搜档网
当前位置:搜档网 › 4导数研究三次函数的性质

4导数研究三次函数的性质

4导数研究三次函数的性质
4导数研究三次函数的性质

4导数研究三次函数的性质

复习目标:掌握三次函数的图象和性质,尤其是利用导数研究单调性、极值情况,以及三次函数

的零点。

复习重点难点:(1)三次函数的图象的四种情况;(2)三次函数的极值情况;

【典型例题】

题型一:三次函数单调性的讨论

例1.已知函数32()2f x ax x x =++在R 上恒为增函数,求实数a 的取值范围.

例2.已知函数f (x )=-x 3+3x 2+9x +a ,

(I )求f (x )的单调递减区间;

(II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.

题型二:三次函数极值,最值的讨论

例3. 已知a 是实数,函数2()()f x x x a =-;

(1)若'(1)3f =,求a 的值及曲线()y f x =在点(1,(1))f 处的切线方程;

(2)求()f x 在区间[]2,0上的最大值.

例4.已知函数()f x 的导数2()33,f x x ax '=-(0).f b =,a b 为实数,12a <<.

(1)若()f x 在区间[1, 1]-上的最小值、最大值分别为2-、1,求a 、b 的值;

(2)设函数2()(()61)x F x f x x e '=++?,试判断函数()F x 的极值点个数.

【课后作业】

1.过曲线y =x 3+x-2上的点P 0的切线平行于直线y =4x-1,则切点P 0的坐标为

2.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a·b 在区间(-1,1)上是增函数,求t 的取值范围.

3.函数f (x )=x 3+x 2-x 在区间[-2,1]上的最大值和最小值分别是

4.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为

31812343

y x x =-+-,则使该生产厂家获得最大年利润的年产量为

5.设函数b x a ax x x f +-+-=223323

1)( (0

/ |≤a ,求a 的取值范围.

6.已知函数3221()21(0)32

a f x x x a x a =--+> (1)求函数()f x 的极值;

(2)若函数()y f x =的图象与值线0y =恰有三个交点,求实数a 的取值范围;

(3)已知不等式2'()1f x x x <-+对任意(1,)a ∈+∞都成立,求实数x 的取值范围.

7.已知函数()()a x x f -=2()x b -,b a ,为常数,

(1)若a b ≠,求证:函数()x f 存在极大值和极小值

(2)设()x f 取得极大值、极小值时自变量分别为12,x x ,令点A 11(,()x f x ),B 22(,()x f x ),

若a >b ,直线AB 的斜率为12

-

,求函数()x f 和/()f x 的公共递减区间的长度.

答案:

【典型例题】

1. 6

1≥

a . 2.(I ) 0)(,963)(2<'++-='x f x x x f 令,解得x <-1或x >3

所以函数f (x )的单调递减区间为(-∞,-1),(3,+∞).

(II ))}2(),2(max{)(,5)1()(,3212m ax m in f f x f a f x f -=+-=-=∴<<-<-

)2()2(,

22)2(,2)2(->∴+=+=-f f a f a f 于是有 22+a =20,解得 a =-2.

故f (x )=-x 3+3x 2+9x -2,因此f (-1)=-7,

即函数f (x )在区间[-2,2]上的最小值为-7.

3. 解析:(1)2'()32f x x ax =-.因为'(1)323f a =-=,

所以0a =.

又当0a =时,(1)1,'(1)3f f ==,

所以曲线()(1,(1))y f x f =在处的切线方程为3x y --2=0.

(2)令'()0f x =,解得1220,3a x x ==

. 当203

a ≤,即a ≤0时,()f x 在[0,2]上单调递增,从而max (2)84f f a ==-. 当223

a ≥时,即a ≥3时,()f x 在[0,2]上单调递减,从而max (0)0f f ==. 当2023a <<,即03a <<,()f x 在20,3a ??????上单调递减,在2,23a ??????

上单调递增,从而max 84,0 2.0,2 3.a a f a -<≤??=?<??

