搜档网
当前位置:搜档网 › ABAQUS中扩展有限元(XFEM)功能简介

ABAQUS中扩展有限元(XFEM)功能简介

ABAQUS中扩展有限元(XFEM)功能简介
ABAQUS中扩展有限元(XFEM)功能简介

ABAQUS中扩展有限元(XFEM)功能简介

扩展有限元(Extended Finite Element Method)是一种解决断裂力学问题的新的有限元方法,其理论最早于1999年,由美国西北大学的教授Belyschko和Black首次提出,主要是采用独立于网格剖分的思想解决有限元中的裂纹扩展问题,在保留传统有限元所有优点的同时,并不需要对结构内部存在的裂纹等缺陷进行网格划分。

ABAQUS基于在非线性方面的突出优势,在其6.9的版本中开始加入了扩展有限元功能,到6.13做了一些修正,加入了一些可以被CAE支持的关键字。目前为止,除了手动编程,能够实现扩展有限元常用的商业软件只有ABAQUS,今天,我们就来谈谈ABAQUS 中如何实现扩展有限元。

1. XFEM理论

在XFEM理论出现之前,所有对裂纹的静态模拟(断裂)都基本上是采用预留裂缝缺角,通过细化网格仿真裂缝的轮廓。而动态的模拟(损伤)基本上都是基于统计原理的Paris 方法。然而,断裂和损伤的结合问题却一直没有得到有效的解决,究其原因,在于断裂力学认可裂纹尖端的应力奇异现象(就是在靠近裂尖的区域应力值会变无穷大),并且尽可能的绕开这个区域。而损伤力学又没有办法回避这个问题(裂纹都是从尖端开裂的)。

从理论上讲,其实单元内部的位移函数(形函数)可以是任意形状的,但大多数的计算软件都采用了多项式或者插值多项式作为手段来描述单元内部的位移场,这是因为采用这种方法更加便于在编程中进行处理。但是这种方法的缺点就是,由于形函数的连续性,导致单元内部不可能存在间断。直到Belytschko提出采用水平集函数作为手段,其基本形式为

上面左边的等式描述了单元内裂缝的位置,右边的等式描述了裂尖的位置。与之对应的形函数便是

其中H(x)是阶跃函数。想要了解更深的内容,大家可以参考《Extended Finite Element Method》和庄老师的《扩展有限单元法》

这种扩充形函数能够描述单元内位移场在裂缝两边的跳跃性,同时,由于裂缝存在于单元内部,其扩展独立与其他单元,使得计算变得高效。但是这种方法也存在一些问题,XFEM采用的形函数模式会导致其求解方程很容易接近线形相关,极大的增加了收敛难度,因此导致XFEM方法一直没有办法得到很好的推广。其实ABAQUS在集成XFEM方法时做了大量的简化,目的都是减小求解的难度,ABAQUS的帮助在介绍XFEM的时候其实都做了说明,

Limitations

The following limitations exist with an enriched feature:

· An enriched element cannot be intersected by more than one crack.

· A crack is not allowed to turn more than 90° in one increment during an analysis.

· Only asymptotic crack-tip fields in an isotropic elastic material are considered for a stationary crack.

· Adaptive remeshing is not supported.

值得注意的是富集单元(将普通单元加强为带XFEM形函数的单元)内不能存在两条裂缝,说明ABAQUS放弃了两个形函数带来的耦合问题,所以在ABAQUS中是不能模拟分叉裂缝的。此外,计算过程中很容易发现裂缝是不能停留在单元内部的,这说明了ABAQUS放弃了单元内部对裂尖的描述。同时,由于ABAQUS在计算XFEM的损伤时采

用的是基于能量释放率的paris法则,虽然这是基于弹塑性断裂力学的经典手段,但由于承认了裂尖位置的塑性效应,使得在模拟损伤时也只能对低周疲劳能有比较好的近似。

近几年,XFEM的理论有了长足的发展,已经从理论上解决了很多之前存在的问题,建议有较好力学、数学和编程功底的同学编程实现,相信会有很多惊喜的收获。

总的来说,尽管有如此之多的限制,但XFEM方法依然为有限元领域注入了一剂新鲜的空气,它所提供的是一种广义有限元的实现过程,为有限元理论的发展提供了一种新的思维方式。

2. XFEM的实现

要想在ABAQUS中实现XFEM,其实只需要做两件事情。

第一:选择模型中可能出现裂纹的区域,将其单元设置为具有扩展有限元性质的富集单元。

第二:选择合适的破坏准则,使得单元在达到条件时发生破坏,裂纹得以扩展。

下面解释下几个比较关键的设置

材料属性中需要添加破坏法则,损伤演化参数以及损伤稳定性系数。

其中破坏法则控制损伤的起始,损伤演化参数控制损伤的发展情况,而损伤稳定性系数用以改善收敛。

在interaction的special中,可以创建XFEM的富集区域

当然,ABAQUS允许在裂缝发展区域中插入一个初始裂缝,这个初始裂缝可以在Assembly 里与结构进行组装,之后便可以在上图中指定。

上述两个步骤是XFEM计算中的关键点,其它的便可以安装计算流程进行计算,以下是几个XFEM的计算小例。

简支梁受弯(平面)

