搜档网
当前位置:搜档网 › Matlab最小二乘法曲线拟合

Matlab最小二乘法曲线拟合

Matlab最小二乘法曲线拟合
Matlab最小二乘法曲线拟合

最小二乘法在曲线拟合中比较普遍。拟合的模型主要有

1.直线型

2.多项式型

3.分数函数型

4.指数函数型

5.对数线性型

6.高斯函数型

......

一般对于LS问题,通常利用反斜杠运算“\”、fminsearch或优化工具箱提供的极小化函数求解。在Matlab 中,曲线拟合工具箱也提供了曲线拟合的图形界面操作。在命令提示符后键入:cftool,即可根据数据,选择适当的拟合模型。

“\”命令

1.假设要拟合的多项式是:y=a+b*x+c*x^

2.首先建立设计矩阵X:

X=[ones(size(x)) x x^2];

执行:

para=X\y

para中包含了三个参数:para(1)=a;para(2)=b;para(3)=c;

这种方法对于系数是线性的模型也适应。

2.假设要拟合:y=a+b*exp(x)+cx*exp(x^2)

设计矩阵X为

X=[ones(size(x)) exp(x) x.*exp(x.^2)];

para=X\y

3.多重回归(乘积回归)

设要拟合:y=a+b*x+c*t,其中x和t是预测变量,y是响应变量。设计矩阵为

X=[ones(size(x)) x t] %注意x,t大小相等!

para=X\y

polyfit函数

polyfit函数不需要输入设计矩阵,在参数估计中,polyfit会根据输入的数据生成设计矩阵。

1.假设要拟合的多项式是:y=a+b*x+c*x^2

p=polyfit(x,y,2)

然后可以使用polyval在t处预测:

y_hat=polyval(p,t)

polyfit函数可以给出置信区间。

[p S]=polyfit(x,y,2) %S中包含了标准差

[y_fit,delta] = polyval(p,t,S) %按照拟合模型在t处预测

在每个t处的95%CI为:(y_fit-1.96*delta, y_fit+1.96*delta)

2.指数模型也适应

假设要拟合:y = a+b*exp(x)+c*exp(x.?2)

p=polyfit(x,log(y),2)

fminsearch函数

fminsearch是优化工具箱的极小化函数。LS问题的基本思想就是残差的平方和(一种范数,由此,LS产生了许多应用)最小,因此可以利用fminsearch函数进行曲线拟合。

假设要拟合:y = a+b*exp(x)+c*exp(x.?2)

首先建立函数,可以通过m文件或函数句柄建立:

x=[......]';

y=[......]';

f=@(p,x) p(1)+p(2)*exp(x)+p(3)*exp(x.?2) %注意向量化:p(1)=a;p(2)=b;p(3)=c;

%可以根据需要选择是否优化参数

%opt=options()

p0=ones(3,1);%初值

para=fminsearch(@(p) (y-f(p,x)).^2,p0) %可以输出Hessian矩阵

res=y-f(para,x)%拟合残差

曲线拟合工具箱

提供了很多拟合函数,对大样本场合比较有效!

非线性拟合nlinfit函数

clear all;

x1=[0.4292 0.4269 0.381 0.4015 0.4117 0.3017]';

x2=[0.00014 0.00059 0.0126 0.0061 0.00425 0.0443]';

x=[x1 x2];

y=[0.517 0.509 0.44 0.466 0.479 0.309]';

f=@(p,x)

2.350176*p(1)*(1-1/p(2))*(1-(1-x(:,1).^(1/p(2))).^p(2)).^2.*(x(:,1).^(-1/p(2))-1).^(-p(2)).*x(:,1).^(-1/p(2)-0.5) .*x(:,2);

p0=[8 0.5]';

opt=optimset('T olFun',1e-3,'T olX',1e-3);%

[p R]=nlinfit(x,y,f,p0,opt)

例子例子例子例子例子例子例子例子例子例子例子例子例子例子例子例子

直线型例子

2.多项式型的一个例子

1900-2000年的总人口情况的曲线拟合

clear all;close all;

%cftool提供了可视化的曲线拟合!

t=[1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000]';

y=[75.995 91.972 105.711 123.203 131.669 150.697 179.323 203.212 226.505 249.633 281.4220]';

%t太大,以t的幂作为基函数会导致设计矩阵尺度太差,列变量几乎线性相依。变换为[-1 1]上

s=(t-1950)/50;

%plot(s,y,'ro');

%回归线:y=a+bx

mx=mean(s);my=mean(y);

sx=std(s);sy=std(y);

r=corr(s,y);

b=r*sy/sx;

a=my-b*mx;

rline=a+b.*s;

figure;

subplot(3,2,[1 2])

plot(s,y,'ro',s,rline,'k');%

title('多项式拟合');

set(gca,'XTick',s,'XTickLabel',sprintf('%d|',t));

%hold on;

n=4;

PreYear=[2010 2015 2020];%预测年份

tPreYear=(PreYear-1950)/50;