2020高考数学 课后作业 3-2 利用导数研究函数的性质

3-2 利用导数研究函数的性质 1.(文)(2020·宿州模拟)已知y=f(x)是定义在R上的函数,且f(1)=1,f′ (x)>1,则f(x)>x的解集是( ) A.(0,1) B.(-1,0)∪(0,1) C.(1,+∞) D.(-∞,-1)∪(1,+∞) [答案] C [解析]令F(x)=f(x)-x,则F′(x)=f′(x)-1>0,所以F(x)是增函数,∵f(x)>x,∴F(x)>0,∵F(1)=f(1)-1=0,∴F(x)>F(1),∵F(x)是增函数,∴x>1,即f(x)>x的解集是(1,+∞). (理)(2020·辽宁文,11)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为( ) A.(-1,1) B.(-1,+∞) C.(-∞,-1) D.(-∞,+∞) [答案] B [解析]由题意,令φ(x)=f(x)-2x-4,则 φ′(x)=f′(x)-2>0. ∴φ(x)在R上是增函数. 又φ(-1)=f(-1)-2×(-1)-4=0, ∴当x>-1时,φ(x)>φ(-1)=0, ∴f(x)-2x-4>0,∴f(x)>2x+4.故选B. 2.(2020·宁夏石嘴山一模)函数y=2x3-3x2-12x+5在[0,3]上的最大值,最小值分别是( ) A.5,-15 B.5,-4 C.-4,-15 D.5,-16 [答案] A [解析]∵y′=6x2-6x-12=0,得x=-1(舍去)或x=2,故函数y=f(x)=2x3-3x2-12x+5在[0,3]上的最值可能是x取0,2,3时的函数值,而f(0)=5,f(2)=-15,f(3)=-4,故最大值为5,最小值为-15,故选A. 3.(文)已知函数f(x)=x3-px2-qx的图象与x轴切于(1,0)点,则f(x)的极大值、极小值分别为( ) A.4 27 ,0 B.0, 4 27 C.-4 27 ,0 D.0,- 4 27

4导数研究三次函数的性质

4导数研究三次函数的性质 复习目标:掌握三次函数的图象和性质,尤其是利用导数研究单调性、极值情况,以及三次函数 的零点。 复习重点难点:(1)三次函数的图象的四种情况;(2)三次函数的极值情况; 【典型例题】 题型一:三次函数单调性的讨论 例1.已知函数32()2f x ax x x =++在R 上恒为增函数,求实数a 的取值范围. 例2.已知函数f (x )=-x 3+3x 2+9x +a , (I )求f (x )的单调递减区间; (II )若f (x )在区间[-2,2]上的最大值为20,求它在该区间上的最小值.

题型二:三次函数极值,最值的讨论 例3. 已知a 是实数,函数2()()f x x x a =-; (1)若'(1)3f =,求a 的值及曲线()y f x =在点(1,(1))f 处的切线方程; (2)求()f x 在区间[]2,0上的最大值. 例4.已知函数()f x 的导数2()33,f x x ax '=-(0).f b =,a b 为实数,12a <<. (1)若()f x 在区间[1, 1]-上的最小值、最大值分别为2-、1,求a 、b 的值; (2)设函数2()(()61)x F x f x x e '=++?,试判断函数()F x 的极值点个数.

【课后作业】 1.过曲线y =x 3+x-2上的点P 0的切线平行于直线y =4x-1,则切点P 0的坐标为 2.已知向量a =(x 2,x +1),b =(1-x ,t ).若函数f (x )=a·b 在区间(-1,1)上是增函数,求t 的取值范围. 3.函数f (x )=x 3+x 2-x 在区间[-2,1]上的最大值和最小值分别是 4.已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为 31812343 y x x =-+-,则使该生产厂家获得最大年利润的年产量为 5.设函数b x a ax x x f +-+-=223323 1)( (0

高中数学利用导数研究函数的性质( 极值与最值)

3.2利用导数研究函数的性质 第2课时导数与函数的极值、最值 一、基础知识 1.函数的单调性(复习) 在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减. 2.函数的极值 (1)一般地,求函数y=f(x)的极值的方法 解方程f′(x)=0,当f′(x0)=0时: ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值. (2)求可导函数极值的步骤 ①求f′(x); ②求方程f′(x)=0的根; ③考查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 3.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. 知识拓展 (1)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件. (2)函数的极大值不一定比极小值大.