三维裂纹的扩展

专业ABAQUS有限元建模经验笔记

基于ABAQUS的有限元分析和应用 第一章绪论 1.有限元分析包括下列步骤: 2.为了将试验数据转换为输入文件,分析者必须清楚在程序中所应用的和由实验人员提供的材料数据的应力和应变的度量。 3.ABAQUS建模需注意以下内容: 4.对于许多包含过程仿真的大变形问题和破坏分析,选择合适的网格描述是非常重要的,需要认识网格畸变的影响,在选择网格时必须牢牢记住不同类型网格描述的优点。 第二章ABAQUS基础 1.一个分析模型至少要包含如下的信息:离散化的几何形体、单元截面属性、材料数据、载荷和边界条件、分析类型和输出要求。 ①离散化的几何形体:模型中所有的单元和节点的集合称为网格。 ②载荷和边界条件: 2.功能模块: (1)Assembly(装配):一个ABAQUS模型只能包含一个装配件。 (2)Interaction(相互作用):相互作用与分析步有关,这意味着用户必须规定相互作用是在哪些分析步中起作用。 (3)Load(载荷):载荷和边界条件与分析步有关,这意味着用户指定载荷和边界条件是在哪些分析步中起作用。 (4)Job(作业):多个模型和运算可以同时被提交并进行监控。 3.量纲系统 ABAQUS没有固定的量纲系统,所有的输入数据必须指定一致性的量纲系统,常用的一致性量纲系统如下:

4.建模要点 (1)创建部件:设定新部件的大致尺寸的原则必须是与最终模型的最大尺寸同一量级。(2)用户应当总是以一定的时间间隔保存模型数据(例如,在每次切换功能模块时)。(3)定义装配: 在模型视区左下角的三向坐标系标出了观察模型的方位。在视区中的第2个三向坐标系标出了坐标原点和整体坐标系的方向(X,Y和Z轴)。 (4)设置分析过程: (5)在模型上施加边界条件和荷载: 用户必须指定载荷和边界条件是在哪个或哪些分析步中起作用。 所有指定在初始步中的力学边界条件必须赋值为零,该条件是在ABAQUS/CAE中自动强加的。 在许多情况下,需要的约束方向并不一定与整体坐标方向对齐,此时用户可定义一个局部坐标系以施加边界条件。 在ABAQUS中,术语载荷通常代表从初始状态开始引起结构响应发生变化的各种因素,包括:集中力、压力、非零边界条件、体力、温度(与材料热膨胀同时定义)。

扩展有限元简介

扩展有限元 有限元是将一个物理实体模型离散成一组有限的相互连接的单元组合体, 该方法在考虑物体内部存在缺陷时间,单元边界与几何界面一致,会造成局部网格加密,其余区域稀疏的非均匀网格分布,在网格单元中最小的尺寸会增加计算成本,再者裂纹的扩展路径必须预先给定只能沿着单元边界发展。 1999年,美国西北大学Beleytachko 提出了扩展有限法,该方法是对传统有限元法进行了重大改进。扩展有限元法的核心思想是用扩充带有不连续性质的形函数来代表计算区域内的间断,在计算过程中,不连续场的描述完全独立于网格边界,在处理断裂问题有较好的优越性。利用扩展有限元,可以方便的模拟裂纹的任意路径,还可以模拟带有孔洞和夹杂的非均质材料。 扩展有限元是以标准有限元的理论为框架,保留传统有限元的优点,目前商业软件中如Abaqus 等都加入扩展有限元的分析模块。 扩展有限元以有限元为基本框架,主要针对不连续问题进行研究,相对于传统有限元方法,它克服了裂纹扩展问题的不足。其采用节点扩展函数,其中包括2个函数:裂纹尖端附近渐进函数表示裂纹尖端附近的应力奇异性;间断函数表示裂纹面处位移跳跃性。整体划分位移函数表示为 αααI =I I I =∑∑++=b x F a x H u x N x u N i )(])()[()('41 1 式中:)(x N I 为常用的节点位移函数;I u 为常规形状函数节点自由度,适用于模型中的所有节点;)(x H 为沿裂纹面间断跳跃函数;I a 为节点扩展自由度向量,这项只对形函数被裂纹切开的单元节点有效;)(x F α为裂纹尖端应力渐进函数;αI b 为节点扩展自由度向量,这项只对形函数被裂纹尖端切开的单元节点有效。 沿裂纹面间断跳跃函数)(x H 表达式为: otherwise n x x if x H 0)(11)(*≥-???-= 式中:x 为样本点;*x 距x 最近点;n 为单位外法线向量。 各向同性材料的裂纹尖端渐进函数)(x F α表达式为: ????? ?=2cos sin ,2sin sin ,2cos ,2sin )(θθθθθθαr r r r x F 裂纹尖端的渐进函数并不局限于各向同性弹性材料的裂纹建模。可用于弹塑性指数硬化材料,不同的裂纹尖端渐进函数的形式与裂纹位置、非线性材料变形程度有关。

abaqus有限元分析过程

一、有限单元法的基本原理 有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。 有限元方法的基本思路是:化整为零,积零为整。即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。由位移求出应变, 由应变求出应力 二、ABAQUS有限元分析过程 有限元分析过程可以分为以下几个阶段 1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。

2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。 由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成 3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理, 并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。 下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。 “Part(部件) 用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。 Property(特性) 截面(Section)的定义包括了部件特性或部件区域类信息,如区域的相关材料定义和横截面形状信息。在Property模块中,用户生成截面和材料定义,并把它们赋于(Assign)部件。 Assembly(装配件) 所生成的部件存在于自己的坐标系里,独立于模型中的其它部件。用户可使用Assembly模块生成部件的副本(instance),并且在整体坐标里把各部件的副本相互定位,从而生成一个装配件。 一个ABAQUS模型只包含一个装配件。

