搜档网
当前位置:搜档网 › Histone acetylation a switch between repressive and permissive chromatin

Histone acetylation a switch between repressive and permissive chromatin

Histone acetylation a switch between repressive and permissive chromatin
Histone acetylation a switch between repressive and permissive chromatin

224EMBO reports vol. 3 | no. 3 | pp 224–229 | 2002? 2002 European Molecular Biology Organization

Histone acetylation: a switch between repressive and permissive chromatin

Second in review series on chromatin dynamics

Anton Eberharter & Peter B. Becker +

Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universit?t, Schillerstrasse 44, D-80336 München, Germany Received November 28, 2001; revised January 16, 2002; accepted January 17, 2002

The organization of eukaryotic chromatin has a major impact on all nuclear processes inv olv ing DNA substrates. Gene expression is affected by the positioning of individual nucleo-somes relative to regulatory sequence elements, by the folding of the nucleosomal fiber into higher-order structures and by the compartmentalization of functional domains within the nucleus. Because site-specific acetylation of nucleosomal histones influences all three aspects of chromatin organization,it is central to the switch between permissive and repressive chromatin structure. The targeting of enzymes that modulate the histone acetylation status of chromatin, in synergy with the effects mediated by other chromatin remodeling factors, is central to gene regulation.

Introduction

Since the discovery of the basic principles of chromatin organization,which involves the wrapping of DNA around histone octamers to form nucleosomes and the folding of the nucleosomal fiber into higher-order structures (Luger and Richmond, 1998; Hayes and Hansen, 2001; Woodcock and Dimitrov, 2001), the question of how such extensive packaging can be compatible with reactions that involve ‘reading’ the DNA has stimulated extensive research.It soon became apparent that many aspects of chromatin structure could be explained by interactions between nucleosomal histones and DNA, neighboring nucleosomes and non-histone proteins. Most of these interactions involve the N-terminal ‘tails’of the core histones, which reach out from the rather compact nucleosomal core particle (Fletcher and Hansen, 1996).

The N-termini of the extensively studied histones H4 and H3are among the most highly conserved sequences in eukaryotes.Although rather short (19 and 26 amino acids, respectively),their documented and suspected interactions suggest central

roles for these domains in chromatin structure and function.Post-translational modifications of conserved tail amino acids,notably phosphorylation, methylation and acetylation, modulate the interaction potential of the tail domains, and hence influ-ence the folding and functional state of the chromatin fiber (Grunstein, 1997; Howe et al., 1999; Berger, 2001; Jenuwein and Allis, 2001).

With the identification of transcription activators and co-activators as dedicated histone acetyltransferases (HATs), it became possible to document the relationships between histone acetylation and gene activation in many cases (Sterner and Berger, 2000; Chen et al., 2001; Roth et al., 2001). Without exception, multi-protein assemblies determine the functions, substrate specificities and targeting of integral HAT subunits (Wolffe and Hayes, 1999;Nakatani, 2001; Ogryzko, 2001). The acetylation of histones,and hence all effects on structure, can be reversed by dedicated histone deacetylases (HDACs), and many repression phenomena involve histone deacetylation (Khochbin et al., 2001). Thus, the interplay between HDACs and HATs results in dynamic transitions in chromatin structure and, hence, in switches between activity states. The functional importance of the HATs and HDACs is highlighted by the fundamental regulatory roles that they have in developmental processes, and by the fact that their deregulation has been linked to the progression of cancers (e.g. leukemia,colorectal and breast cancer) and diverse human disorders, like the Rubinstein–Tabi and fragile X syndromes (Timmermann et al.,2001).

Broad, domain-wide histone acetylation

Acetylation of histones H3 and H4 counteracts the tendency of nucleosomal fibers to fold into highly compact structures in vitro (Garcia-Ramirez et al., 1995; Tse et al., 1998) and acetylated

+Corresponding author. Tel: +49 89 5996 427; Fax: +49 89 5996 425; E-mail: pbecker@mol-bio.med.uni-muenchen.de

Histone acetylation

chromatin is more accessible to interacting proteins in vivo, as illustrated by its increased sensitivity to DNase I (Hebbes et al., 1994; Krajewski and Becker, 1998). The importance of histone acetylation as an epigenetic marker of chromosomal domains has recently been corroborated by advanced chromatin immuno-precipitation (X-CHIP) studies using histone isotype-specific antisera (Suka et al., 2001). An important conclusion from such studies in yeast was that the ground state of chromatin, be it transcribed or not, is characterized by intermediate levels of H3 and H4 acetylation, a state brought about by a mix of untargeted HAT and HDAC activities (Vogelauer et al., 2000). In this context, site-specific acetylation or deacetylation leads to locally restricted activation or repression of transcription, respectively. However, this overall level of flexibility appears to be a specific feature of the highly active yeast genome. In differentiated, higher eukaryotic cells, most of the genome consists of hypoacetylated, inactive chromatin, which may be considered the ‘ground state’. Activation of house-keeping and cell-type-specific genes involves the acetylation of histones across broad chromatin domains. A well-characterized example is provided by the β-globin loci, which reveal broad acetylation throughout domains with defined boundaries as a function of transcriptional competence (Litt et al., 2001; Schübeler et al., 2001). Another prominent example of a broad acetylation effect is provided by the dosage compensated male X chromosome in Drosophila (Lucchesi, 1998), where the acetylation of histone H4 at lysine 16 (H4K16) by MOF (Males absent on the First) correlates with increased transcription of many genes throughout most of the male X chromosome (Akhtar and Becker, 2000; Smith et al., 2001). While broad acetylation of histone H3/H4 leads to partial decondensation of chromosomal domains, this opening is not tightly correlated with active transcription per se, but rather marks regions of transcriptional competence. It is known that a domain that has been rendered ‘permissive’ by broad acetylation will never be found close to repressive heterochromatic structures in nuclei (Schübeler et al., 2000). Nevertheless, the causal relationship between residence in euchromatin and histone acetylation has not yet been established.

Local, targeted histone acetylation Transcriptional activation within a permissive domain frequently correlates with additional, targeted acetylation of histones at promoter nucleosomes (Brown et al., 2000; Forsberg and Bresnick, 2001), although notable exceptions exist (Deckert and Struhl, 2001). With the availability of more diagnostic reagents and more sophisticated analyses, the old idea (Turner, 1993) that what matters are patterns of acetylation at specific lysines within the histone N-termini, rather than simple charge neutralization by non-specific modification, receives convincing confirmation (Vogelauer et al., 2000; Deckert and Struhl, 2001). However, the exact requirements are not at all transparent. Whereas in some instances targeted acetylation of histone H3 is found in conjunction with broader acetylation of histone H4 (Schübeler et al., 2000; Vignali et al., 2000), these observations cannot be generalized (Litt et al., 2001).