(3)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的必要不充分要条件. 二、基本题型 1.根据函数图象判断极值 【例1-1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( ) A .函数f (x )有极大值f (2)和极小值f (1) B .函数f (x )有极大值f (-2)和极小值f (1) C .函数f (x )有极大值f (2)和极小值f (-2) D .函数f (x )有极大值f (-2)和极小值f (2) 答案 D 解析 由题图可知,当x <-2时,f ′(x )>0;当-22时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【变式1-1】函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ) A .无极大值点、有四个极小值点 B .有三个极大值点、一个极小值点 C .有两个极大值点、两个极小值点 D .有四个极大值点、无极小值点 【答案】 C 【解析】 导函数的图象与x 轴的四个交点都是极值点,第一个与第三个是极大值点,第二个与第四个是极小值点. 2.求函数的极值和极值点 【例2-1】设函数f (x )=2x +ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12 为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点 【答案】 D 【解析】 f ′(x )=-2x 2+1x =x -2x 2(x >0),当02时,f ′(x )>0, ∴x =2为f (x )的极小值点.

几个常见函数的导数1

几个常见函数的导数制作人:徐凯精讲部分: 年级:高三科目:数学类型:同步难易程度:易建议用时:20-25min 一.知识点: 知识点一几个常用函数的导数 知识点二基本初等函数的导数公式

二.典例分析: 题型一 利用导数公式求出函数的导数 例1 求下列函数的导数: (1)y =sin π3;(2)y =5x ;(3)y =1x 3;(4)y =4x 3;(5)y =log 3x ;(6)y =1-2sin 2x 2 . 解 (1)y ′=0;(2)y ′=(5x )′=5x ln 5;(3)y ′=? ?? ??1x 3′=(x -3)′=-3x -4 ; (4)y ′=(4 x 3 )′=(x 34)′=1 434x -=344 x ;(5)y ′=(log 3x )′=1 x ln 3; (6)y =1-2sin 2 x 2 =cos x ,y ′=(cos x )′=-sin x . 反思与感悟 若给出函数解析式不符合导数公式,需通过恒等变换对解析式进行化简或变形后求导,如根式化指数幂的形式求导. 题型二 利用导数公式解决切线有关问题 例2 (1)已知P ,Q 为抛物线y =12x 2 上两点,点P ,Q 横坐标分别为4,-2,过P ,Q 分别 作抛物线的切线,两切线交于点A ,则点A 的坐标为________. 答案 (1,-4) 解析 y ′=x ,k PA =y ′|x =4=4,k QA =y ′|x =-2=-2. ∵P (4,8),Q (-2,2),∴PA 的直线方程为y -8=4(x -4),

即y =4x -8, QA 的直线方程为y -2=-2(x +2),即y =-2x -2,联立方程组??? ? ? y =4x -8,y =-2x -2,得 ????? x =1, y =-4. ∴A (1,-4). (2)已知两条曲线y =sin x ,y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处两条曲线的切线互相垂直并说明理由. 解 设存在一个公共点(x 0,y 0)使两曲线的切线垂直, 则在点(x 0,y 0)处的切线斜率分别为k 1=y ′|0x x ==cos x 0,k 2=y ′|0x x ==-sin x 0, 要使两切线垂直,必须k 1k 2=cos x 0(-sin x 0)=-1, 即sin 2x 0=2,这是不可能的. ∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直. 反思与感悟 1.利用导数的几何意义解决切线问题的两种情况 (1)若已知点是切点,则在该点处的切线斜率就是该点处的导数. (2)如果已知点不是切点,则应先设出切点,再借助两点连线的斜率公式进行求解. 2.求过点P 与曲线相切的直线方程的三个步骤 题型三 利用导数公式求最值问题 例3 求抛物线y =x 2 上的点到直线x -y -2=0的最短距离. 解 设切点坐标为(x 0,x 2 0),依题意知与直线x -y -2=0平行的抛物线y =x 2 的切线的切点到直线x -y -2=0的距离最短.

