simple harmonic motion, force of restitution, cycle 计算单摆的振动周期,可按下面三步进行: 1、对摆球进行受力分析,写出摆球位移为χ时所受的回复力的表

单摆的周期实验报告

深圳大学实验报告 课程名称:大学物理实验(三) 课程编号: 实验名称:基础设计性实验2 单摆的运动周期 学院: 组号指导教师: 报告人:学号:班级: 实验地点实验时间: 实验报告提交时间:

测量单摆周期 思路:单摆运动的本质是简谐运动,因此它的运动具有周期性,往返时间相同。选择一个线长,摆球质量都一定的摆锤(L=75cm m=15g),测摆锤往返N次的时间T,则此单摆的周期为:t=T/N. 但实验室中的光电门传感器记录的数据是单摆往返一个周期所用的时间,因此可以利用测量多个周期,求平均周期。 单摆的周期。 要研究单摆的周期跟某一变量是否有关系,必须使其他变量或因素不变,因此须采取控制变量法。 单摆的周期是否与摆线长度有关 思路:让摆球的质量(m=10g)、体积不变,摆动的幅度不变,摆线的粗细不变,取3根相同材料、长度不同(L1=47cm, L2=64cm, L3=75cm)的摆线和摆球分别从某一高度释放,α<5°,利用传感器和Datastudio获得三次摆动的周期,进行比较。 单摆的周期是否与摆球的质量有关 思路:众可能制约因素不变,取摆长相同(l=75cm)、质量不同(m1=5g, m2=10g, m3=15g)的摆球从同一高度释放。利用传感器和Datastudio获得单摆周期,进行比较。 单摆周期是否与摆线粗细有关 思路:众可能制约因素不变,取摆长相同、质量相同、摆线粗细不同(1-6根线)的摆球从同一高度释放,利用传感器和Datastudio获得单摆周期,进行比较 选用仪器

选择L=50cm,m=10g的单摆,设摆线的宽度为d,分别测了d, 2d, 3d, 4d, 5d, 6d时的单摆周期,并记录数据 三、数据记录及数据处理 m-15g L=75cm 由公式与数据得m测= ΔN=% 平均值:T= m=10g L=75cm

关于单摆的周期

关于单摆的周期 (1)非线性摆的振动周期 一根不可伸长、不计质量的绳长为l,一端固定于O点,另一端系质量为m的小球,就可组成一个摆,如图9-27所示,竖直线OP为摆以O点为轴摆动的平衡位置. 为了研究摆动的一般规律,把摆看作是个绕O点转动的刚体,摆对O轴的转动惯量I=ml2.当角位移为θ时,作用于小球的重力对O点的力矩M=-mglsinθ.(其中的负号表示力矩的方向与角位移θ的方向相反.)根据定轴转动的定律 Iβ=M, 有 整理后可得 这是一个非线性微分方程,与简谐运动的微分方程 不同. 因此,一般情况下的摆,角位移对时间的变化规律不是余弦式,所作的摆动,不是简谐运动,而是一种非线性振动.这种摆的周期表达式为 可见,一般情况下的摆的周期随摆幅(由θ0表示)的变化而变化,不是等时摆. (2)单摆和它的周期 当摆动过程中,摆线对平衡位置的角位移θ的绝对值都很小,以致

θ=θ0cos(ωt+a), 其中θ0为最大摆角,为角振幅,周期 通常所说的单摆是指一般的非线性摆在摆角振幅很小时的情形.这是一种等时摆,周期与振幅的大小无关,是一种理想模型. 在实际应用中,在摆角足够小的条件下,就可以使用单摆的周期公式进行计算. (3)怎样认识“摆角足够小”的条件 由摆的周期T′的公式以及单摆的周期T的公式的比较中,可知误差 θ0为最大摆角.为了有一个定量的概念,在θ0为不同角度时周期的误差如下表所示. 从以上数字可以看到:当最大摆角在15°以内时,误差在0.5%以内;当最大摆角在5°以内时,误差在0.05%以内. 实验中还会有测量误差,如摆长测量误差,计时误差,等等.由于中学物理实验对精度要求不很高,同时,系统误差的精度与测量误差的精度应该协调.因此可以认为,θ0<15°时,可以满足中学物理实验对误差的要求.做演示实验时,为了增加可见度,单摆的摆角不必过于拘泥小于5°这个角度.