Given the importance of HATs as co-activators of transcription and the frequent association of repression with HDACs, tran-scriptional regulation must involve targeting of these enzymes to specific sites. Localized histone acetylation is observed in promoter and enhancer elements, but can also be found enriched at boundary or insulator elements of chromosome domains and other DNase I hypersensitive sites in nuclei (Litt

et al., 2001), supporting the idea that histone acetylation facilitates protein–DNA interactions within chromatin in general. Many cases in which activating transcription factors recruit HAT-containing co-activators to specific promoters have

now been documented (Brown et al., 2000). Yeast HAT complexes can associate with the transactivation domains of activators like VP16, Gcn4, Gal4 and Hap4 (Utley et al., 1998), although this may require an adapter protein. For example, the yeast SAGA and NuA4 complexes, which contain the HATs

Gcn5 and Esa1, respectively, are recruited via the shared subunit

Tra1 (Brown et al., 2001). The human homolog of Tra1, TRRAP,

is also implicated in recruiting HAT complexes, in this case to transcription complexes containing c-myc (McMahon et al., 2000; Bouchard et al., 2001; Frank et al., 2001) and E2F (Lang

et al., 2001). Although some basic principles are emerging, our present understanding of HAT involvement in gene activation remains dominated by inherent complexities. Activator–co-activator selectivity is inferred from the fact that different activators induce different acetylation patterns in vivo (Deckert and Struhl, 2001).

For example, the recruitment of SAGA by VP16 leads to local H3 acetylation near the promoter, while targeting of NuA4 by the same protein results in broad acetylation of H4 over a domain

of >3 kb (Vignali et al., 2000). The targeting of diverse HAT complexes via sequence-specific DNA-binding proteins leads to stimulation of transcription from chromatin templates in vitro (Ikeda et al., 1999; Kundu et al., 2000) and in yeast (Bhaumik

and Green, 2001; Larschan and Winston, 2001). Although the HAT subunits of co-activator complexes are currently the center

of interest, large HAT complexes like SAGA contain other functions as well. This is illustrated by the observation that SAGA

has been found to be an essential co-activator for Gal4-activated transcription in vivo, but this activation function relied mainly

on the SAGA components Spt3 and Spt20 and less on the HAT subunit Gcn5 (Bhaumik and Green, 2001; Larschan and Winston, 2001).

Whereas tethering of HATs to defined sites via activators explains local hyperacetylation, it is less obvious how the acetylation of large domains is achieved. Potential mechanisms include the recruitment of HATs to distinct ‘entry sites’ from which they ‘spread’ throughout a domain (Kelley and Kuroda, 2000), possibly by attachment to a tracking protein such as RNA polymerase II (Wittschieben et al., 1999). Alternatively,

the residence of a particular chromosomal domain within an acetylation-competent nuclear compartment may ensure relatively uniform modification (Schübeler et al., 2000). If acetylation itself were to generate high-affinity binding sites for HATs, propagation schemes could be envisaged (Gu et al., 2000; Forsberg and Bresnick, 2001).

How does histone acetylation work? Currently, it is widely assumed that particular histone acetylation patterns lead to altered folding of the nucleosomal fiber that renders chromosomal domains more accessible. As a consequence,

the transcription machinery may be able to access promoters

and hence initiate transcription more frequently. In addition,

the unfolding of chromosomal domains also facilitates the

EMBO reports vol. 3 | no. 3 | 2002225

A. Eberharter & P.

B. Becker

process of transcription elongation itself. Nucleosomes are obstacles to the elongating RNA polymerase, which may need to transfer the histone octamers it encounters to acceptor DNA in the wake of elongation (Studitsky et al., 1997; Orphanides and Reinberg, 2000). Transcription is found to stutter less on hyper-acetylated nucleosomal templates than on non-acetylated ones (Protacio et al., 2000). Therefore, some HATs may be responsible for facilitating the passage of the elongating polymerase, either as part of dedicated elongation factor complexes such as FACT (John et al., 2000), or as an integral activity of the elongating polymerase machinery itself (Cho et al., 1998; Wittschieben et al., 1999).

If the loosening of higher-order chromatin structure by domain-wide histone acetylation is necessary but not sufficient for transcription, what is the role of further, targeted acetylation of individual nucleosomes at regulatory elements? Even in the absence of a folded nucleosomal fiber, single nucleosomes are still considerable obstacles to the interactions between many transcription factors and their binding partners (Struhl, 1998). It may be that hyperacetylated nucleosomes, which appear to be somewhat less restrictive towards interacting factors in some cases (Vettese-Dadey et al., 1996; Anderson et al., 2001; Sewack et al., 2001), function by increasing the flexibility of the DNA associated with the ends of nucleosomes (Krajewski and Becker, 1998). Overall, the effect of acetylation per se on nucleosome structure appears rather modest (Wang et al., 2000). However, specific acetylation patterns displayed by the histone tails may also function to recruit further modulators of chromatin structure. The dramatic changes in promoter structure that accompany transcriptional activation are, therefore, presumably not the direct result of acetylation, but due to the synergistic actions of several factors. These include other covalent modifications such as phosphorylation, as well as the rearrangement of histones/nucleosomes relative to the DNA by nucleosome remodeling factors (see Figure 1).

Histone modification: signal

integration at promoters

Signal transduction cascades are known to employ covalent protein modification, most notably phosphorylation, to modulate gene expression in response to extracellular stimuli. Not surprisingly, these phosphorylation cascades also impact on chromatin organization. Following the ‘classical’ route of signal transduction, histone acetyltransferase activity may be activated or repressed by phosphorylation or acetylation (Cheung et al., 2000a; Kouzarides, 2000). More indirectly, phosphorylation of nucleo-

somes at the histone N-termini has profound effects on chromatin organization at specific sites. In yeast, many genes are co-regulated by pathways involving HATs and kinases (Lo et al., 2001). A striking example of this kind of synergism is the growth-factor induction of immediate early genes in higher eukaryotes, which involves co-ordinated phosphorylation of H3S10 and acetylation at H3K14 on the same tail (Clayton et al., 2000). Co-ordination can be explained, at least in part, by the sensitivity of Gcn5, the HAT involved in this particular activation event, to phosphorylation of the H3 N-terminus. In vitro, Gcn5 acetylates a phosphorylated H3S10 peptide much more avidly than an unmodified one (Cheung et al., 2000b; Lo et al., 2001). The factor(s) that respond to phospho-acetylation remain unknown, but the fact that it was possible to raise an antiserum that selectively recognizes the double-modified tail (Clayton et al., 2000) indicates that these may exist.