Y=zeros(length(t),n);

res=zeros(size(Y));

delta=zeros(size(Y));

PrePo=zeros(length(PreYear),n);

Predelta=zeros(size(PrePo));

for i=1:n

[p S(i)]=polyfit(s,y,i);

[Y(:,i) delta(:,i)]=polyval(p,s,S(i));%拟合的Y

[PrePo(:,i) Predelta(:,i)]=polyval(p,tPreYear,S(i));%预测

res(:,i)=y-Y(:,i);%残差

end

% plot(s,Y);%2009a自动添加不同颜色

% legend('data','regression line','1st poly','2nd poly','3rd poly','4th poly',2) % plot(tPreYear,PrePo,'>');

% hold off

% plot(Y,res,'o');%残差图

r=corr(s,Y).^2 %R^2

%拟合误差估计CI

YearAdd=[t;PreYear'];

tYearAdd=[s;tPreYear'];

CFtit={'一阶拟合','二阶拟合','三阶拟合','四阶拟合'};

for col=1:n

subplot(3,2,col+2);

plot(s,y,'ro',s,Y(:,col),'g-');%原始数据和拟合数据

legend('Original','Fitted',2);

hold on;

plot(s,Y(:,col)+2*delta(:,col),'r:');%95% CI

plot(s,Y(:,col)-2*delta(:,col),'r:');

plot(tPreYear,PrePo(:,col),'>');%预测值

plot(tPreYear,PrePo(:,col)+2*Predelta(:,col));%预测95% CI

plot(tPreYear,PrePo(:,col)-2*Predelta(:,col));

axis([-1.2 1.8 0 400]);

set(gca,'XTick',tYearAdd,'XTickLabel',sprintf('%d|',YearAdd));

title(CFtit{col});

hold off;

end

figure;%残差图

for col=1:n

subplot(2,2,col);

plot(Y(:,i),res(:,i),'o');

end

一个非线性的应用例子(多元情况)

在百度知道中,要拟合y=a*x1^n1+b*x2^n2+c*x3^n3

%注:只是作为应用,模型不一定正确!!!

%x2=x3!!!

y=[1080.94 1083.03 1162.80 1155.61 1092.82 1099.26 1161.06 1258.05 1299.03 1298.30 1440.22 1641.30 1672.21 1612.73 1658.64 1752.42 1837.99 2099.29 2675.47 2786.33 2881.07]';

x1=[1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2]';

x2=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]';

x3=[1 1.025 1.05 1.075 1.1 1.125 1.15 1.175 1.2 1.225 1.250 1.275 1.3 1.325 1.350 1.375 1.4 1.425 1.45 1.475 1.5]';

x=[x1 x2 x3];

f=@(p,x) p(1)*x(:,1).^p(2)+p(3)*x(:,2).^p(4)+p(5)*x(:,3).^p(6);

p0=ones(6,1);

p=fminsearch(@(p)sum(y-f(p,x)).^2,p0) res=y-f(p,x);

res2=res.^2 %失败的模型

最小二乘法曲线拟合 原理及matlab实现

曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ?来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ?最好地逼近()x f ,而不必满足插值原则。因此没必要取)(i x ?=i y ,只要使i i i y x -=)(?δ尽可能地小)。 原理: 给定数据点},...2,1,0),,{(m i y x i i =。求近似曲线)(x ?。并且使得近似曲线与()x f 的偏差最小。近似曲线在该点处的偏差i i i y x -=)(?δ,i=1,2,...,m 。 常见的曲线拟合方法: 1.使偏差绝对值之和最小 2.使偏差绝对值最大的最小 3.使偏差平方和最小 最小二乘法: 按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。 推导过程: 1. 设拟合多项式为: 2. 各点到这条曲线的距离之和,即偏差平方和如下: 3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到 了: ....... 4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵: 5. 将这个范德蒙得矩阵化简后可得到:

6. 也就是说X*A=Y,那么A = (X'*X)-1*X'*Y,便得到了系数矩阵A,同时,我们也就得到了拟合曲线。 MATLAB实现: MATLAB提供了polyfit()函数命令进行最小二乘曲线拟合。 调用格式:p=polyfit(x,y,n) [p,s]= polyfit(x,y,n) [p,s,mu]=polyfit(x,y,n) x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。x必须是单调的。矩阵s包括R(对x进行QR分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。 [p,s,mu]=polyfit(x,y,n)在拟合过程中,首先对x进行数据标准化处理,以在拟合中消除量纲等影响,mu包含标准化处理过程中使用的x的均值和标准差。 polyval( )为多项式曲线求值函数,调用格式: y=polyval(p,x) [y,DELTA]=polyval(p,x,s) y=polyval(p,x)为返回对应自变量x在给定系数P的多项式的值。 [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计Y DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则Y DELTA将至少包含50%的预测值。 如下给定数据的拟合曲线: x=[0.5,1.0,1.5,2.0,2.5,3.0], y=[1.75,2.45,3.81,4.80,7.00,8.60]。 解:MATLAB程序如下: x=[0.5,1.0,1.5,2.0,2.5,3.0]; y=[1.75,2.45,3.81,4.80,7.00,8.60]; p=polyfit(x,y,2) x1=0.5:0.05:3.0; y1=polyval(p,x1); plot(x,y,'*r',x1,y1,'-b') 运行结果如图1 计算结果为: p =0.5614 0.8287 1.1560 即所得多项式为y=0.5614x^2+0.08287x+1.15560 图1 最小二乘法曲线拟合示例 对比检验拟合的有效性: 例:在[0,π]区间上对正弦函数进行拟合,然后在[0,2π]区间画出图形,比较拟合区间和非拟合区间的图形,考察拟合的有效性。 在MATLAB中输入如下代码: clear x=0:0.1:pi; y=sin(x); [p,mu]=polyfit(x,y,9)