ABAQUS版本XFEM扩展元例子的详细图解

A B A Q U S6.9版本X F E M(扩展有限元)例子的详细图解 一、part模块中的操作: 二、 1.生成一个新的part,取名为plate,本part选取3Ddeformablesolidextrusion类型(如图1) 三、 2.通过Rectangle工具画出一长3,高6的矩形。考虑使用工具栏add-dimension和editdimension 来画出精确长度的模型。强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2) 四、 3.完成后拉伸此矩形,深度为1.(如图3) 五、图1,图2,图3, 4.生成一个新的part,取名为crack,本part选取3Ddeformableshellextrusion类型(如图4)

5.生成一条线,此线的左端点坐标为(0,0.08),右端点坐标为(1.5,0.08) 6.完成后拉伸此线,深度为1.(如图6) 7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。 8.在partPlate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图8~11所示。

二、Material模块中的操作: 1.创建材料elsa,其弹性参数为E=210GPa,泊松比为0.3(如图12) 最大主应力失效准则作为损伤起始的判据,最大主应力为84.4MPa(如图13)

损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为 G1C=G2C=G3C=42200N/m, =1.(如图14) 2.创建一个SolidHomogeneous的section,名为solid(如图15),此section与材料elsa相联(如图16),并将此section赋给platepart(也就是集合all)(如图17) 3.赋予材料取向,分别如图18~21所示。

abaqus 有限元分析(齿轮轴)

Abaqus分析报告 (齿轮轴) 名称:Abaqus齿轮轴 姓名: 班级: 学号: 指导教师:

一、简介 所分析齿轮轴来自一种齿轮泵,通过用abaqus软件对齿轮轴进行有限元分析和优化。齿轮轴装配结构图如图1,分析图1中较长的齿轮轴。 图1.齿轮轴装配结构图 二、模型建立与分析 通过part、property、Assembly、step、Load、Mesh、Job等步骤建立齿轮轴模型,并对其进行分析。 1.part 针对该齿轮轴,拟定使用可变型的3D实体单元,挤压成型方式。 2.材料属性 材料为钢材,弹性模量210Gpa,泊松比0.3。

3.截面属性 截面类型定义为solid,homogeneous。 4.组装 组装时选择dependent方式。 5.建立分析步 本例用通用分析中的静态通用分析(Static,General)。 6.施加边界条件与载荷 对于齿轮轴,因为采用静力学分析,考虑到前端盖、轴套约束,而且根据理论,对受力部分和轴径突变的部分进行重点分析。 边界条件:分别在三个轴径突变处采用固定约束,如图2。 载荷:在Abaqus中约束类型为pressure,载荷类型为均布载荷,分别施加到齿轮接触面和键槽面,根据实际平衡情况,两力所产生的绕轴线的力矩方向相反,大小按比例分配。 均布载荷比计算: 矩形键槽数据: 长度:8mm、宽度:5mm、高度:3mm、键槽所在轴半径:7mm 键槽压力面积:S1 = 8x3=24mm2 平均受力半径:R1=6.5mm 齿轮数据:= 齿轮分度圆半径:R2 =14.7mm、压力角:20°、 单个齿轮受力面积:S2 ≈72mm2 通过理论计算分析,S1xR1xP1=S2xR2xP2,其中,P1为键槽均布载荷

abaqus扩展有限元(xfem)例子(裂缝发展) ()

Abaqus扩展有限元(XFEM)例子(裂缝发展) part模块中的操作: 1. 生成一个新的part,取名为plate,本part选取3D deformable solid extrusion类型(如图1) 2.通过Rectangle工具画出一长3,高6的矩形。考虑使用工具栏add-dimension和edit dimension来画出精确长度的模型。强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2) 3. 完成后拉伸此矩形,深度为1.(如图3) 4. 生成一个新的part,取名为crack,本part选取3D deformable shell extrusion类型(如图4)

5.生成一条线,此线的左端点坐标为(0,0.08),右端点坐标为(1.5,0.08) 6 . 完成后拉伸此线,深度为1.(如图6) 7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。 8. 在part Plate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图

8~11所示 Material模块中的操作: 1 创建材料elsa,其弹性参数为E=210GPa,泊松比为0.3(如图12) 2 最大主应力失效准则作为损伤起始的判据,最大主应力为84.4MPa(如图13)

3.损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为G1C= G2C= G3C=42200N/m,a=1.(如图14) 4.创建一个Solid Homogeneous 的section,名为solid(如图15),此section与材料elsa相

支架的有限元分析ABAQUS

支架的线性静力学分析实例:建模和分析计算 在此实例中读者将学习ABAQUS/CAE的以下功能。 1) Sketch功能模块:导人CAD二维图形,绘制线段、圆弧和倒角,添加尺寸,修改平面图,输出平面图。 2) Part功能模块:通过拉伸来创建几何部件,通过切割和倒角未定义几何形状。 3) Property功能模块:定义材料和截面属性。 4) Mesh功能模块:布置种子,分割实体和面,选择单元形状、单元类型、网格划分 技术和算法,生成网格,检验网格质量,通过分割来定义承受载荷的面。 5) Assembly功能模块:创建非独立实体。 6) Step功能模块:创建分析步,设置时间增量步和场变量输出结果。 7) Interaction功能模块:定义分布榈合约束(distributing coupling constraint)。 8) Load功能模块:定义幅值,在不同的分析步中分别施加面载荷和随时间变化的集中力,定义边界条件。 9) Job功能模块:创建分析作业,设置分析作业的参数,提交和运行分析作业,监控运行状态。 10) Visualization功能模块:后处理的各种常用功能。 结构静力学分析(static analysis)是有限元法的基本应用领域,适用于求解惯性及阻尼对结构响应不显著的问题。主要用来分析由于稳态外载荷引起的位移,应力和应变等。本章的静力学分析实例按照ABAQUS工程分析的流程对支架进行线性静力学分析,通过实例基本掌握了分析的流程,同时了解接触的定义。 1.问题描述 所示的支架,一端牢固地焊接在一个大型结构上,支架的圆孔中穿过一个相对较软的杆件,圆孔和杆件用螺纹连接。材料的弹性模量E=2100000MPa,泊松比为0.3。