During the past 2 years, several histone methyltransferases (HMT) that function as epigenetic repressors have been characterized (Rice and Allis, 2001; Zhang and Reinberg, 2001). A synergism, similar to that between histone acetylation and phosphorylation, is also suggested between histone acetylation and methylation at specific sites by the physical interaction of CBP with HMT

activity (Vandel and Trouche, 2001). Interestingly, histone Fig. 1. The histone acetylation switch. Targeted HAT and HDAC activities negotiate the acetylation status of chromatin. Acetylation establishes a structure that permits ATP-dependent chromatin remodeling factors to open promoters. Deacetylation, frequently followed by histone methylation, may form a solid base for highly repressive structures, such as heterochromatin. Acetylated histone tails are shown as yellow circles. Methylations are indicated as gray rectangles. HAT, histone acetyltransferase; HDAC, histone deacetylase; HMT, histone methyltransferase; HP1, heterochromatin protein 1.

226EMBO reports vol. 3 | no. 3 | 2002

Histone acetylation

deacetylation and the subsequent methylation also appear to be co-ordinated activities, since both have been found to occur in one large complex (Czermin et al., 2001).

HAT complexes themselves may be tethered to distinct regulatory sites via modified histones, i.e. by interaction with the nucleosome itself. Combinations of acetylation, phosphorylation and methylation may be the code for recognition and binding by chromatin regulators, such as HATs (Strahl and Allis, 2000; Turner, 2000; Imhof and Becker, 2001). Indeed, many chromatin-modifying enzymes share domains that can selectively interact with modified nucleosomes. For example, the bromodomain, found in both Gcn5 and Swi2 (Winston and Allis, 1999), has an affinity for the H4 tail, and this is much enhanced by acetylation at defined lysines (Jacobson et al., 2000; Owen et al., 2000). While the recognition of specific histone isoforms by dedicated protein domains emerges as one fundamental targeting principle, the initial establishment of the modification patterns presumably relies on the above-mentioned targeting principles.

Switching between activation

and repression pathways

Histone acetylation emerges as a central switch that allows interconversion between permissive and repressive chromatin structures and domains (Figure 1, center panel). These principles are not only at the heart of transcriptional regulation but are also likely to govern other processes involving chromatin substrates, including replication, site-specific recombination and DNA repair (Wolffe and Hayes, 1999; Roth et al., 2001). As indicated above, domain-wide and site-specific histone acetylation are necessary for transcription, but are not sufficient to establish full chromatin accessibility. However, the switch to a permissive chromatin structure is conducive to synergistic actions between nucleosome remodeling complexes containing ATPases of the SWI2/SNF2 family. These enzymes increase the accessibility of nucleosomal DNA by weakening histone–DNA interactions leading to, for example, histone octamer relocation (Figure 1, upper panel). Detailed analyses of this kind of interplay are presented in recent reviews (Fry and Peterson, 2001; Becker and H?rz, 2002).

The switch to repressive chromatin involves histone deacetylation, which promotes the condensation of the nucleosomal fiber and invites repressive factors. One way of switching the state of chromatin more permanently is to prevent acetylation by methylation of the corresponding lysine residues (Figure 1, lower panel). Methylation at specific tail lysines may attract heterochromatin protein 1 (HP1) to lock chromatin in a repressive, inaccessible configuration.

At present, the field of chromatin research appears to be as dynamic as the subject of its studies. Without doubt, advances in understanding the targeting and effects of histone acetylation will contribute significantly to unraveling the principles of gene regulation.

Acknowledgements

We would like to apologize to our colleagues that, due to the inverse relationship between original publications on the subject and the available print space, we were unable to refer to many original publications. Special thanks to R. Aasland for his comments and his assistance in designing the figure and several thoughtful referees.

References

Akhtar, A. and Becker, P.B. (2000) Activation of transcription through histone H4 acetylation by MOF, an acetyltransferase essential for dosage

compensation in Drosophila. Mol. Cell, 5, 367–375.

Anderson, J.D., Lowary, P.T. and Widom, J. (2001) Effects of histone acetylation on the equilibrium accessibility of nucleosomal DNA target

sites. J. Mol. Biol., 307, 977–985.

Becker, P.B. and H?rz, W. (2002) ATP-dependent nucleosome remodeling.

Annu. Rev. Biochem., in press.

Berger, S.L. (2001) An embarrassment of niches: the many covalent modifications of histones in transcriptional regulation. Oncogene, 20,

3007–3013.

Bhaumik, S.R. and Green, M.R. (2001) SAGA is an essential in vivo target of the yeast acidic activator Gal4p. Genes Dev., 15, 1935–1945.

Bouchard, C., Dittrich, O., Kiermaier, A., Dohmann, K., Menkel, A., Eilers, M.

and Luscher, B. (2001) Regulation of cyclin D2 gene expression by the

Myc/Max/Mad network: Myc-dependent TRRAP recruitment and histone

acetylation at the cyclin D2 promoter. Genes Dev., 15, 2042–2047.

Brown, C.E., Lechner, T., Howe, L. and Workman, J.L. (2000) The many HATs of transcription coactivators. Trends Biochem. Sci., 25, 15–19. Brown, C.E., Howe, L., Sousa, K., Alley, S.C., Carrozza, M.J., Tan, S. and Workman, J.L. (2001) Recruitment of HAT complexes by direct activator

interactions with the ATM-related Tra1 subunit. Science, 292, 2333–2337. Chen, H., Tini, M. and Evans, R.M. (2001) HATs on and beyond chromatin.

Curr. Opin. Cell Biol., 13, 218–224.

Cheung, P., Allis, C.D. and Sassone-Corsi, P. (2000a) Signaling to chromatin through histone modifications. Cell, 103, 263–271.

Cheung, P., Tanner, K.G., Cheung, W.L., Sassone-Corsi, P., Denu, J.M. and Allis, C.D. (2000b) Synergistic coupling of histone H3 phosphorylation

and acetylation in response to epidermal growth factor stimulation.

Mol.Cell, 5, 905–915.

Cho, H., Orphanides, G., Sun, X., Yang, X.J., Ogryzko, V., Lees, E., Nakatani, Y. and Reinberg, D. (1998) A human RNA polymerase II

complex containing factors that modify chromatin structure. Mol. Cell.

Biol., 18, 5355–5363.

Clayton, A.L., Rose, S., Barratt, M.J. and Mahadevan, L.C. (2000) Phosphoacetylation of histone H3 on c-fos- and c-jun-associated

nucleosomes upon gene activation. EMBO J., 19, 3714–3726.

Czermin, B., Schotta, G., Hulsmann, B.B., Brehm, A., Becker, P.B., Reuter, G.

and Imhof, A. (2001) Physical and functional association of SU(VAR)3-9

and HDAC1 in Drosophila. EMBO rep., 2, 915–919.

Deckert, J. and Struhl, K. (2001) H istone acetylation at promoters is differentially affected by specific activators and repressors. Mol. Cell. Biol.,

21, 2726–2735.

Fletcher, T.M. and H ansen, J.C. (1996) The nucleosomal array: structure/ function relationships. Crit. Rev. Eukaryot. Gene Expr., 6, 149–188. Forsberg, E.C. and Bresnick, E.H. (2001) H istone acetylation beyond promoters: long-range acetylation patterns in the chromatin world.