曲线拟合最小二乘法c++程序

课题八曲线拟合的最小二乘法 实验目标: 在某冶炼过程中,通过实验检测得到含碳量与时间关系的数据如下,试求含碳量y与时间t #include #include<> using namespace std; int Array(double ***Arr, int n){ double **p; int i; p=(double **)malloc(n*sizeof(double *)); if(!p)return 0; for(i=0;i>n; cout<<"请输o入¨节¨2点ì值|ì(ê?§Xi)ê:êo"<>X[i]; } cout<<"请输o入¨节¨2点ì函?¥数oy值|ì(ê?§Yi)ê:êo"<>Y[i]; } if(!Array(&A,3)) cout<<"内¨2存?分¤配失o?ì败?¨1!ê"; else { for(i=0;i<3;i++){ for(j=0;j<3;j++){ A[i][j]=0; } } for(i=0;i

php九九乘法表

"; for($j = 1;$j <= 9;$j++){ echo ""; for($z = 0;$z <9 - $j;$z++){ echo " "; } for($i = $j;$i >= 1;$i--){ echo "$i*$j=".$i*$j.""; } echo ""; } echo "";*/ //第三种 /*echo "

"; for($j = 9;$j >= 1;$j--){ echo ""; for($z = 1;$z <= 9 - $j;$z++ ){ echo ""; //echo "$i*$j=".$i*$j."";

} for($i = 1;$i <= $j;$i++){ echo "

"; } echo ""; } echo "
$i*$j=".$i*$j."
";*/ /*第二种 for($j = 9;$j >= 1;$j--){ for($i = 1; $i <= $j; $i++){ //echo "$i x $j = ".$i * $j; //echo " "; echo "$i x $j =".$i*$j."  "; } echo "
"; } */ /*第一种 for($j = 1;$j <= 9;$j++){

用matlab实现最小二乘递推算法辨识系统参数

用matlab实现最小二乘递推算法辨识系统参 数 自动化系统仿真实验室指导教师: 学生姓名班级计082-2 班学号撰写时间: 全文结束》》-3-1 成绩评定: 一.设计目的 1、学会用Matlab实现最小二乘法辨识系统参数。 2、进一步熟悉Matlab的界面及基本操作; 3、了解并掌握Matlab中一些函数的作用与使用;二.设计要求最小二乘递推算法辨识系统参数,利用matlab编程实现,设初始参数为零。z(k)-1、5*z(k-1)+0、7*z(k-2)=1*u(k-1)+0、5*u(k-2)+v(k); 选择如下形式的辨识模型:z(k)+a1*z(k- 1)+a2*z(k-2)=b1*u(k-1)+b2*u(k-2)+v(k);三.实验程序 m=3;N=100;uk=rand(1,N);for i=1:Nuk(i)=uk(i)*(-1)^(i-1);endyk=zeros(1,N); for k=3:N yk(k)=1、5*yk(k-1)-0、 7*yk(k-2)+uk(k-1)+0、5*uk(k-2); end%j=100;kn=0;%y=yk(m:j);%psi=[yk(m-1:j-1);yk(m-2:j-2);uk(m-1:j-1);uk(m-2:j- 2)];%pn=inv(psi*psi);%theta=(inv(psi*psi)*psi*y);theta=[0 ;0;0;0];pn=10^6*eye(4);for t=3:Nps=([yk(t-1);yk(t-

2);uk(t-1);uk(t-2)]);pn=pn- pn*ps*ps*pn*(inv(1+ps*pn*ps));theta=theta+pn*ps*(yk(t)-ps*theta);thet=theta;a1=thet(1);a2=thet(2);b1=thet(3);b2= thet(4); a1t(t)=a1;a2t(t)=a2;b1t(t)=b1;b2t(t)=b2;endt=1:N;plot(t,a 1t(t),t,a2t(t),t,b1t(t),t,b2t(t));text(20,1、 47,a1);text(20,-0、67,a2);text(20,0、97,b1);text(20,0、47,b2);四.设计实验结果及分析实验结果图:仿真结果表明,大约递推到第步时,参数辨识的结果基本到稳态状态,即a1=1、5999,b1=1,c1=0、5,d1=-0、7。五、设计感受这周的课程设计告一段落了,时间短暂,意义重大。通过这次次练习的机会,重新把matlab课本看了一遍,另外学习了系统辨识的有关内容,收获颇丰。对matlab的使用更加纯熟,也锻炼了自己在课本中搜索信息和知识的能力。在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。同时我也进一步认识了matlab软件强大的功能。在以后的学习和工作中必定有很大的用处。