高中数学新人教A版选修1-1学案附答案第三章导数及其应用3.3导数在研究函数中3.3.3函数的最大小值与导数

高中数学新人教A 版选修1-1学案附答案 3.3.3 函数的最大(小)值与导数 学习目标:1.能够区分极值与最值两个不同的概念.(易混点)2.掌握在闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次)的求法.(重点)3.能根据函数的最值求参数的值.(难点) [自 主 预 习·探 新 知] 1.函数f (x )在区间[a ,b ]上的最值 如果在区间[a ,b ]上函数y =f (x )的图象是一条连续不断的曲线,则该函数在[a ,b ]上一定能够取得最大值和最小值,并且函数的最值必在极值点或区间端点取得. 思考:若函数f (x )在区间[a ,b ]上只有一个极大值点x 0,则f (x 0)是函数f (x )在区间[a , b ]上的最大值吗? [提示] 根据极大值和最大值的定义知,f (x 0)是函数f (x )在区间[a ,b ]上的最大值. 2.求函数y =f (x )在[a ,b ]上的最值的步骤 (1)求函数y =f (x )在(a ,b )内的极值. (2)将函数y =f (x )的各极值与端点处的函数值f (a ),f (b )进行比较,其中最大的一个是最大值,最小的一个是最小值. [基础自测] 1.思考辨析 (1)函数的最大值一定是函数的极大值. ( ) (2)开区间上的单调连续函数无最值. ( ) (3)函数f (x )在区间[a ,b ]上的最大值和最小值一定在两个端点处取得. ( ) (4)函数f (x )=1 x 在区间[-1,1]上有最值. ( ) [答案] (1)× (2)√ (3)× (4)× 2.函数f (x )=x 3 -3x 2 +2在区间[-1,1]上的最大值是( ) A .-2 B .0 C .2 D .4 C [f ′(x )=3x 2-6x ,令f ′(x )=0得x =0或x =2. 由f (-1)=-2,f (0)=2,f (1)=0得f (x )max =f (0)=2.] 3.函数y =x -sin x ,x ∈???? ??π2,π的最大值是( ) 【导学号:97792160】 A .π-1 B.π 2 -1 C .π D .π+1

导数研究函数性质

1.导数与导函数的概念 (1)设函数y =f (x )在区间(a ,b )上有定义,x 0∈(a ,b ),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx 无限趋近于一个常数A ,则称f (x )在x =x 0处可导,并称该常数A 为函数f (x )在x =x 0处的导数(derivative),记作f ′(x 0). (2)若f (x )对于区间(a ,b )内任一点都可导,则f (x )在各点的导数也随着自变量x 的变化而变化,因而也是自变量x 的函数,该函数称为f (x )的导函数,记作f ′(x ). 2.导数的几何意义 函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0). 3.基本初等函数的导数公式 4.导数的运算法则 若f ′(x ),g ′(x )存在,则有 (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );

(3)[f (x )g (x )]′=f ′(x )g (x )-f (x )g ′(x )g 2(x ) (g (x )≠0). 5.复合函数的导数 若y =f (u ),u =ax +b ,则y ′x =y ′u ·u ′x ,即y ′x =y ′u ·a . 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)f ′(x 0)与(f (x 0))′表示的意义相同.( ) (2)求f ′(x 0)时,可先求f (x 0)再求f ′(x 0).( ) (3)曲线的切线不一定与曲线只有一个公共点.( ) (4)与曲线只有一个公共点的直线一定是曲线的切线.( ) (5)函数f (x )=sin(-x )的导数是f ′(x )=cos x .( ) 1.(教材改编)f ′(x )是函数f (x )=13x 3+2x +1的导函数,则f ′(-1)的值为 ________. 2.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是________. 3.设函数f (x )的导数为f ′(x ),且f (x )=f ′(π2)sin x +cos x ,则f ′(π4)=________. 4.已知点P 在曲线y = 4e x +1 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是__________. 5.(2015·陕西)设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.