BioEssays, 23, 820–830.

Frank, S.R., Schroeder, M., Fernandez, P., Taubert, S. and Amati, B. (2001) Binding of c-Myc to chromatin mediates mitogen-induced acetylation of

histone H4 and gene activation. Genes Dev., 15, 2069–2082.

Fry, C.J. and Peterson, C.L. (2001) Chromatin remodeling enzymes: who’s on first? Curr. Biol., 11, 185–197.

Garcia-Ramirez, M., Rocchini, C. and Ausio, J. (1995) Modulation of chromatin folding by histone acetylation. J. Biol. Chem., 270, 17923–17928.

Grunstein, M. (1997) H istone acetylation in chromatin structure and transcription. Nature, 389, 349–352.

Gu, W., Wei, X., Pannuti, A. and Lucchesi, J.C. (2000) Targeting the chromatin-remodeling MSL complex of Drosophila to its sites of action

on the X chromosome requires both acetyl transferase and ATPase

activities. EMBO J., 19, 5202–5211.

EMBO reports vol. 3 | no. 3 | 2002227

A. Eberharter & P.

B. Becker

Hayes, J.J. and Hansen, J.C. (2001) Nucleosomes and the chromatin fiber.

Curr. Opin. Genet. Dev., 11, 124–129.

Hebbes, T.R., Clayton, A.L., Thorne, A.W. and Crane-Robinson, C. (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken β-globin chromosomal domain. EMBO J., 13, 1823–1830.

H owe, L., Brown, C.E., Lechner, T. and Workman, J.L. (1999) H istone

acetyltransferase complexes and their link to transcription. Crit. Rev.

Eukaryot. Gene Expr., 9, 231–243.

Ikeda, K., Steger, D.J., Eberharter, A. and Workman, J.L. (1999) Activation domain-specific and general transcription stimulation by native histone acetyltransferase complexes. Mol. Cell. Biol., 19, 855–863.

Imhof, A. and Becker, P.B. (2001) Modifications of the histone N-terminal domains. Evidence for an “epigenetic code”? Mol. Biotechnol., 17, 1–13. Jacobson, R.H., Ladurner, A.G., King, D.S. and Tjian, R. (2000) Structure and function of a human TAFII250 double bromodomain module.

Science, 288, 1422–1425.

Jenuwein, T. and Allis, C.D. (2001) Translating the histone code. Science, 293, 1074–1080.

John, S., Howe, L., Tafrov, S.T., Grant, P.A., Sternglanz, R. and Workman, J.L.

(2000) The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)–FACT complex.

Genes Dev., 14, 1196–1208.

Kelley, R.L. and Kuroda, M.I. (2000) The role of chromosomal RNAs in marking the X for dosage compensation. Curr. Opin. Genet. Dev., 10, 555–561.

Khochbin, S., Verdel, A., Lemercier, C. and Seigneurin-Berny, D. (2001) Functional significance of histone deacetylase diversity. Curr. Opin. Genet.

Dev., 11, 162–166.

Kouzarides, T. (2000) Acetylation: a regulatory modification to rival phosphorylation? EMBO J., 19, 1176–1179.

Krajewski, W.A. and Becker, P.B. (1998) Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA. Proc. Natl Acad. Sci. USA, 95, 1540–1545. Kundu, T.K., Palhan, V.B., Wang, Z., An, W., Cole, P.A. and Roeder, R.G.

(2000) Activator-dependent transcription from chromatin in vitro involving targeted histone acetylation by p300. Mol. Cell, 6, 551–561.

Lang, S.E., McMahon, S.B., Cole, M.D. and H earing, P. (2001) E2F transcriptional activation requires TRRAP and GCN5 cofactors. J. Biol.

Chem., 276, 32627–32634.

Larschan, E. and Winston, F. (2001) The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4.

Genes Dev., 15, 1946–1956.

Litt, M.D., Simpson, M., Recillas-Targa, F., Prioleau, M.N. and Felsenfeld, G.

(2001) Transitions in histone acetylation reveal boundaries of three separately regulated neighboring loci. EMBO J., 20, 2224–2235.

Lo, W.S., Duggan, L., Tolga, N.C.E., Belotserkovskya, R., Lane, W.S., Shiekhattar, R. and Berger, S.L. (2001) Snf1—a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science, 293, 1142–1146.

Lucchesi, J.C. (1998) Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr. Opin. Genet. Dev., 8, 179–184. Luger, K. and Richmond, T.J. (1998) The histone tails of the nucleosome.

Curr. Opin. Genet. Dev., 8, 140–146.

McMahon, S.B., Wood, M.A. and Cole, M.D. (2000) The essential cofactor TRRAP recruits the histone acetyltransferase hGCN5 to c-Myc. Mol.

Cell. Biol., 20, 556–562.

Nakatani, Y. (2001) H istone acetylases—versatile players. Genes Cells, 6, 79–86.

Ogryzko, V.V. (2001) Mammalian histone acetyltransferases and their complexes. Cell. Mol. Life Sci., 58, 683–692.

Orphanides, G. and Reinberg, D. (2000) RNA polymerase II elongation through chromatin. Nature, 407, 471–475.

Owen, D.J., Ornaghi, P., Yang, J.C., Lowe, N., Evans, P.R., Ballario, P., Neuhaus, D., Filetici, P. and Travers, A.A. (2000) The structural basis for

the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J., 19, 6141–6149.

Protacio, R.U., Li, G., Lowary, P.T. and Widom, J. (2000) Effects of histone tail domains on the rate of transcriptional elongation through a nucleosome. Mol. Cell. Biol., 20, 8866–8878.

Rice, J.C. and Allis, C.D. (2001) H istone methylation versus histone acetylation: new insights into epigenetic regulation. Curr. Opin. Cell Biol., 13, 263–273.

Roth, S.Y., Denu, J.M. and Allis, C.D. (2001) H istone acetyltransferases.

Annu. Rev. Biochem., 70, 81–120.

Schübeler, D., Francastel, C., Cimbora, D.M., Reik, A., Martin, D.I. and Groudine, M. (2000) Nuclear localization and histone acetylation: a pathway for chromatin opening and transcriptional activation of the human β-globin locus. Genes Dev., 14, 940–950.

Schübeler, D., Groudine, M. and Bender, M.A. (2001) The murine β-globin locus control region regulates the rate of transcription but not the hyperacetylation of histones at the active genes. Proc. Natl Acad. Sci.

USA, 98, 11432–11437.

Sewack, G.F., Ellis, T.W. and Hansen, U. (2001) Binding of TATA binding protein to a naturally positioned nucleosome is facilitated by histone acetylation. Mol. Cell. Biol., 21, 1404–1415.

Smith, E.R., Allis, C.D. and Lucchesi, J.C. (2001) Linking global histone acetylation to the transcription enhancement of X-chromosomal genes in Drosophila males. J. Biol. Chem., 276, 31483–31486.