matlab循环语句

matlab 基本语句 1.循环语句for for i=s1:s3:s2 循环语句组 end 解释:首先给i赋值s1;然后,判断i是否介于s1与s2之间;如果是,则执行循环语句组,i=i+s3(否则,退出循环.);执行完毕后,继续下一次循环。 例:求1到100的和,可以编程如下: sum=0 for i=1:1:100 sum=sum+i end 这个程序也可以用while语句编程。 注:for循环可以通过break语句结束整个for循环. 2.循环语句while 例:sum=0;i=1; while(i<=100) sum=sum+i;i=i+1; end 3.if语句 if(条件) 语句 end if(条件) 语句 else 语句 end if(条件) 语句 elseif 语句 end 4.关系表达式:

=,>,<,>=,<=,==(精确等于) 5.逻辑表达式:|(或),&(且) 6.[n,m]=size(A)(A为矩阵) 这样可以得到矩阵A的行和列数 n=length(A),可以得到向量A的分量个数;如果是矩阵,则得到矩阵A的行与列数这两个数字中的最大值。 7.!后面接Dos命令可以调用运行一个dos程序。 8.常见函数: poly():为求矩阵的特征多项式的函数,得到的为特征多项式的各个系数。如 a=[1,0,0;0,2,0;0,0,3],则poly(a)=1 -6 11 -6。相当于poly(a)=1入^3+(-6)入^2+11入+(-6)。 compan():可以求矩阵的伴随矩阵. sin()等三角函数。 MATLAB在数学建模中的应用(3) 一、程序设计概述 MATLAB所提供的程序设计语言是一种被称为第四代编程语言的高级程序设计语言,其程序简洁,可读性很强,容易调试。同时,MATLAB的编程效率比C/C++语言要高得多。 MATLAB编程环境有很多。常用的有: 1.命令窗口 2.word窗口 3.M-文件编辑器,这是最好的编程环境。 M-文件的扩展名为“.m”。M-文件的格式分为两种: ①λ M-脚本文件,也可称为“命令文件”。 ② M-函数文件。这是matlab程序设计的主流。λ 保存后的文件可以随时调用。 二、MATLAB程序结构 按照现代程序设计的观点,任何算法功能都可以通过三种基本程序结构来实现,这三种结构是:顺序结构、选择结构和循环结构。其中顺序结构是最基本的结构,它依照语句的自然顺序逐条地执行程序的各条语句。如果要根据输入数据的实际情况进行逻辑判断,对不同的结果进行不同的处理,可以使用选择结构。如果需要反复执行某些程序段落,可以使用循环结构。 1 顺序结构 顺序结构是由两个程序模块串接构成。一个程序模块是完成一项独立功能的逻辑单元,它可以是一段程序、一个函数,或者是一条语句。 看图可知,在顺序结构中,这两个程序模块是顺序执行的,即先执行<程序

最小二乘法的多项式拟合matlab实现

最小二乘法的多项式拟 合m a t l a b实现 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

用最小二乘法进行多项式拟合(matlab 实现) 西安交通大学 徐彬华 算法分析: 对给定数据 (i=0 ,1,2,3,..,m),一共m+1个数据点,取多项式P(x),使 函数P(x)称为拟合函数或最小二乘解,令似的 使得 其中,a0,a1,a2,…,an 为待求未知数,n 为多项式的最高次幂,由此,该问题化为求 的极值问题。由多元函数求极值的必要条件: j=0,1,…,n 得到: j=0,1,…,n 这是一个关于a0,a1,a2,…,an 的线性方程组,用矩阵表示如下:

因此,只要给出数据点 及其个数m ,再给出所要拟合的参数n ,则即可求出未知数矩阵(a0,a1,a2,…,an ) 试验题1 编制以函数 为基的多项式最小二乘拟合程序,并用于对下列数据作三次多项式最小二乘拟合(取权函数wi ≡1) x i y i 总共有7个数据点,令m=6 第一步:画出已知数据的的散点图,确定拟合参数n; x=::;y=[,,,,,,]; plot(x,y,'*') xlabel 'x 轴' ylabel 'y 轴' title '散点图' hold on {} n k k x 0=

因此将拟合参数n设为3. 第二步:计算矩阵 A= 注意到该矩阵为(n+1)*(n+1)矩阵, 多项式的幂跟行、列坐标(i,j)的关系为i+j-2,由此可建立循环来求矩阵的各个元素,程序如下: m=6;n=3; A=zeros(n+1); for j=1:n+1 for i=1:n+1 for k=1:m+1 A(j,i)=A(j,i)+x(k)^(j+i-2) end end