abaqus中xfem扩展有限元教程

abaqus 中xfem扩展有限 元教程

part 模块中的操作: 1. 生成一个新的 part ,取名为 plate ,本 part 选取 3D deformable solid extrusion 类型 (如图1) 2. 通过Rectangle 工具画出一长 3,高6的矩形。考虑使用工具栏 add-dimension 和edit dimension 来画出精确长度的模型。强烈建议此矩形的左上角坐标为( 0, 3),右下角坐标 为(3,-3)(如图2) 3.完成后拉伸此矩形,深度为 1.(如图3 )3D '、2D Planw I ' Axisymmetric Tyre Options ” Di scr^te ri gi >1 f'■ Analytical ri

4.生成一个新的 part ,取名为 crack ,本 part 选取 3D deformable shell extrusion 类型 (如图4) 叩刊网扌 rr Ack M ud-el L iLg. Spa-j-e (*) 3D { ' 29 Pl war ( ) Ajci symmetri c Typ? @ H 栏 £oir.ahle: :;Di 5?r ?tc ari gi d Cj An>lytic41 rigid ■.. j Euler i an Opti QKS None available Q hl 迥 ⑥*1】 ■:.\ Wire (.Poiitt Base Feature Type Planar Ez trusi on Rezolution Swsep Xppr^MiTatt =it e Cine el 5.生成一条线,此线的左端点坐标为( 0, 0.08 ),右端点坐标为(1.5 , 0.08 )

ABAQUS平台的扩展有限元方法模拟裂纹实现

ABAQUS平台的扩展有限元方法模拟裂纹实现 1.1 扩展有限元方法(XFEM)在ABAQUS上的实现 ABAQUS中XFEM的实现,两个步骤最为关键: 1、选择模型中可能出现的裂纹区域,将其单元设为具有扩展有限元性质的enrichment element. 2、其次重要的是选择恰当的破坏准则,使单元在达到给定的条件破坏,裂纹扩展。 在ABAQUS中模拟裂纹扩展的操作中,需要注意的是: 1、在Property模块,添加损伤演化参数、破坏法则、损伤稳定性参数 2、在Interaction模块,主菜单Special中创建XFEM的enrichment element 对于固定的裂纹模型,采用ABAQUS/STANDARD中使用奇异渐进函数。针对移动的裂纹问题,在XFEM中,有一种方法基于traction-separation cohesive behavior,即使用虚拟节点连续片段法进行移动裂纹建模,ABAQUS/STANDAR D 中用于计算脆性或韧性材料的裂纹初始化和扩展过程的模拟。另外一种cohesive segments method (粘性片段方法)可用于bulk material中的任意路径的裂纹初始化模拟扩展过程,由于裂纹扩展不依赖于单元边界,在XFEM中,裂纹每扩展一次需要通过一个完整单元,避免尖端应力奇异性。除此之外,ABAQUS为拥护提供了自定义子程序,来满足不同建模的需要。ABAQUS/STANDARD中的任意力学本构模型均可用来模拟扩展裂纹的力学特性。 由于XFEM采用的形函数在求解过程中,很容易造成逼近线性相关,极大的增加了收敛难度,到目前为止,能够实现扩展有限元的商业软件只有ABAQUS,但是ABAQUS为了减少求解难度,做了大量简化,因此用ABAQUS 扩展有限元模拟裂纹扩展时,有一些局限[16]: 1.扩展单元内不能同时存在两条裂纹,所以ABAQUS不能模拟分叉裂 纹; 2.在裂纹扩展分析过程中,每一个增量步的裂纹转角不允许超过90度; 3.自适应的网格是不被支持的; 4.固定裂纹中,只有各向同性材料的裂纹尖端渐进场才被考虑。 1.2 数值算例

ABAQUS中扩展有限元(XFEM)功能简介

ABAQUS中扩展有限元(XFEM)功能简介 扩展有限元(Extended Finite Element Method)是一种解决断裂力学问题的新的有限元方法,其理论最早于1999年,由美国西北大学的教授Belyschko和Black首次提出,主要是采用独立于网格剖分的思想解决有限元中的裂纹扩展问题,在保留传统有限元所有优点的同时,并不需要对结构内部存在的裂纹等缺陷进行网格划分。 ABAQUS基于在非线性方面的突出优势,在其6.9的版本中开始加入了扩展有限元功能,到6.13做了一些修正,加入了一些可以被CAE支持的关键字。目前为止,除了手动编程,能够实现扩展有限元常用的商业软件只有ABAQUS,今天,我们就来谈谈ABAQUS 中如何实现扩展有限元。 1. XFEM理论 在XFEM理论出现之前,所有对裂纹的静态模拟(断裂)都基本上是采用预留裂缝缺角,通过细化网格仿真裂缝的轮廓。而动态的模拟(损伤)基本上都是基于统计原理的Paris 方法。然而,断裂和损伤的结合问题却一直没有得到有效的解决,究其原因,在于断裂力学认可裂纹尖端的应力奇异现象(就是在靠近裂尖的区域应力值会变无穷大),并且尽可能的绕开这个区域。而损伤力学又没有办法回避这个问题(裂纹都是从尖端开裂的)。 从理论上讲,其实单元内部的位移函数(形函数)可以是任意形状的,但大多数的计算软件都采用了多项式或者插值多项式作为手段来描述单元内部的位移场,这是因为采用这种方法更加便于在编程中进行处理。但是这种方法的缺点就是,由于形函数的连续性,导致单元内部不可能存在间断。直到Belytschko提出采用水平集函数作为手段,其基本形式为 和 上面左边的等式描述了单元内裂缝的位置,右边的等式描述了裂尖的位置。与之对应的形函数便是