Sterner, D.E. and Berger, S.L. (2000) Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev., 64, 435–459. Strahl, B.D. and Allis, C.D. (2000) The language of covalent histone modifications. Nature, 403, 41–45.

Struhl, K. (1998) H istone acetylation and transcriptional regulatory mechanisms. Genes Dev., 12, 599–606.

Studitsky, V.M., Kassavetis, G.A., Geiduschek, E.P. and Felsenfeld, G.

(1997) Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science, 278, 1960–1963.

Suka, N., Suka, Y., Carmen, A.A., Wu, J. and Grunstein, M. (2001) Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell, 8, 473–479. Timmermann, S., Lehrmann, H., Polesskaya, A. and Harel-Bellan, A. (2001) Histone acetylation and disease. Cell. Mol. Life Sci., 58, 728–736. Tse, C., Sera, T., Wolffe, A.P. and H ansen, J.C. (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase III. Mol. Cell.

Biol., 18, 4629–4638.

Turner, B.M. (1993) Decoding the nucleosome. Cell, 75, 5–8.

Turner, B.M. (2000) Histone acetylation and an epigenetic code. BioEssays, 22, 836–845.

Utley, R.T., Ikeda, K., Grant, P.A., Cote, J., Steger, D.J., Eberharter, A., John, S.

and Workman, J.L. (1998) Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature, 394, 498–502. Vandel, L. and Trouche, D. (2001) Physical association between the histone acetyl transferase CBP and a histone methyl transferase. EMBO rep., 2, 21–26.

Vettese-Dadey, M., Grant, P.A., Hebbes, T.R., Crane- Robinson, C., Allis, C.D.

and Workman, J.L. (1996) Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro.

EMBO J., 15, 2508–2518.

Vignali, M., Steger, D.J., Neely, K.E. and Workman, J.L. (2000) Distribution of acetylated histones resulting from Gal4-VP16 recruitment of SAGA and NuA4 complexes. EMBO J., 19, 2629–2640.

Vogelauer, M., Wu, J., Suka, N. and Grunstein, M. (2000) Global histone acetylation and deacetylation in yeast. Nature, 408, 495–498.

Wang, X., Moore, S.C., Laszckzak, M. and Ausio, J. (2000) Acetylation increases the α-helical content of the histone tails of the nucleosome.

J.Biol. Chem., 275, 35013–35020.

Winston, F. and Allis, C.D. (1999) The bromodomain: a chromatin-targeting module? Nature Struct. Biol., 6, 601–604.

228EMBO reports vol. 3 | no. 3 | 2002

Histone acetylation

Wittschieben, B.O. et al. (1999) A novel histone acetyltransferase is an integral subunit of elongating RNA polymerase II holoenzyme. Mol. Cell, 4, 123–128.

Wolffe, A.P. and Hayes, J.J. (1999) Chromatin disruption and modification.

Nucleic Acids Res., 27, 711–720.

Woodcock, C.L. and Dimitrov, S. (2001) Higher-order structure of chromatin and chromosomes. Curr. Opin. Genet. Dev., 11, 130–135.

Zhang, Y. and Reinberg, D. (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev., 15, 2343–2360.

DOI: 10.1093/embo-reports/kvf053Anton Eberharter & Peter B. Becker

EMBO reports vol. 3 | no. 3 | 2002229

动物森友会席卷全球,“种田”正成为世界性刚需0401

Apr.01·2020 "Animal Crossing:New Horizons"—the getaway video game we all need right now While a deserted island is the setting for a shedload of games,none have ever tried very hard to live up to the"Desert Island Discs" dream that most of us have fantasised about at one time or another. But now along comes"Animal Crossing:New Horizons"to make BBC Radio4listeners purr with satisfaction. The premise of"New Horizons"is really not vastly different from that of previous titles in the series.You're a moon-faced human moving to a new place with a bunch of cutesy animal neighbours where you'll wile away your time catching bugs and fish,watering the plants,and designing your perfect home. Your first job is to plop down your tent and help your first two animal neighbours find a spot for theirs.The second is unique to "New Horizons":crafting.You'll have to do a lot of DIY if you want to survive on this island.If you want to collect every item in the game, then you're going to have to shake every tree,hit every rock,and do that every day. Encompassing everything from the humble beginnings to the extensive customisation options,"New Horizons"represents the

任天堂将重夺游戏机市场领导地位

任天堂将重夺游戏机市场领导地位 Strategy Analytics 联网家庭设备研究服务发布的最新研究报告《全球游戏 机市场预测报告》指出,任天堂将自2009 年以来首次重夺其在视频游戏机领 域的领导地位。2019 年,任天堂的Switch 全球销量将达到1730 万台,而索尼 的PS4 和PS4 Pro 销量将为1710 万台。微软将继续排名第三,其Xbox One 和Xbox One X 的销量将为1000 万台。整体游戏机市场在2018 年表现良好,全球总销量达到4610 万台,达到了2010 年以来的最高水平。 报告中的其它发现包括: 在游戏机用户使用量方面,索尼仍然是市场领导者; 它几乎占所有正在使 用的视频游戏机数量的一半,其中84%为PS4 或PS4 Pro 设备。 近年来,视频游戏机的所有权再次上升:45%的北美家庭和20%的西欧家 庭现在拥有至少一台游戏机。 S tra tegy Analytics 预估,2018 年游戏机全球零售额将达到154 亿美元,增幅为7.6%。 由于出货量和价格下降,预计2019 年的全球游戏机收益将下降10%。 到2023 年,由于PS5,Xbox 和Switch 更新等下一代系统的推出,游戏机 市场收益将恢复到2018 年的水平。 Strategy Analytics 总监David Watkins 评论说,“与一些预期相反,全球电视游戏机市场仍然健康。多年来,许多权威人士都认为游戏机市场将衰败,其原 因包括云游戏的出现、移动设备的主导地位以及VR 的到来。事实上,有一种 观点认为,已经进入第六个十年的电视游戏机的持久吸引力继续展示出那些替 代游戏平台的弱点和局限。” Strategy Analytics 的高级分析师Chirag Upadhyay 补充说:“索尼,微软和任