九九乘法表的C语言代码

九九乘法表的C语言代码,黄路平编写与2012.3.6 代码一:#include int main() { int i=1,j; for (i=1,j=1;j<=9;j++) { if( j==1) printf("%d*%d=%d\n",i,j,i*j); else {for (i=1;i<=j;i++) printf("%d*%d=%d\t",i,j,i*j); printf("\n"); } } } 代码二:switch语句 #include int main() { int i=1,j; for (i=1,j=1;j<=9;j++) { switch(j) { case 1:printf ("%d*%d=%d\t",i,j,i*j); printf("\n"); break; case 2: for (i=1;i<=j;i++) printf ("%d*%d=%d\t",i,j,i*j); printf("\n"); break; case 3:for (i=1;i<=j;i++) printf ("%d*%d=%d\t",i,j,i*j); printf("\n"); break; case 4:for (i=1;i<=j;i++) printf ("%d*%d=%d\t",i,j,i*j); printf("\n"); break; case 5:for (i=1;i<=j;i++) printf ("%d*%d=%d\t",i,j,i*j); printf("\n"); break;

case 6:for (i=1;i<=j;i++) printf ("%d*%d=%d\t",i,j,i*j); printf("\n"); break; case 7:for (i=1;i<=j;i++) printf ("%d*%d=%d\t",i,j,i*j); printf("\n"); break; case 8:for (i=1;i<=j;i++) printf ("%d*%d=%d\t",i,j,i*j); printf("\n"); break; case 9:for (i=1;i<=j;i++) printf ("%d*%d=%d\t",i,j,i*j); printf("\n"); break; } } }

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据

图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1) 其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。

关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足

Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程 最小二乘法曲线拟合的应用实例 班级: 姓名: 学号: 指导教师:

一,实验目的 通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法 二,实验内容 1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。要求: 对该数据进行合理的最小二乘法数据拟合得下列数据。 x=[10000 11000 12000 13000 14000 15000 16000 17000 18000 19000 2 0000 21000 22000 23000]; y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 65.8 87.5 137.8 174. 2] 三,程序如下 X=10000:1000:23000; Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,65.8,87.5,137.8,17 4.2] dy=1.5; %拟合数据y的步长for n=1:6 [a,S]=polyfit(x,y,n); A{n}=a;

da=dy*sqrt(diag(inv(S.R′*S.R))); Da{n}=da′; freedom(n)=S.df; [ye,delta]=polyval(a,x,S); YE{n}=ye; D{n}=delta; chi2(n)=sum((y-ye).^2)/dy/dy; end Q=1-chi2cdf(chi2,freedom); %判断拟合良好度 clf,shg subplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’) subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’) nod=input(‘根据图形选择适当的阶次(请输入数值)’); elf,shg, plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’); axis([8000,23000,20.0,174.2]);hold on errorbar(x,YE{nod},D{nod},‘r’);hold off title(‘较适当阶次的拟合’) text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])

曲线拟合的最小二乘法讲解

实验三 函数逼近与曲线拟合 一、问题的提出: 函数逼近是指“对函数类A 中给定的函数)(x f ,记作A x f ∈)(,要求在另一类简的便于计算的函数类B 中求函数A x p ∈)(,使 )(x p 与)(x f 的误差在某中度量意义下最小”。函数类A 通常是区间],[b a 上的连续函数,记作],[b a C ,称为连续函数空间,而函数类B 通常为n 次多项式,有理函数或分段低次多项式等,函数逼近是数值分析的基础。主要内容有: (1)最佳一致逼近多项式 (2)最佳平方逼近多项式 (3)曲线拟合的最小二乘法 二、实验要求: 1、构造正交多项式; 2、构造最佳一致逼近; 3、构造最佳平方逼近多项式; 4、构造最小二乘法进行曲线拟合; 5、求出近似解析表达式,打印出逼近曲线与拟合曲线,且打印出其在数据点上的偏差; 6、探讨新的方法比较结果。 三、实验目的和意义: 1、学习并掌握正交多项式的MATLAB 编程; 2、学习并掌握最佳一致逼近的MATLAB 实验及精度比较;

3、学习并掌握最佳平方逼近多项式的MATLAB 实验及精度比较; 4、掌握曲线拟合的最小二乘法; 5、最小二乘法也可用于求解超定线形代数方程组; 6、 探索拟合函数的选择与拟合精度之间的关系; 四、 算法步骤: 1、正交多项式序列的生成 {n ?(x )}∞ 0:设n ?(x )是],[b a 上首项系数a ≠n 0的n 次多项式,)(x ρ为],[b a 上权函数,如果多项式序列{n ?(x )} ∞0 满足关系式???=>≠==?.,0,, 0)()()()(),(k j A k j x d x x x k k j b a k j ??ρ?? 则称多项式序列{n ?(x )}∞ 0为在],[b a 上带权)(x ρ正交,称n ?(x )为],[b a 上带权)(x ρ 的n 次正交多项式。 1)输入函数)(x ρ和数据b a ,; 2)分别求))(),(()),(,(x x x x j j j n ???的内积; 3)按公式①)()) (),(()) (,()(,1)(1 0x x x x x x x x j n j j j j n n n ??? ???∑-=- ==计算)(x n ?,生成正交多项式; 流程图: 开始