裂纹扩展的扩展有限元(xfem)模拟实例详解

基于ABAQUS 扩展有限元的裂纹模拟 化工过程机械622080706010 李建 1 引言 1.1 ABAQUS 断裂力学问题模拟方法 在abaqus中求解断裂问题有两种方法(途径):一种是基于经典断裂力学的模型;一种是基于损伤力学的模型。 断裂力学模型就是基于线弹性断裂力学及其基础上发展的弹塑性断裂力学等。如果不考虑裂纹的扩展,abaqus可采用seam型裂纹来分析(也可以不建seam,如notch型裂纹),这就是基于断裂力学的方法。这种方法可以计算裂纹的应力强度因子,J积分及T-应力等。 损伤力学模型是指基于损伤力学发展而来的方法,单元在达到失效的条件后,刚度不断折减,并可能达到完全失效,最后形成断裂带。这两个模型是为解决不同的问题而提出来的,当然他们所处理的问题也有交叉的地方。 1.2 ABAQUS 裂纹扩展数值模拟方法 考虑模拟裂纹扩展,目前abaqus有两种技术:一种是基于debond的技术(包括VCCT);一种是基于cohesive技术。 debond即节点松绑,或者称为节点释放,当满足一定得释放条件后(COD 等,目前abaqus提供了5种断裂准则),节点释放即裂纹扩展,采用这种方法时也可以计算出围线积分。 cohesive有人把它译为粘聚区模型,或带屈曲模型,多用于模拟film、裂纹扩展及复合材料层间开裂等。cohesive模型属于损伤力学模型,最先由Barenblatt 引入,使用拉伸-张开法则(traction-separation law)来模拟原子晶格的减聚力。这样就避免了裂纹尖端的奇异性。Cohesive 模型与有限元方法结合首先被用于混凝土计算和模拟,后来也被引入金属及复合材料。Cohesive界面单元要服从cohesive 分离法则,法则范围可包括粘塑性、粘弹性、破裂、纤维断裂、动力学失效及循环载荷失效等行为。 此外,从abaqus6.9版本开始还引入了扩展有限元法(XFEM),它既可以模拟静态裂纹,计算应力强度因子和J积分等参量,也可以模拟裂纹的开裂过程。被誉为最具有前途的裂纹数值模拟方法。本文将利用abaqus6.9版本中的扩展有限元法功能模拟常见的Ⅰ型裂纹的扩展。 2 Ⅰ型裂纹的扩展有限元分析 本文针对断裂力学中的平面Ⅰ型裂纹扩展问题用abaqus中的扩展有限元方法进行数值模拟,获得了裂纹扩展的整个过程,裂尖单元的应力变化曲线,以及裂纹尖端塑性区的形状。在此基础上绘制裂纹扩展的能量历史曲线变化趋势图。

ABAQUS有限元接触分析的基本概念

ABAQUS有限元接触分析的基本概念2009-11-24 00:06:28 作者:jiangnanxue 来源:智造网—助力中国制造业创新—https://www.sodocs.net/doc/13951956.html, CAE(计算机辅助工程)是一门复杂的工程科学,涉及仿真技术、软件、产品设计和力学等众多领域。世界上几大CAE公司各自以其独到的技术占领着相应的市场。ABAQUS有限元分析软件拥有世界上最大的非线性力学用户群,是国际上公认的最先进的大型通用非线性有限元分析软件之一。它广泛应用于机械制造、石油化工、航空航天、汽车交通、土木工程、国防军工、水利水电、生物医学、电子工程、能源、地矿、造船以及日用家电等工业和科学研究领域。ABAQUS在技术、品质和可靠性等方面具有卓越的声誉,可以对工程中各种复杂的线性和非线性问题进行分析计算。 《ABAQUS有限元分析常见问题解答》以问答的形式,详细介绍了使用ABAQUS建模分析过程中的各种常见问题,并以实例的形式教给读者如何分析问题、查找错误原因和尝试解决办法,帮助读者提高解决问题的能力。 《ABAQUS有限元分析常见问题解答》一书由机械工业出版社出版。 16.1.1 点对面离散与面对面离散 【常见问题16-1】 在ABAQUS/Standard分析中定义接触时,可以选择点对面离散方法(node-to-surface-dis - cre-tization)和面对面离散方法(surface-to-surface discretization),二者有何差别? 『解答』 在点对面离散方法中,从面(slave surface)上的每个节点与该节点在主面(master surface)上的投影点建立接触关系,每个接触条件都包含一个从面节点和它的投影点附近的一组主面节点。 使用点对面离散方法时,从面节点不会穿透(penetrate)主面,但是主面节点可以穿透从面。 面对面离散方法会为整个从面(而不是单个节点)建立接触条件,在接触分析过程中同时考虑主面和从面的形状变化。可能在某些节点上出现穿透现象,但是穿透的程度不会很严重。 在如图16-l和图16-2所示的实例中,比较了两种情况。