[任天堂宣布一款马里奥新手游 意图让移动游戏收入翻倍]任天堂马里奥

[任天堂宣布一款马里奥新手游意图让移动游戏收入翻倍]任天堂马里奥 任天堂正在推出一款名为《Dr. Mario World》的新游戏,意图将其移动游戏收入翻倍。 该公司上周五表示,它正在与消息应用程序Line和游戏开发商NHN Entertainment合作开发游戏,这是其《Dr. Mario World》拼图游戏系列的最新作品。 有关该游戏的详细信息很少,但该公司表示可以通过应用内购买免费下载,暗示用户可能必须购买附加组件,如果他们想要在游戏中获得某种特殊功能。 任天堂2016年的手机游戏《超级马里奥跑酷》也采用了类似的模式,侧向滚动游戏可以免费下载,但要求玩家支付额外的费用。当时这一举动得到了游戏玩家的好评,只有一小部分用户选择了付费游戏选项。 游戏研究公司Newzoo的内容撰稿人Rhys Elliott表示,任天堂与Line的合作是有道理的,因为即时通讯公司之前在移动游戏市场取得了成功,如Line Bubble 和迪士尼主题游戏《Line:Disney Tsum Tsum》。 任天堂选择推出Dr. Mario的游戏来参与市场并不奇怪。 Elliott通过电子邮件告诉CNBC。 如果它取得了成功,我们预计未来会与其他类型专家公司进行类似的合作。 任天堂表示,该游戏将在初夏时段为美国和日本等国家的Android和iOS用户提供。 这一消息是在日本游戏巨头的盈利报告之后公布的,该报告削减了对混合控制台Switch的销售预测。相反,该公司也提高了对Switch软件销售的指导。 为了最大限度地扩大已安装的基础,任天堂必须吸引外部软件开发人员。 Gartner高级研究主管Jon Erensen周四晚间通过电子邮件告诉CNBC,如果没有这种支持,它将限制平台的整体采用。 在任天堂与Line和NHN Entertainment合作之前,该公司与价值40亿美元的美国游戏初创公司Niantic合作开发了一款基于Pokemon Go的增强现实应用程序。 值得注意的是,任天堂的股价在游戏发行后获得了短暂的推动尽管它只持有Pokemon公司32%的股份因为投资者猜测它有可能成为移动游戏市场中越来越重要的参与者。 截至周五东京交易结束时,任天堂股价下跌9%,市场参与者对其Switch硬件销售目标的下调感到不安。 周日在日经指数上发布的一份报告声称,该公司计划推出一款较小版本的Switch,它优先考虑便携性,并削减一些功能以降低游戏机的价格。如果这是真的,此举可能有助于提升公司的硬件销售。 周五,任天堂还宣布将在日本开设首家官方商店。实体零售店将建在东京的一个新购物中心,并将展示该公司的游戏机、游戏和基于角色的商品。 任天堂在其日本本土的实体店面翻倍,也是该公司的合理举措。 Newzoo的Elliott告诉CNBC,Pokemon公司已经在实体店取得了巨大成功,其中目前在日本有11家分店。 该公司在东京设有一个专门销售Pokemon系列的大型商店,该商店已成为游戏玩家和特许经营粉丝的热门旅游打卡景点。 对于像马里奥、Yoshi,Link和大金刚这样极受欢迎的人物,任天堂可以同样利用其实体店的同人圈。

2020年名校经典MBA案例分析

2020年名校经典MBA案例分析 1.腾讯代理任天堂SWITCH会带来哪些收益 SWITCH是当前很流行的游戏机,上镜率高。手机游戏盈利模式,免费下载游戏,在游戏进程中设置较难关卡,通过充值过关、变成人民币玩家。王者荣耀的皮肤。PC游戏盈利模式,一次性卖游戏,后期不收费,如暴雪。后期出现网络游戏跟手机模式相似。目前还有STEAM,TV游戏额外加入产品—主机。亏本卖主机,然后靠软件回本。SWITCH同时可以作为掌机和电视游戏机,18年财报显示售出1700万台。 腾讯更善于社交,也是做游戏的基因。WEGAME平台,充斥盗版,发展乏力。手机游戏遥遥领先。腾讯不缺有付费能力的客户,但缺资源。接着任天堂老牌的IP在国内主机市场发力。国内熟悉的主机很少有正版行货,水货充斥。2000任天堂发布N64,市场反响差。之后索尼、微软也在尝试打开主机市场,但过去习惯盗版软件、盗版游戏。数字版权的进步,优质渠道合作,应该会打开市场,互惠互利。 观点:流量的互通和快速的曝光度;技术合作,互联网,美工,游戏经验工程师。主机游戏空白,没人做主机游戏,发展潜力大。 观点:任天堂的产品适合一家人同乐,高质量的产品更能吸引消费者的忠诚度,同时也更易于被中国文化里的家长们所接受。 观点:跳出国内游戏千篇一律的市场,从任天堂老牌游戏厂商吸取先进游戏经验,合作创新研发。 结合VR,5G。 2.鹤岗房价跌成白菜价 房价与大众息息相关,很多人认为房价绑架了消费能力,房贷影响未来中国经济的不确定性,现在鹤岗的房价出现白菜价,如何看待3月,黑龙江鹤岗市的平均房价为1300每平,2000年左右周围人群讨论房价,上海的市中心8000-10000,内地二线省会城市则1000多。也就是说鹤岗的房价停留在20年前二线城市的水平。 鹤岗市矿业城市,发展依托矿产资源,有国内四大煤矿之一。大

向任天堂学提高“附加价值”的两大策略

向任天堂学提高“附加价值”的两大策略 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

向任天堂学提高“附加价值”的两大策略 赛局理论提供了一般性的原则,让你不论面对商场或人生,都能分析出自己该怎么做。不过,赛局假设的是所有参与者能力一致,每个人都不知道参与者的胜算,但在现实中,参与双方的实力不一定对等,而一旦想把“谁占优势”算进赛局中,你就能更好的盘点自己还有什么策略可以施展。这里的优势,其实就是“附加价值”的高低。 《竞合策略》指出,想要计算自己在一赛局中的附加价值,就先看你和所有人一起参与赛局时,整块饼有多大。再来,观察自己不加入赛局的话,饼又有多大。最后,把前者减去后者,就等于你的附加价值。 1972年,游戏教父诺兰·布什内尔(Nolan Bushnell)和泰德·达布尼(Ted Dabney)创办雅达利公司(Atari),靠着桌球游戏《乓》,攻下电玩市场。1977年,推出家用游戏主机“雅达利2600”(Atari 2600),10年的时间内,就成功带起游戏产业成长,美国家庭电玩市场也从零成长到30亿美金。 此时,雅达利的附加价值等于整个游戏产业。因为只要没有雅达利2600,就不能玩游戏。不过,别人看到雅达利赚得多,也想分一杯羹。所以,市场开始出现盗版游戏,甚至盗版主机。而当时的雅达利,也不像今天索尼(Sony)的PS4(Play Station4)或任天堂NS(Nintendo Switch)有防盗版机制。 当民众和通路发现,想玩、卖游戏,不一定需要雅达利,它的附加价值就开始下降,1985年,销售额就跌破1亿美金。反过来说,想维持高附加价值,最好做到不可替代。一旦能让参与者想要某物,却只有几家公司,甚至只有你一个选择时,在谈判时提出任何条件,对方都会同意。 用限制供给、独家产品,突显自己的稀有性 雅达利的衰败,把游戏产业一起往下拉,直到任天堂进入市场才带来转机。1986年,任天堂先以100美元的低价销售游戏主机“红白机”,并搭配自家王牌设计师宫本茂推出的《超级玛利欧兄弟》《萨尔达传说》等热门游戏,使任天堂销量每季递增。 另外,任天堂不只在主机内部设置安全芯片,防止盗版光盘。还限定外部的游戏开发商每年开发的游戏数量,只能设计5款游戏,每一款都要符合任天堂标准,例如不能有暴力或性暗示内容。最后,还签订竞业条款,两年内同样游戏不能出现在其他主机平台上。 便宜的游戏机,加上独家游戏,吸引更多人想买;愈多人买,任天堂又有资本号召更多游戏商开发质量好的游戏,使任天堂的附加价值愈高,开启“良性循环”,压低其他业者附加价值,最后独霸赛局。 正面迎击对手优势,先抢攻他的延伸市场