曲线拟合的最小二乘法matlab举例

曲线拟合的最小二乘法 学院:光电信息学院 姓名:赵海峰 学号: 200820501001 一、曲线拟合的最小二乘法原理: 由已知的离散数据点选择与实验点误差最小的曲线 S( x) a 0 0 ( x) a 1 1(x) ... a n n ( x) 称为曲线拟合的最小二乘法。 若记 m ( j , k ) i (x i ) j (x i ) k (x i ), 0 m (f , k ) i0 (x i )f (x i ) k (x i ) d k n 上式可改写为 ( k , jo j )a j d k ; (k 0,1,..., n) 这个方程成为法方程,可写成距阵 形式 Ga d 其中 a (a 0,a 1,...,a n )T ,d (d 0,d 1,...,d n )T , 、 数值实例: 下面给定的是乌鲁木齐最近 1个月早晨 7:00左右(新疆时间 )的天气预报所得 到的温度数据表,按照数据找出任意次曲线拟合方程和它的图像。 它的平方误差为: || 2 | 2 ] x ( f

(2008 年 10 月 26~11 月 26) F 面应用Matlab 编程对上述数据进行最小二乘拟合 三、Matlab 程序代码: x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7,6,5,3,1]; %三次多项式拟合% %九次多项式拟合% %十五次多项式拟合% %三次多项式误差平方和 % %九次次多项式误差平方和 % %十五次多项式误差平方和 % %用*画出x,y 图像% %用红色线画出x,b1图像% %用绿色线画出x,b2图像% %用蓝色o 线画出x,b3图像% 四、数值结果: 不同次数多项式拟和误差平方和为: r1 = 67.6659 r2 = 20.1060 r3 = 3.7952 r1、r2、r3分别表示三次、九次、十五次多项式误差平方和 拟和曲线如下图: a 仁polyfit(x,y,3) a2= polyfit(x,y,9) a3= polyfit(x,y,15) b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).A 2) r2= sum((y-b2).A2) r3= sum((y-b3).A2) plot(x,y,'*') hold on plot(x,b1, 'r') hold on plot(x,b2, 'g') hold on plot(x,b3, 'b:o')

九九乘法表源代码(vb)

Private Sub Command1_Click() For i = 1 To 4 For j = 1 To 6 Print "*"; Next j Print Next i End Sub Private Sub Command2_Click() For i = 1 To 4 Print Tab(i); For j = 1 To 6 Print "*"; Next j Print Next i End Sub Private Sub Command3_Click() For i = 1 To 4 Print Tab(5 - i); For j = 1 To 6 Print "*"; Next j Print Next i End Sub Private Sub Command4_Click() For i = 1 To 9 For j = 1 To 9 Print i; "*"; j; "="; i * j; Next j Print Next i End Sub Private Sub Command5_Click() Dim se As String Print Tab(35); "乘法表" For i = 1 To 9 For j = 1 To 9 se = i & "*" & j & "=" & i * j

Print Tab((j - 1) * 9); se; Next j Picture1.Print Next i End Sub Private Sub Command6_Click() End End Sub Private Sub Command7_Click() Print Tab(35); "乘法表" For i = 1 To 9 For j = i To 9 se = i & "*" & j & "=" & i * j Print Tab((j - 1) * 9); se; Next j Print Next i End Sub Private Sub Command8_Click() Print Tab(35); "乘法表" For i = 1 To 9 For j = 1 To i se = i & "*" & j & "=" & i * j Print Tab((j - 1) * 9); se; Next j Print Next i End Sub Private Sub Command9_Click() Cls End Sub Private Sub Picture1_Click() Dim se As String Picture1.Print Tab(35); "乘法表" For i = 1 To 9 For j = 1 To 9 se = i & "*" & j & "=" & i * j Picture1.Print Tab((j - 1) * 9); se; Next j

VB程序设计-九九乘法表

VB程序设计-九九乘法表 (作者:草原飞狼 2014年5月31日) 声明:仅供学习与交流使用,高手请飘过,谢谢!所有代码都是个人亲自编写并调试成功。 布局

运行界面(1) 运行界面(2) 源代码如下: Private Sub Command1_Click() Rem 乘法表算法一 Dim i, j As Integer For i = 1 To 9 For j = 1 To i expss = i & "*" & j & "=" & i * j Form1.Picture1.Print Tab((j - 1) * 8 + 1); '控制每个输出表达式的输出位置 Form1.Picture1.Print expss; Next j Form1.Picture1.Print Next i End Sub Private Sub Command2_Click() Rem 乘法表算法二 Dim i, j As Integer For i = 9 To 1 Step -1 For j = 1 To i expss = j & "*" & i & "=" & i * j