伽利略的单摆周期公式

伽利略的单摆周期公式.是他看到教堂顶的吊灯突发奇想的. 牛顿(万有引力),爱因斯坦(相对论) 牛顿看到苹果落地,发现万有引力.爱因斯坦看到火车不断加煤才会越跑越快,发现了能量、质量和光速之间的关系,从而形成相对论.我看了小朋友的绘图彩本才知道了上述故事. 伽利略的单摆周期公式.是他看到教堂顶的吊灯突发奇想的. 牛顿看到苹果落地,发现万有引力 水蒸汽可以做功也是瓦特 牛顿和苹果的故事,达芬奇和鸡蛋的故事,爱因斯坦和小凳子的故事,华盛顿和樱桃树的故事牛顿和苹果的故事少年时代的牛顿发现苹果落地。牛顿,1642年12月25日生于英国林肯郡伍尔索普村的一个农民家庭。12岁他在格兰撒姆的公立学校读书时,就表现了对实验和机械发明的浓厚兴趣,自己动手制作了水钟、风磨和日晷等。苹果落地引起他的注意是偶然的。一个炎热的中午,小牛顿在他母亲的农场里休息,正在这时,一个熟透了的苹果落下来,这个苹果不偏不倚,正好打在牛顿头上。牛顿想:苹果为什么不向上跑而向下落呢?他问他的妈妈,他妈妈也不能解释。大凡科学家都保留一颗童心,牛顿更不例外,当他长大成了物理学家后,他联想到了少年的“苹果落地”故事,可能是地球某种力量吸引了苹果掉下来。于是,牛顿发现了万有引力。爱因斯坦和小凳子的故事这是发生在小学手工课上的一件事。一上课,要求严格的女老师就布置说,每一个学生可以根据自己的兴趣或特长动手做一件小手工作品。爱因斯坦想了一会儿,决定动手设计制作一只小木凳。时间过得很快,下课铃响了。小伙伴们纷纷把自己的得意之作交给老师,什么剪纸呀,泥塑呀,木刻呀……摆满了讲台。而爱因斯坦呢,却无法按时交给手工作品。望着累得满头大汗的男孩,老师破例地同意他明天再交。她深信,像他这种成绩很好的学生,一定会制作出精致的作品。第二天上课时,爱因斯坦高兴地把一只小木凳交给了老师。这是一只做工粗陋的凳子,其中有一条凳腿还偏离了原来的位置,钉得歪歪扭扭的。女老师原本充满期望,现在一下子变得很失望。她极不满意地问大家:“同学们,这样蹩脚的小木凳有谁见过吗?”话音刚落,整个教室轰地响起了一阵嘲笑声。“依我看,在这个世界上,再也找不到比这更糟糕的小凳子了!”女老师越说越生气,两眼直瞪着爱因斯坦。然而,男孩并没有胆怯地坐着,一声不吭,而是迈着大步走到了讲台的前面。“老师,您说得不对!我能找到比这更差的凳子。”他涨红着脸,语气十分肯定地大声说。小伙伴们顿时安静下来,几十双眼睛疑惑地看着爱因斯坦。只见他很快地返回座位上,像变戏法似的从自己的课桌下面拿出另外两只小木凳,它们的模样更加难看。“同学们,我现在手上举着的是我第一次和第二次制作的小凳。”男孩解释道,“刚刚交给老师的是第三只,尽管它不是那么好看,无法令人满意,但总要比前两只更强。”此时此刻,课堂上再也没有谁笑了。同学们变得肃然起敬,向爱因斯坦投以钦佩的目光。站在讲台上的老师脸上掠过一丝愧疚的神色,随后向这位优秀的学生挥了挥手,请他坐下。

任意角度单摆的周期近似公式

在任意角度下单摆的周期公式.但在此之前提出两个概念:第一类不完全椭圆积分:F(φ,x)=∫[0,φ]dθ/√(1-x2sin2θ),第一类完全椭圆积分 K(x)=F(π/2,x)=∫[0,π/2]dθ/√(1-x2sin2θ)(∫[a,b]f(x)dx表示对f(x)在区间[a,b]上的定积分) 设摆长为l,摆线与竖直方向的夹角为θ,那么单摆的运动公式为: d2θ/dt2+g/l*sinθ=0 令ω=dθ/dt,上式改写成: ωdω/dθ+g/l*sinθ=0 ω2=2g/l*cosθ+c 给定初始条件θ=α(0≤α≤π),ω=0,则其特解为: ω2=2g/l*(cosθ-cosα)=4g/l*(sin2(α/2)-sin2(θ/2)) 所以t=∫dθ/ω=1/2*√(g/l)*∫[0,θ]dθ/√(sin2(α/2)-sin2(θ/2)) 做变换sin(θ/2)=sin(α/2)sinφ,则 t=√(l/g)*∫[0,φ]dφ/√(1-sin2(α/2)*sin2φ)=√(l/g)*F(φ,sin(α/2)) 以上是单摆从任意位置摆动任意角的公式,当单摆从任意位置开始摆动到竖直位置时,θ=α,此时φ=π/2 那么T=4t=4√(l此处的α就 是常说的摆角,现在看一下不同的摆角对周期的影响 单摆的近似公式为T=2π√(l/g),精确公式为T=4√(l/g)*K(sin(α/2)),记相对误差为e(α) 那么e(α)=(2K(sin(α/2))-π)/(2K(sin(α/2)) 用Maple计算得到: e(1)=0.0019% e(2)=0.0076% e(3)=0.0171% e(4)=0.0305% e(5)=0.0476% e(6)=0.0685% e(7)=0.0933% e(8)=0.1218% e(9)=0.1542% e(10)=0.1903% e(11)=0.2303% e(12)=0.2741% e(13)=0.3217% e(14)=0.3730% e(15)=0.4282% e(16)=0.4872% e(17)=0.5500%