大气层详细图文破解流程V8.1.2

大气层破解综合教程V8.1.2 准备工具:大于30G内存卡,(建议买正规卡。后续很多问题出现在sd卡上) 一根靠谱的Type-C数据线,usb读卡器。(建议买3.0读卡器)一台系统版本为5.1.0的switch, 短接器(可以自己制作,具体百度,建议9.9包邮买一个), 一台usb口正常的windows电脑或者支持OTG的安卓手机。(部分安卓手机的OTG功能需要单独打开开关才能正常使用,并且需要自备OTG转接线) 准备文件:大气层整合SD卡文件,switch驱动文件,电脑发射软件或者手机发射软件,注入文件payload,(群文件有提供整合包)。 注意:此教程所有说明使用到的文件均来自826328415群的群文件,建议大家都从群文件下载来进行破解尽量避免出现本教程以外的问题。本教材只针对switch 5.1.0版本系统破解。(转载请注明出处,谢谢) 特此提醒:不要使用苹果的Mac系统格式化SD卡和拷贝文件,因为会出现格式不兼容的情况导致后面出现很多系统和游戏报错的问题。请大家使用windows系统。(不要使用windowsXP系统。) 第一步:在电脑上格式化SD卡为exFAT格式,分配单元大小为32K。(内存卡可用空间大小建议大于30G)或者直接把SD卡插入switch并开机,第一次插入系统会提示你升级格式化内存卡,请点击确认升级等待重启,开机后在switch系统设置里面能看到SD卡容量就可以正常使用了,完成后在switch 上删除所有已经链接的WIFI网络并关机不取卡。(如果是电脑格式化的记得把SD卡插入switch)

第二步:插入短接器(短接器可以自己制作,教程具体百度,短接器插到右手柄滑槽最底下,有些短接器很松,建议稳定好。),然后先按住音量+再点按一下电源键,1秒后NS没有开机一直黑屏就成功了(或者在Switch关机状态下按住音量加的同时插入数据线也可以)(成功后就可以取下短接器,没有成功之前不要用数据线链接电脑,不然会自动开机,一定要确定短接成功才能链接电脑)。 第三步:在电脑上安装NS驱动(群文件有提供,32位和64位通用,不要使用windowsXP系统。解压驱动包,选择最后一个程序安装。)建议把电脑关机重启,然后用可靠的Type-C数据线连接switch和电脑,打开解压好的电脑端发射器软件,发射器软件内显示绿色就表示连接 成功了。 第四步:选择中文版注入文件hekate4.0.bin(群文件有下载)(bin文件一定不要混用,不同的破解系统使用的bin文件不一样),然后发射,立刻查看switch上出现的大气层开机图片并马上按住音量减进入rcm菜单, 如果switch没有出现大气层开机图片,长按

计算机游戏复习要点

第一章、第二章 理解:什么是游戏?游戏的本质,游戏的特点,游戏循环,游戏的基本流程 1、游戏:就是按照一定规则进行的由人主动参与有明确目标以娱乐为目的的交互式行为” 2、游戏的本质:本身具有特定行为模式、规则条件、身心娱乐和 输赢胜负的一种行为表示 3、游戏的两个最基本的特性: (1)以直接获得快感(包括生理和心理的愉悦)为主要目的。(2)主体参与互动 交互性、娱乐性、规则性、平衡性、自发性 4、游戏循环 (1)初始化 (2)进入游戏循环 (3)查询用户输入状态 (4)执行游戏逻辑和AI 判断 (5)绘制图像 (6)循环 (7)退出 5、游戏的基本流程 从软件设计的角度来看,游戏的基本流程只是一个连续的循环,它不断地按照某种逻辑来绘制新的图像,并播放音乐 从系统实现的角度来看,游戏就是一个不断按照某种逻辑更新各种数据(画面、声音等)的过程 初始化 主菜单 载入 保存 Play 画面更新: ? 背景动画 ? 音乐,声效 输出到buffer 退出/循环 键盘 鼠标 游戏杆 执行Game play 逻辑 游戏逻辑: ? AI ? 碰撞检测 ? 运动 获得用户输入 1.内存分配 2.构建表格 3.载入文件 绘制到屏幕 内存 显示器 同步至大约以每秒30帧 否 是 主循环 6、主循环在游戏里干嘛:它不断地按照某种逻辑来绘制新的图像,并播放音乐

第三章游戏发展(了解:游戏平台发展史,游戏发展史,三维游戏重要人物) 1、世界上第一个电子游戏程序:麻省理工学院的格拉茨、拉塞尔等的《太空大战》 2、电子游戏的始祖--Atari(雅达利)。 3、游戏平台发展史 (1)硬件:专有游戏设备 街机(Arcade):电脑空间 家用机(Console):“Pong”,成为Atari的第一个家庭电视游戏产品 手掌机(Handheld):GB,为Game Boy的缩写,它是任天堂8位掌上型游戏机 电脑(Personal Computer):苹果公司制作的第一种普及的微电脑:Apple II 手机(Mobile Phone) (2)软件:著名的电子游戏:《太空大战》 4、游戏发展史: 计算机游戏的历史最早可追溯到,1961年运行于PDP-1上的“太空大战”,1978年TRS-80上的冒险岛(最早的PC游戏) 5、约翰·卡马克,开发了世界上第一款3D射击游戏并以此开启了3D游戏时代 第四章游戏分类 掌握:计算机游戏的流派和类型、计算机游戏的分类要素 了解:几种常见的游戏类型:RPG、FPS、实时策略游戏、回合制策略游戏、动作游戏等1、流派类型(面向开发人员): (1)角色扮演类:RPG; (2)动作类游戏ACT; 1)第一视角射击游戏:FPS 2)格斗游戏(Fighting Game)FTG (3)回合制策略游戏TBS; (4)实时策略游戏RTS; (5)模拟游戏SLG(日式)或者SIM(美式); (6)冒险游戏A VG; (7)体育类游戏SPT; (8)赛车游戏RAC; (9)益智类 2、分类要素:主题、故事情节、视觉风格和游戏机制* 3、几种常见的游戏类型: (1)角色扮演类RPG:游戏中,一般是以某一名人物作为主人公,以这名人物的生平为主线,所有故事都围绕这名主角展开,有相当明确的游戏主线索和非常充实的故事内容。 特点:RPG游戏最主要就是在强调人物的特性描写与它的背景故事表现,以达到角色扮演的目的。 (2)第一视角射击游戏FPS:融合了迷宫游戏和动作游戏的特点后,引入第一视角和三维图形,使得游戏的表现力得到了极大的提高。 (3)回合制策略游戏TBS :早期计算机的计算能力无法在游戏中实现真正的实时对抗,于是回合制策略游戏就作为一种妥协方案被推出。 (4)动作类游戏(Action Game)ACT:乐趣就在于玩家通过不断的训练达到某种技巧上的娴熟,并培养出一定的条件反射。 第五章二维图像游戏基础 掌握:四种二维地图的基本思想、镂空图技术、精灵动画的算法步骤