Form1.Picture1.Print Tab((j - 1) * 10 + 1); '控制每个输出表达式的输出位置 Form1.Picture1.Print expss; Next j Form1.Picture1.Print Next i End Sub Private Sub Command3_Click() Rem 清空 Form1.Picture1.Cls End Sub Private Sub Command4_Click() Rem 退出 Dim int_msg As Integer int_msg = MsgBox("单击“是”退出程序,单击“否”返回程序!", vbYesNo + vbQuestion + vbDefaultButton1, "退出提示") If int_msg = vbYes Then Unload Me End If End Sub Private Sub Form_Load() Rem 初始化 With Picture1 .FontName = "宋体" .FontSize = 12 .FontBold = True .ForeColor = &H80FF& End With End Sub

最小二乘法Matlab自编函数实现及示例.docx

、最小二乘拟合原理 x= xl x2 ... xn y= yl y2 ... yn 求m 次拟合 ?力* y 卅…I ZA ; A T A = ZX 茁 X x i - X x i +1 ,- ? ? ? [函Oi …备F =⑷矿丄? A T y 所以m 次拟合曲线为y = a 0 +勿?怎+吐■审+???? +如■牙皿 二、 Matlab 实现程序 function p=funLSM (x, y, m) %x z y 为序列长度相等的数据向量,m 为拟合多项式次数 format short; A=zeros(m+l,m+l); for i=0:m for j=0:m A(i + 1, j + 1)=sum(x.A (i+j)); end b(i+1)=sum(x.A i.*y); end a=A\b 1; p=fliplr (a'); 三、 作业 题1:给出如下数据,使用最小二乘法球一次和二次拟合多项式(取小数点后3位) X 1.36 1.49 1.73 1.81 1.95 2.16 2.28 2.48 Y 14.094 15.069 16.844 17.378 18.435 19.949 20.963 22.495 解:

? x=[1.36 1.49 1.73 1. 81 1. 95 2. 16 2. 28 2. 48]: ? y=[14.094 15.069 16.844 17. 378 18.435 19.949 20.963 22.495]; >> p=funLSM(x, y? 1) P = 7.4639 3.9161 >> p=funLSM(x, y? 2) P = 0.3004 6.3145 4.9763 一次拟合曲线为: y = 7.464x+ 3.91S 二次拟合曲线为: y = +6.315^4-4.976 一次拟合仿真图

最小二乘法曲线拟合的Matlab程序

方便大家使用的最小二乘法曲线拟合的Matlab程序 非常方便用户使用,直接按提示操作即可;这里我演示一个例子:(红色部分为用户输入部分,其余为程序运行的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输入x,y. x=[1,2,3,4] y=[3,4,5,6] 通过下面的交互式图形,你可以事先估计一下你要拟合的多项式的阶数,方便下面的计算. polytool()是交互式函数,在图形上方[Degree]框中输入阶数,右击左下角的[Export]输出图形 回车打开polytool交互式界面 回车继续进行拟合 输入多项式拟合的阶数m = 4 Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72 In zxecf at 64 输出多项式的各项系数 a = 0.0200000000000001 a = -0.2000000000000008 a = 0.7000000000000022 a = 0.0000000000000000 a = 2.4799999999999973 输出多项式的有关信息 S R: [4x5 double] df: 0 normr: 2.3915e-015 Warning: Zero degrees of freedom implies infinite error bounds. > In polyval at 104 In polyconf at 92 In zxecf at 69 观测数据拟合数据 x y yh 1.0000 3.0000 3.0000 2.0000 4.0000 4.0000 3 5 5 4.0000 6.0000 6.0000 剩余平方和 Q = 0.000000 标准误差 Sigma = 0.000000 相关指数 RR = 1.000000 请输入你所需要拟合的数据点,若没有请按回车键结束程序. 输入插值点x0 = 3 输出插值点拟合函数值 y0 = 5.0000

九九乘法表程序设计

输出九九乘法表程序设计(附源代码) Rabbit 徐 摘要:本程序主要完成一个输出九九乘法表的程序,主程序实现九九乘法表的输出。程序输出界面为阶梯型,程序设计中主要应用了条件转移指令判断,通过更改字符对应的ASII码达到乘法字符输出。 关键字:汇编;程序;九九乘法表;阶梯行输出 九九乘法表在生活应用非常广泛,本程序利用汇编语言针根据平时生活中的需要对九九乘法表输出。 一、需求分析 在日常生活中,我们经常需要使用到九九乘法口诀,以达到一些计算目的。因此编写一个输出九九乘法表程序能够帮助许多学生学习此口诀。而且本程序通过汇编语言实现,汇编语言具有许多其他语言不可替代的优点,其目标程序占用内存空间少,运行速度快,在一些硬件配置较差的机器上也能大显身手。 二、概要设计 (一)数据类型 程序中主要用了byte型变量,以及cs,ds,ax,bx寄存器。将提示信息存储在byte型变量数组中,然后将偏移地址存储在ax寄存器中,以用于输出信息。用bl暂存乘数,用bh暂存被乘数。 (二)主要类型 程序中主要用byte型变量存储提示信息,用bl寄存器存放乘数,bh寄存器存放被乘数,进行乘法运算。 (三)主要流程