《导数在研究函数中的应用—函数的单调性与导数》说课稿

《导数在研究函数中的应用—函数的单调性与导数》说课稿 周国会 一、教材分析 1教材的地位和作用 “函数的单调性和导数”这节新知识是在教材选修1—1,第三章《导数及其应用》的函数的单调性与导数.本节计划两个课时完成。在练习解二次不等式、含参数二次不等式的问题后,结合导数的几何意义回忆函数的单调性与函数的关系。例题精讲强化函数单调性的判断方法,例题的选择有梯度,由无参数的一般问题转化为解关于导函数的不等式,再解关于含参数的问题,最后提出函数单调性与导数关系逆推成立。培养学生数形结合思想、转化思想、分类讨论的数学思想。能利用导数研究函数的单调性;会求函数的单调区间.在高考中常利用导数研究函数的单调性,并求单调区间、极值、最值、以及利用导数解决生活中的优化问题。其中利用导数判断单调性起着基础性的作用,形成初步的知识体系,培养学生掌握一定的分析问题和解决问题的能力。 (一)知识与技能目标: 1、能探索并应用函数的单调性与导数的关系求单调区间; 2、能解决含参数函数的单调性问题以及函数单调性与导数关系逆推。 (二)过程与方法目标: 1、通过本节的学习,掌握用导数研究函数单调性的方法。 2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。 (三)情感、态度与价值观目标: 1、通过在教学过程中让学生多动手、多观察、勤思考、善总结, 2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。激发学生独立思考和创新的意识,让学生有创新的机会,充分体验成功的喜悦,开发了学生的自我潜能。(四)教学重点,难点 教学重点:利用导数研究函数的单调性、求函数的单调区间。 教学难点:探求含参数函数的单调性的问题。 二、教法分析 针对本知识点在高考中的地位、作用,以及学生前期预备基础,应注重理解函数单调性与导数的关系,进行合理的推理,引导学生明确求可导函数单调区间的一般步骤和方法,无参数的一般问题转化为解关于导函数的不等式。解关于含参数的问题,注意分类讨论点的确认,灵活应用已知函数的单调性求参数的取值范围。采用启发式教学,强调数形结合思想、转化思想、分类讨论的数学思想的应用,培养学生的探究精神,提高语言表达和概括能力,

常见函数的导数

常见函数的导数 学习目标:能根据定义求几个简单函数的导数,加深对导数概念的理解,同时体会算法的 思想并熟悉具体的操作步骤。 学习重难点:利用导数公式求一些函数的导数 一、 知识点梳理 1. 基本初等函数,有下列的求导公式 '1.()(,)kx b k k b +=为常数 '2.()1x = 2'3.()2x x = 4.()0C '= 3'2 5.()3x x = ' 2 116.()x x =- '= 1 8.()x x ααα-'=(α为常数) 9.()ln (01)x x a a a a a '=>≠, a a 1110.(log x)log e (01)x xlna a a '= =>≠, x x 11.(e )e '= 112.(lnx)x '= 13.(sinx)cosx '= 14.(cosx)sinx '=- 从上面这一组公式来看,我们只要掌握幂函数、指对数函数、正余弦函数的求导就可以了。 二、典例讲解 例1、求下列函数导数。 练习:(1)5 -=x y (2) 、x y 4= (3)、x x x y = (4)、x y 3 l o g = (5)、)100() 1(l o g 1 ≠>>-= x a a x a y x ,,, (6)、y=sin( 2π+x) (7)y=sin 3 π (8)、y=cos(2π-x) (9)、y=(1)f ' 例2、1.求过曲线y=cosx 上点P( 2π ,0 ) 的切线的直线方程. 2. 若直线y x b =-+为函数1 y x = 图象的切线,求b 的值和切点坐标. (1)(23)(2)(2)(3)3x x '-+='-='=4 (4)y x =3(6)y x -==0(5)sin 45y