ABAQUS精选本FEM扩展元例子的详细图解

版本X F E M(扩展有限元)例子的详细图解 一、part模块中的操作: 二、 1.生成一个新的part,取名为plate,本part选取3Ddeformablesolidextrusion类型(如图1) 三、 2.通过Rectangle工具画出一长3,高6的矩形。考虑使用工具栏add-dimension和 editdimension来画出精确长度的模型。强烈建议此矩形的左上角坐标为(0,3),右下角坐标为(3,-3)(如图2) 四、 3.完成后拉伸此矩形,深度为1.(如图3) 五、图1,图2,图3, 4.生成一个新的part,取名为crack,本part选取3Ddeformableshellextrusion类型(如图4)

5.生成一条线,此线的左端点坐标为(0,),右端点坐标为(,) 6.完成后拉伸此线,深度为1.(如图6) 7.保存此模型为XFEMtutor(如图7),以后经常保存模型,不再累述。 8.在partPlate中分别创建4个集合,分别为:all,bottom,top和fixZ,各部分的内容如图8~11所示。

二、Material模块中的操作: 1.创建材料elsa,其弹性参数为E=210GPa,泊松比为(如图12) 最大主应力失效准则作为损伤起始的判据,最大主应力为(如图13)

损伤演化选取基于能量的、线性软化的、混合模式的指数损伤演化规律,有关参数为 G1C=G2C=G3C=42200N/m,=1.(如图14) 2.创建一个SolidHomogeneous的section,名为solid(如图15),此section与材料elsa相联(如图16),并将此section赋给platepart(也就是集合all)(如图17) 3.赋予材料取向,分别如图18~21所示。

Abaqus有限元分析中的沙漏效应

Abaqus有限元分析中的沙漏效应[转] 2011-09-21 17:34:27| 分类:有限元 | 标签: |字号大中小订阅 1. 沙漏的定义 沙漏hourglassing一般出现在采用缩减积分单元的情况下: 比如一阶四边形缩减积分单元,该单元有四个节点“o”,但只有一个积 分点“*”。而且该积分点位于单元中心位置,此时如果单元受弯或者受剪,则必然会发生变形,如下图a所示。 关于沙漏问题,建议看看abaqus的帮助文档,感觉讲的非常好,由浅入深,把深奥的东西讲的很容易理解。 沙漏的产生是一种数值问题,单元自身存在的一种数值问题,举个例子,对于单积分点线性单元,单元受力变形没有产生应变能--也叫0能量模式,在 这种情况下,单元没有刚度,所以不能抵抗变形,不合理,所以必须避免这种情况的出现,需要加以控制,既然没有刚度,就要施加虚拟的刚度以限制沙漏 模式的扩展---人为加的沙漏刚度就是这么来的。 关于沙漏现象的判别,也就是出现0能模式的方法最简单的是察看单元变 形情况,就像刚才所说的单点积分单元,如果单元变成交替出现的梯形形状, 如果多个这样的单元叠加起来,是不是象我们windows中的沙漏图标呢? ABAQUS中沙漏的控制: *SECTION CONTROLS:指定截面控制 警告:对于沙漏控制,使用大于默认值会产生额外的刚度响应,甚至当值 太大时有时导致不稳定。默认沙漏控制参数下出现沙漏问题表明网格太粗糙, 因此,更好的解决办法是细化网格而不是施加更大的沙漏控制。 该选项用来为减缩积分单元选择非默认的沙漏控制方法,和standard中的修正的四面体或三角形单元或缩放沙漏控制的默认系数;在explicit中,也 为8节点块体单元选择非默认的运动方程:为实体和壳选择二阶方程、为实体 单元激活扭曲控制、缩放线性和二次体积粘度、设置当单元破损时是否删除他们、或为上述完全破损的单元指定一标量退化参数。等 必需参数: NAME:名字 可选参数: DISTORTION CONTROL:只用于explicit分析。=YES激活约束防止负体积 单元出现或其他可压缩材料的过度变形,这对超弹材料是默认的。DISTORTION