向任天堂学提高“附加价值”的两大策略

向任天堂学提高“附加价值”的两大策略 赛局理论提供了一般性的原则,让你不论面对商场或人生,都能分析出自己该怎么做。不过,赛局假设的是所有参与者能力一致,每个人都不知道参与者的胜算,但在现实中,参与双方的实力不一定对等,而一旦想把“谁占优势”算进赛局中,你就能更好的盘点自己还有什么策略可以施展。这里的优势,其实就是“附加价值” 的高低。 《竞合策略》指出,想要计算自己在一赛局中的附加价值,就先看你和所有人一起参与赛局时,整块饼有多大。再来,观察自己不加入赛局的话,饼又有多大。最后,把前者减去后者,就等于你的附加价值。 1972年,游戏教父诺兰?布什内尔( Nolan Bushnell )和泰德?达布尼( Ted Dabney)创办雅达利公司(Atari ),靠着桌球游戏《乓》,攻下电玩市场。1977年,推出家用游戏主机“雅达利2600”( Atari 2600 ), 10 年的时间内,就成功带起游 戏产业成长,美国家庭电玩市场也从零成长到30 亿美金。 此时,雅达利的附加价值等于整个游戏产业。因为只要没有雅达利2600 ,就不 能玩游戏。不过,别人看到雅达利赚得多,也想分一杯羹。所以,市场开始出现盗版游戏,甚至盗版主机。而当时的雅达利,也不像今天索尼( Sony)的PS4( Play Station4 )或任天堂 NS( Nintendo Switch )有防盗版机制。 当民众和通路发现,想玩、卖游戏,不一定需要雅达利,它的附加价值就开始下降,1985 年,销售额就跌破 1 亿美金。反过来说,想维持高附加价值,最好做到不可替代。一旦能让参与者想要某物,却只有几家公司,甚至只有你一个选择时,在谈判时提出任何条件,对方都会同意。 用限制供给、独家产品,突显自己的稀有性 雅达利的衰败,把游戏产业一起往下拉,直到任天堂进入市场才带来转机。 1986 年,任天堂先以 100 美元的低价销售游戏主机“红白机” ,并搭配自家王牌设计师宫本茂推出的《超级玛利欧兄弟》《萨尔达传说》等热门游戏,使任天堂销量每季递增。 另外,任天堂不只在主机内部设置安全芯片,防止盗版光盘。还限定外部的游戏开发商每年开发的游戏数量,只能设计 5 款游戏,每一款都要符合任天堂标准,例如不能有暴力或性暗示内容。最后,还签订竞业条款,两年内同样游戏不能出现在其他主机平台上。 便宜的游戏机,加上独家游戏,吸引更多人想买;愈多人买,任天堂又有资本号召更多游戏商开发质量好的游戏,使任天堂的附加价值愈高,开启“良性循环”,压低其他业者附加价值,最后独霸赛局。 正面迎击对手优势,先抢攻他的延伸市场垄断市场当然很棒,但对于想进入的新厂商,就不好过了。此时,想赢可采取“柔道策略” ,把对方的优势变弱点,让先进厂商只要跟进自己的行动,就会伤害现有事业(降低附加价值),导致进退两难。 电玩厂 Sega 进入市场时,正是任天堂制霸的时代,所以它的 8 位游戏机(一代主机)几乎拿不到市占。所以,Sega直接进攻16位主机(功能更强大的二代主

武汉外国语学校2019-2020学年度下学期高二期中考试语文试题

2019-2020学年度下学期期中考试试题 高二语文试卷 命题:吴芳勇、陆红卫、吴小平、韩梅审题:赵文清 一、现代文阅读 (一)论述类文本阅读(本题共3小题,9分) 阅读下面的文字,完成1-3题。 作为人类文明的重要组成部分,中华传统文化源远流长、博大精深。古人不仅在文学创作上华章迭出、精彩纷呈,对自然现象的记录与认识也是卷帙浩繁、哲思泉涌。 科学与人文密不可分,相异互补,人文中含有科学的基础与珍璞,科学中蕴藏人文的精神。从物理学的角度审视传统文化,有助于拓展认识,促进传承和创新;从传统文化的角度理解物理学,有助于化抽象为形象、化兴味索然为兴趣盎然,从而提升物理学的普及程度,进一步培养公民的科学素质。 中华传统文化中有很多描述有意或无意地渗透了“运动是相对的”的概念,这就不可避免地涉及参考系概念了。较早的如东汉时期的著作《尚书纬·考灵曜》中记载的:“地恒动不止而人不知,譬如人在大舟中,闭牖而坐,舟行不觉也。”船在行驶而人无法察觉。这句话充分反映了运动与参考系的关系。要确定物体的运动必须要有参考系,人坐在地上以地面为参考系,人是静止的,如同人在封闭的船舱里以船舱为参考系感觉不到船的运动。 同样,李白的《望天门山》中“两岸青山相对出,孤帆一片日边来”让我们体会到一幅动态的画面。按《望天门山》的意境,李白所乘坐的船向山和远处的小船慢慢靠近,当他在仰望山和小船时,会无意地以自己和乘的船为参考系;又因与山、远处的小船的位置发生变化,所以李白会产生山和远处的小船向自己靠近(“相对出”“日边来”)的感觉。毛泽东主席在《七律·送瘟神》中写道:“坐地日行八万里,巡天遥看一千河。”其中描述的现象有科学根据。若以地面为参考系,人坐在地面上,因为处于静止状态,所运行的距离是零;若以地轴为参考系,因为地球在自转(地球绕地轴做圆周运动),那坐在地面上的人就是在运动了。赤道附近地球的直径约为12 756 千米,赤道周长约为40 075 千米,为8万多里。 自然界中所有的物体都在不停地运动,绝对静止的物体是没有的,在观察一个物体的位置及位置的变化时,选取的标准物不同,对物体运动情况的描述也就不同。这就是运动的相对性。参考系的选择是任意的,但不同的参考系对同一物理运动状况的描述是不同的。我们

相关主题