高中数学高考总复习利用导数研究函数的性质习题及详解

高中数学高考总复习利用导数研究函数的性质习题及详解 一、选择题 1.(文)函数y =ax 3 -x 在R 上是减函数,则( ) A .a =1 3 B .a =1 C .a =2 D .a ≤0 [答案] D [解析] y ′=3ax 2-1, ∵函数y =ax 3-x 在R 上是减函数, ∴3ax 2-1≤0在R 上恒成立,∴a ≤0. (理)(2010·瑞安中学)若函数f (x )=x 3+x 2+mx +1是R 上的单调递增函数,则实数m 的取值范围是( ) A.? ???? 13,+∞ B.? ???? -∞,13 C.???? ??13,+∞ D. ? ?? ?? -∞,13 [答案] C [解析] f ′(x )=3x 2+2x +m ,由条件知,f ′(x )≥0恒成立,∴Δ=4-12m ≤0,∴m ≥1 3 ,故选C. 2.(文)(2010·柳州、贵港、钦州模拟)已知直线y =kx +1及曲线y =x 3+ax +b 切于点(1,3),则b 的值为( ) A .3 B .-3 C .5 D .-5 [答案] A [解析] 由条件知(1,3)在直线y =kx +1上,∴k =2. 又(1,3)在曲线y =x 3+ax +b 上,∴a +b =2, ∵y ′=3x 2+a ,∴3+a =2,∴a =-1,∴b =3. (理)(2010·山东滨州)已知P 点在曲线F :y =x 3-x 上,且曲线F 在点

P处的切线及直线x+2y=0垂直,则点P的坐标为( ) A.(1,1) B.(-1,0) C.(-1,0)或(1,0) D.(1,0)或(1,1) [答案] C [解析] ∵y′=(x3-x)′=3x2-1,又过P点的切线及直线x+2y=0垂直,∴y′=3x2-1=2,∴x=±1,又P点在曲线F:y=x3-x上,∴当x=1时,y=0,当x=-1时,y=0,∴P点的坐标为(-1,0)或(1,0),故选C. 3.(2010·山东文)已知某生产厂家的年利润y(单位:万元)及年产量 x(单位:万件)的函数关系式为y=-1 3 x3+81x-234,则使该生产厂家获 取最大的年利润的年产量为( ) A.13万件B.11万件 C.9万件D.7万件 [答案] C [解析] 由条件知x>0,y′=-x2+81,令y′=0得x=9,当x∈(0,9)时,y′>0,函数单调递增,当x∈(9,+∞)时,y′<0,函数单调递减,∴x=9时,函数取得最大值,故选C. [点评] 本题中函数只有一个驻点x=9,故x=9就是最大值点. 4.(文)(2010·四川双流县质检)已知函数f(x)的定义域为R,f′(x)为其导函数,函数y=f′(x)的图象如图所示,且f(-2)=1,f(3)=1,则不等式f(x2-6)>1的解集为( ) A.(2,3)∪(-3,-2) B.(-2,2) C.(2,3) D.(-∞,-2)∪(2,+∞)

用导数研究三次函数

用导数研究三次函数 一、知识点解析 1定义: 定义1、形如y =ax3?bx2? CX ?d(a =0)的函数,称为“三次函数”。 定义2、三次函数的导函数为二次函数:f / (x) = 3ax2 2bx c(a = 0),我们把 2 2 =4b -12ac=4(b -3ac),叫做三次函数导函数的判别式。 2、三次函数图象与性质的探究: 1、单调性 2 3 2 一般地,当b -3ac二0时,三次函数y = ax bx ?cχ?d(a=0)在R上是单调函数;当b -3ac 0时,三次函数y = ax bx CX d(a 0)在R上有三个单调区间。 2、对称中心 3 2 三次函数f (x) = ax bx CX d (^?-z 0)是关于点对称,且对称中心为点 b b (—I f (—)),此点的横坐标是其导函数极值点的横坐标。 3a 3a y= f(x)图象的对称中心在导函数y=∕'O)的对称轴上,且又是两个极值点的中点, 同时也是二阶导为零的点。 3、三次方程根的问题 (1)当.?, =b2 _3ac乞0时,由于不等式「(X)恒成立,函数是单调递增的,所以原方程仅有一个实根。 ■ 0时,由于方程f(X)= 0有两个不同的实根x1, X2,不妨设 (2)当厶=b2 _3ac X i :::x2, 可知,(χ1,f(χj)为函数的极大值点,(X2, f(x2))为极小值点,且函数y = f(x)在(」:,X1)和(x2, ■--)上单调递增,在"x1,x2 I上单调递减。 此时: ①若f (x1) f (x2) 0 ,即函数y = f (x)极大值点和极小值点在X轴同侧,图象均与X轴只有一个交点,所以原方程有且只有一个实根。 ②若f (χ1) f (χ2) :::0 ,即函数y = f (x)极大值点与极小值点在X轴异侧,图象