abaqus6.8和6.9的新功能

ABAQUS6.9新功能 一、扩展有限元(XFEM)的引入 我认为ABAQUS将扩展有限元引入是其最大亮点,也非常有市场前景。该方法可以认为是有限元方法处理不连续问题的革命性变革。据我所知,这是第一个将XFEM商用化的软件。我厂在生产过程中可能遇到的裂纹问题,夹杂问题,气孔,复合材料问题(复合材料的纤维相当于夹杂)都可以通过这种方法解决。虽然我对该方法的理论不胜了解,但是在此我想就我所知对该方法多做些介绍。+ u! _2 v# n& O& M* P 固体力学中存在两类典型的不连续问题,一类是因材料特性突变引起的弱不连续问题,这类问题以双材料问题和夹杂问题为代表,其复杂性由物理界面处的应变不连续性引起;另一类是因物体内部几何突变引起的强不连续问题,这类问题以裂纹问题为代表,其复杂性由几何界面处的位移不连续性和端部的奇异性引起.物体内部物理界面的脱粘或起裂,是上述两类问题的混合.另外,在复杂流体、复杂传热、物质微结构演化等复杂问题中,也存在许多不连续力学问题。* e4 o5 F2 K4 n& g n3 {4 U 数值方法,如有限元、边界元、无单元法等,一直是处理不连续问题的主要途径.有限元法具有其它数值方法无可比拟的优点,即适用于任意几何形状和边界条件、材料和几何非线性问题、各向异性问题、容易编程等,因而成为数值分析裂纹等不连续问题的主要手段。更为重要的是有限元方法的商业化程度和推广程度都很高,对于我们这样的企业已经有一大批熟悉有限元技术的工程师。因此通过有限元方法来解决这一问题是成本低效率高的途径。但是传统的有限元方法在处理裂纹,夹杂,空隙这些不连续问题时困难非常大。) t, Z- t8 ?2 J+ ~3 f: Q 常规有限元法(CFEM)采用连续函数作为形状(插值)函数,要求在单元内部形状函数连续且材料性能不能跳跃,在处理像裂纹这样的强不连续(位移不连续)问题时,必须将裂纹面设置为单元的边、裂尖设置为单元的结点、在裂尖附近的高应力区需要令人难以接受的网格密度,同时在模拟裂纹生长时还需要对网格进行重新剖分。现在绝大多数商业软件在模拟裂纹扩展问题时都需要预设裂纹的扩展方向,而且在裂纹扩展过程中不断的从新划分网格,效率极低甚至无能为力。在处理多裂纹问题时,其求解规模之大、网格剖分之难是不可想象的。处理夹杂问题时,要求单元的边必须位于夹杂与基体的界面处,即使对于网格自动化程度很高的二维问题这也不容易,更何况拓扑结构更复杂的三维问题。 1999年以来,在有限元框架内发展起来的扩展有限元法,以解决不连续问题为着眼点,对常规有限元法在求解裂纹问题时所遇到的困难提出了近乎完美的解决方案。' G, ]4 z! c/ i$ d2 T 1999年,以美国西北大学Belytschko教授为代表的研究组首先提出扩展有限元思想,20 00年,他们正式使用扩展有限元法(XFEM)这一术语即。XFEM是迄今为止求解不连续力学问题最有效的数值方法,它在标准有限元框架内研究问题,保留了CFEM的所有优点,但并不需要对结构内存在的几何或物理界面进行网格剖分。XFEM与CFEM的最根本区别在于所使用的网格与结构内部的几何或物理界面无关,从而克服了在诸如裂纹尖端等高应力和变形集中区进行高密度网格剖分所带来的困难,当模拟裂纹扩展时也无需对网格进行重新剖分。 也就是说在裂纹的扩展过程中裂纹可以穿透单元扩展。就其理论我们可以简单的理解为在单元内部有很多的潜在节点,当需要时这些节点被激活实现裂纹穿透单元扩展。在宣讲会上ABAQUS业务代表现场展示了其用XFEM完成的II裂纹扩展模拟,裂纹面沿70°方向穿透单元扩展 我有个师兄也在从事XFEM方面的研究工作。他在研究中遇到的主要问题是材料中有大小随机的夹杂的时候可能会出现一个单元将一个或多个夹杂完全包围在其中的情况。处理这种

abaqus有限元分析简支梁

1.梁C 的主要参数: 其中:梁长3000mm ,高为406mm ,上下部保护层厚度为38mm ,纵筋端部保护层厚度为25mm 抗压强度:35.1MPa 抗拉强度:2.721MPa 受拉钢筋为2Y16,受压钢筋为2Y9.5,屈服强度均为440MPa 箍筋:Y7@102,屈服强度为596MPa 2.混凝土及钢筋的本构关系 1、运用陈光明老师的论文(Chen et al. 2011)来确定混凝土的本构关系: 受压强度: 其中C a E ==28020,c f ρσ'=,0.002ρε= 2、受压强度与开裂位移的相互关系:

其中123.0, 6.93c c == 3、损伤因子: 其中c h = e=10(选取网格为10mm ) 4、钢筋取理想弹塑性 5、名义应力应变和真实应力及对数应变的转换: ln (1)ln(1)true nom nom Pl true nom E σσεσε ε=+=+- 6、混凝土最终输入的本构关系如下: compressive behavior tensile behavior tension damage yield stress inelastic strain yield stress displacement parameter displacement 21.50274036 2.721 25.56359281 2.72247E-05 2.683556882 0.0003129 0.18766492 0.0003129 28.88477336 8.85105E-05 2.646628319 0.0006258 0.31902609 0.0006258 31.43501884 0.000177278 2.610210508 0.0009387 0.41606933 0.0009387 33.24951537 0.000292271 2.574299562 0.0012516 0.49065237 0.0012516 34.40787673 0.000430648 2.538891515 0.0015645 0.54973463 0.0015645 35.01203181 0.000588772 2.503982327 0.0018774 0.5976698 0.0018774 35.16872106 0.000762833 2.46956789 0.0021903 0.63732097 0.0021903 34.97805548 0.000949259 2.435644029 0.0025032 0.67064827 0.0025032 34.52749204 0.001144928 2.402206512 0.0028161 0.69903885 0.0028161 33.88973649 0.001347245 2.369251048 0.003129 0.72350194 0.003129 33.17350898 0.001541185 2.336773294 0.0034419 0.74478941 0.0034419 32.38173508 0.001737792 2.30476886 0.0037548 0.76347284 0.0037548 31.54367693 30.68161799 0.001936023 0.002135082 2.27323331 2.242162167 0.0040677 0.0043806 0.77999451 0.79470205 0.0040677 0.0043806