物理常见公式的推导

物理常见公式的推导 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理公式 一、力胡克定律: F = kx (x为伸长量或压缩量;k为劲度系数,只与弹簧的原长、粗细和材料有关) 1、重力: G = mg (g随离地面高度、纬度、地质结构而变化;重力约等于地面上物体受到的地球引力) 3 、求F1、F2两个共点力的合力:利用平行四边形定则。 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: F1-F 2 F F1 + F2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 4、两个平衡条件: (1)共点力作用下物体的平衡条件:静止或匀速直线运动的物 体,所受合外力为零。 F合=0 或: F x合=0 F y合=0 推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。 [2]三个共点力作用于物体而平衡,其中任意两个力的合力与第三个力一定等值反向 (2* )有固定转动轴物体的平衡条件:力矩代数和为零.(只要求了解) 力矩:M=FL (L为力臂,是转动轴到力的作用线的垂直距离) 5、摩擦力: 滑动摩擦力: f= μ F N 说明:① F N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G ②μ为滑动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以及正压力N 无关. 静摩擦力:其大小与其他力有关,由物体的平衡条件或牛顿第二定律求解,不与正压力成正比. 大小范围: O≤ f静≤ f m (f m为最大静摩擦力,与正压力有关) 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反。 b、摩擦力可以做正功,也可以做负功,还可以不做功。 c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 d、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 6、浮力: F= ρgV (注意单位) 7、万有引力: F=G m m r 12 2 (1)适用条件:两质点间的引力(或可以看作质点,如两个均匀球体)。 (2) G为万有引力恒量,由卡文迪许用扭秤装置首先测量出。 (3)在天体上的应用:(M--天体质量,m—卫星质量, R--天体半径,g--天体表面重力加速度,h—卫星到天体表 面的高度) a 、万有引力=向心力 G Mm R h m () + = 2 V R h m R h m T R h 2 2 2 2 2 4 () ()() + =+=+ ω π 2

单摆的周期公式和万有引力定律的结合

单摆的周期公式和万有引力定律的结合 1.单摆的受力特征 (1)回复力:摆球重力沿切线方向的分力,F 回=-mg sin θ=-mg l x =-kx ,负号表示回复力F 回与位移x 的方向相反. (2)向心力:细线的拉力和重力沿细线方向分力的合力充当向心力,F 向=F T -mg cos θ. (3)两点说明 ①当摆球在最高点时,F 向=m v 2l =0,F T =mg cos θ. ②当摆球在最低点时,F 向=m v 2max l ,F 向最大,F T =mg +m v 2max l . 2.周期公式T =2πl g 的两点说明 (1)l 为等效摆长,表示从悬点到摆球重心的距离. (2)g 为当地重力加速度. 例3 一单摆在地面处的摆动周期与在某矿井底部摆动周期的比值为k .设地球的半径为R ,地球的密度均匀.已知质量均匀分布的球壳对壳内物体的引力为零,求矿井的深度d . 质量均匀分布的球壳对壳内物体的引力为零. 答案 见解析 解析 根据万有引力定律,地面处质量为m 的物体的重力mg =G mM R 2 式中g 是地面处的重力加速度,M 是地球的质量.设ρ是地球的密度,则有M =43 πρR 3 摆长为l 的单摆在地面处的摆动周期为T =2πl g 若该物体位于矿井底部,则其重力为mg ′=G mM ′(R -d )2 式中g ′是矿井底部的重力加速度,且M ′=43 πρ(R -d )3 在矿井底部此单摆的周期为T ′=2π l g ′ 由题意:T =kT ′ 联立以上各式得d =R (1-k 2) 练习 6.在科学研究中,科学家常将未知现象同已知现象进行比较,找出其共同点,进一步推测未知现象的特性和规律.法国物理学家库仑在研究异种电荷的吸引力问题时,曾将扭秤的振

相关主题