显示1*1=1 是 高于 不高于 返回DOS 程序结束 乘数与9比较大 小,是否结束 开 始 被乘数与乘数比 较大小,是否需换 行 大于不换行 不高于 换 行 显示 置首位 乘数赋值为1 被乘数加1 显 示 乘数加1

三、详细设计 本程序首先是程序代码段开始code segment用main proc far使程序模块化,子程序和调用程序不在同一段,方便数据调用。使各寄存器入栈,初始化,并使用乘法调整指令,将各种字符转换为ASCII码值,方便输出。利用JNA判断,实现判断循环功能。程序的具体代码如下: 输出九九乘法表程序设计 code segment;数据段开始 main proc far;子程序调用时使用的参数 assume cs:code;设定数据放入cs寄存器 push ds;DS寄存器入栈 mov ax,0; push ax;ax寄存器入栈 mov bl,1;乘数赋值为1 lop2: mov bh,1;被乘数赋值为1 lop1: mov al,bh;被乘数存放如al寄存器当中 mul bl;将bl与bh相乘结果送到ax中 aam ; add bh,30h ;变为ASCII的值 add bl,30h mov cx,ax mov dl,bh ; mov ah,2 int 21h mov dl,'*' ;显示乘号 mov ah,2 int 21h mov dl,bl ;显示乘数 mov ah,2 int 21h mov dl,'=' ;显示等号 mov ah,2 int 21h cmp ch,0 ;查看高位有没有值 je tu;等于转移 add ch,30h ;若有则显示 mov dl,ch mov ah,2 int 21h tu:add cl,30h ;否则显示低位 mov dl,cl mov ah,2 int 21h mov dl,' ' ;显示空格

曲线拟合_线性最小二乘法及其MATLAB程序

1 曲线拟合的线性最小二乘法及其MATLAB 程序 例7.2.1 给出一组数据点),(i i y x 列入表7–2中,试用线性最小二乘法求拟合曲线,并用(7.2),(7.3)和(7.4)式估计其误差,作出拟合曲线. 表7–2 例7.2.1的一组数据),(y x 解 (1)在MATLAB 工作窗口输入程序 >> x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6]; y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04]; plot(x,y,'r*'), legend('实验数据(xi,yi)') xlabel('x'), ylabel('y'), title('例7.2.1的数据点(xi,yi)的散点图') 运行后屏幕显示数据的散点图(略). (3)编写下列MATLAB 程序计算)(x f 在),(i i y x 处的函数值,即输入程序 >> syms a1 a2 a3 a4 x=[-2.5 -1.7 -1.1 -0.8 0 0.1 1.5 2.7 3.6]; fi=a1.*x.^3+ a2.*x.^2+ a3.*x+ a4 运行后屏幕显示关于a 1,a 2, a 3和a 4的线性方程组 fi =[ -125/8*a1+25/4*a2-5/2*a3+a4, -4913/1000*a1+289/100*a2-17/10*a3+a4, -1331/1000*a1+121/100*a2-11/10*a3+a4, -64/125*a1+16/25*a2-4/5*a3+a4, a4, 1/1000*a1+1/100*a2+1/10*a3+a4, 27/8*a1+9/4*a2+3/2*a3+a4, 19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4] 编写构造误差平方和的MATLAB 程序 >> y=[-192.9 -85.50 -36.15 -26.52 -9.10 -8.43 -13.12 6.50 68.04]; fi=[-125/8*a1+25/4*a2-5/2*a3+a4, -4913/1000*a1+289/100*a2-17/10*a3+a4, -1331/1000*a1+121/100*a2-11/10*a3+a4, -64/125*a1+16/25*a2-4/5*a3+a4, a4, 1/1000*a1+1/100*a2+1/10*a3+a4, 27/8*a1+9/4*a2+3/2*a3+a4, 19683/1000*a1+729/100*a2+27/10*a3+a4, 5832/125*a1+324/25*a2+18/5*a3+a4]; fy=fi-y; fy2=fy.^2; J=sum(fy.^2) 运行后屏幕显示误差平方和如下 J= (-125/8*a1+25/4*a2-5/2*a3+a4+1929/10)^2+(-4913/1000*a1+2 89/100*a2-17/10*a3+a4+171/2)^2+(-1331/1000*a1+121/100*a2-11/10*a3+a4+723/20)^2+(-64/125*a1+16/25*a2-4/5*a3+a4+663/25)^2+(a4+91/10)^2+(1/1000*a1+1/100*a2+1/10*a3+a4+843/100)^2+(27/8*a1+9/4*a 2+3/2*a3+a4+328/25)^2+(19683/1000*a1+729/100*a2+27/10*a3+a4-13/ 2)^2+(5832/125*a1+324/25*a2+18/5*a3+a4-1701/25)^2 为求4321,,,a a a a 使J 达到最小,只需利用极值的必要条件0=??k a J )4,3,2,1(=k ,

相关主题