第5章+在ABAQUS中构造有限元模型的若干问题-

第五章 构造有限元模型的若干问题 第三章所述的岩土工程中常用的本构模型可用于以下四种类型的单元中: 1. 平面应变单元 2. 广义平面应变单元 3. 轴对称单元 4. 三维单元 在应用平面应变单元时,只能用子午线作为线性的Drucker-Prager 模型。 考虑非线性变形的轴对称单元具有如下功能:初始变形是轴对称的,在进入非线性变形后,允许产生非轴对称变形,这个功能是十分有用的,比如桩基承受轴向力、水平力和弯矩时,它在r-z 平面上采用标准的插值函数,在与θ有关的方向上采用Fourier 级数插值函数,这类单元可以充分考虑不同方位上变形的差异,其计算结果更接近实际。 考虑流体在多孔介质中的作用时,需采用位移——孔隙压力耦合单元,耦合单元可应用于平面应变单元、轴对称/反对称单元、三维单元。此时,位移与孔隙压力的插值函数可以不同,孔隙压力通常采用线性插值已经足够,位移则可选择线性插值或二次插值。 有限元与无限元相结合来求解考虑这个问题是一个有效的方法。 5-1 广义平面单元 所谓广义平面单元是指位于两个受约束的平面之间的区域,这两个受约束的平面可以如同刚体一般绕轴相互转动,这个转动会导致沿厚度方向上的应变。假定这个应变在厚度方向上与位置无关,则两个平面的相对移动仅仅在厚度方向上引起应变。这样引起的应变以及一阶与二阶变量由下式定义: 设P 0(x 0,y 0)为受约束平面上的一个固定点,P 0到另一个受约束平面的距离为z u t ?+0,其中t 0是初始距离,z u ?是变形过程中产生的位移,z u ?为广义平面元节点自由度的一阶变量。对于用广义平面元进行连结的某一区域而言,只有一个广义平面元节点自由度。不同的连结区域可以有不同的广义平面应变节点,因此两个受约束的平面之间的这个区域可视为一个刚体,该区域中任何其它点(x ,y )的纤维长度为: y x z Z x Y y u t t φ???φ??+?+=)()(000 (5-1-1) 其中 10)(|)(x x x φ?+φ?=φ? (5-1-2) 10)(|)(y y y φ?+φ?=φ? (5-1-3)

abaqus有限元建模小例子

问题一: 工字梁弯曲 1.1 问题描述: 在<<材料力学实验>>中,弯曲实验測定了工字梁弯曲应变大小及其分布,以验证弯曲正应力公式。在这里,採用ABAQUS/CAE建立试验件的有限元模型,ABAQUS/Standard模块进行分析求解,得到应力、应变分布,对比其与理论公式计算值及实验測量值的差別。 弯曲实验的相关数据: 材料:铝合金E=70GPa 泊松比0.3 实验装置结构简图如图所示: 结构尺寸测量值:H=50(+/-0.5mm) h=46(+/-0.5mm) B=40(+/-0.5mm) b=2(+/-0.02mm) a=300(+/-1mm) F1=30N Fmax=300N N ? F100 = 1.2 ABAQUS有限元建模及分析 一对象: 工字型截面铝合金梁 梁的结构简图如图1所示,結构尺寸、载荷、約束根据1.1设定,L取1600mm,两端各伸出100mm。 二用ABAQUS/CAE建立实验件的有限元模型,效果图如下: 边界条件简化: 左侧固定铰支座简化为下表面左参考点处的约束U1=U2=U3=0

右侧活动铰支座简化为下表面右参考点处的约束U1=U2=UR3=0 几何模型

有限元模型 三ABAQUS有限元分析結果 ①应力云图(Z方向正应力分量):施加载荷前 F=300N

②应变(Z方向分量): 中间竖直平面的厚度方向应变分布图: F=100N F=200N

F=300N 由上图可以看出应变沿着厚度方向呈线性比例趋势变化,与实验测得的应变值变化趋势相同。中性轴处应变均接近零值,应变与距离中性轴位移基本为正比关系。 1.3分析结果: 中间竖直截面上下边缘轴向应力数值对比:*10^-6 MPa 距中性轴距ABAQUS模拟实验测量值平均理论值 1/2H -96.182*70000 -97*70000 -6.9165=-70000*98.807 -1/2H 95.789*70000 92*70000 6.9165

abaqus有限元分析报告开裂梁要点

Abaqus梁的开裂模拟计算报告 1.问题描述 利用ABAQUS有限元软件分析如图1.1所示的钢筋混凝土梁的裂缝开展。参考文献Brena et al.(2003)得到梁的基本数据: 图1.1 Brena et al.(2003)中梁C尺寸 几何尺寸:跨度3000mm,截面宽203mm,高406mm的钢筋混凝土梁 由文献Chen et al. 2011得材料特性: 1.混凝土:抗压强度f c’=35.1MPa,抗拉强度f t= 2.721MPa,泊松比ν=0.2,弹性模量 E c=28020MPa; 2.钢筋:弹性模量为E c=200GPa,屈服强度f ys=f yc=440MPa,f yv=596MPa 3.混凝土垫块:弹性模量为E c=28020MPa,泊松比ν=0.2 2.建模过程 1)Part 打开ABAQUS使用功能模块,弹出窗口Create Part,参数为:Name:beam;Modeling Space:2D;Type:Deformable;Base Feature─Shell;Approximate size:2000。点击Continue 进入Sketch二维绘图区。由于该梁关于Y轴对称,建模的时候取沿X轴的一半作为模拟对象。 使用功能模块,分别键入独立点(0,0),(1600,0),(1600,406),(406,0),(0,0)并按下下方提 示区的Done,完成草图。 图2.1 beam 部件二维几何模型

相同的方法建立混凝土垫块: 图2.2 plate 部件二维几何模型 所选用的点有(0,0),(40,0),(40,10),(0,10) 受压区钢筋: 在选择钢筋的base feature的时候选择wire,即线模型。 图2.3 compression bar 部件二维几何模型 选取的点(0,0),(1575,0) 受拉区钢筋: 图2.4 tension bar 部件二维几何模型 选取的点(0,0),(1575,0) 箍筋: 图2.5 stirrup 部件二维几何模型 选取的点为(0,0),(0,330) 另外,此文里面为了作对比,部分的模型输入尺寸的时候为m,下面无特别说明尺寸都为mm。

相关主题