第16课时利用导数研究函数的性质

第16 课时 利用导数研究函数的性质 编者:仇小华 审核:刘智娟 第一部分 预习案 一、知识回顾 1. f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的 条件. 2. f (x )在(a ,b )上是增函数的充要条件是 . 3. 对于可导函数f (x ),f ′(x 0)=0并不是f (x )在x =x 0处有极值的充分条件 对于可导函数f (x ),x =x 0是f (x )的极值点,必须具备①f ′(x 0)=0,②在x 0两侧,f ′(x )的符号为异号.所以f ′(x 0)=0只是f (x )在x 0处有极值的 条件,但并不 . 4. 如果不间断的函数f (x )在区间(a ,b )内只有一个极值点,那么这个极值点就是最值点.在解决实际问题中经常用到这一结论. 二、基础训练 1. 已知函数f (x )=ln a +ln x x 在[1,+∞)上为减函数,则实数a 的取值范围为__________. 2. 设函数f (x )=ax 3-3x +1 (x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________. 3. 若函数f (x )的导函数为f ′(x )=-x (x +1),则函数g (x )=f (log a x )(0

(整理)利用导数研究函数的性质.

专题三 利用导数研究函数的性质 1. f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的充分不必要条件. 2. f (x )在(a ,b )上是增函数的充要条件是f ′(x )≥0,且f ′(x )=0在有限个点处取到. 3. 对于可导函数f (x ),f ′(x 0)=0并不是f (x )在x =x 0处有极值的充分条件 对于可导函数f (x ),x =x 0是f (x )的极值点,必须具备①f ′(x 0)=0,②在x 0两侧,f ′(x )的符号为异号.所以f ′(x 0)=0只是f (x )在x 0处有极值的必要条件,但并不充分. 4. 如果连续函数f (x )在区间(a ,b )内只有一个极值点,那么这个极值点就是最值点.在解决 实际问题中经常用到这一结论. 1. 已知函数f (x )=ln a +ln x x 在[1,+∞)上为减函数,则实数a 的取值范围为__________. 答案 [e ,+∞) 解析 f ′(x )=1x ·x -(ln a +ln x )x 2=1-(ln a +ln x )x 2,因为f (x )在[1,+∞)上为减函数,故 f ′(x )≤0在[1,+∞)上恒成立,即ln a ≥1-ln x 在[1,+∞)上恒成立.设φ(x )=1-ln x ,φ(x )max =1,故ln a ≥1,a ≥e. 2. 设函数f (x )=ax 3-3x +1 (x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________. 答案 4 解析 若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1 x 3,则g ′(x ) = 3(1-2x ) x 4 , 所以g (x )在区间????0,12上单调递增,在区间????12,1上单调递减,因此g (x )max =g ????1 2=4,从而a ≥4. 当x <0,即x ∈[-1,0)时,同理a ≤3x 2-1 x 3.

3.2.1几个常用函数导数(学、教案)

3. 2.1几个常用函数导数 课前预习学案 (预习教材P 88~ P 89,找出疑惑之处) 复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为 复习2:求函数)(x f y =的导数的一般方法: (1)求函数的改变量y ?= (2)求平均变化率y x ?=? (3)取极限,得导数/y =()f x '=x y x ??→?0lim = 上课学案 学习目标1记住四个公式,会公式的证明过程; 2.学会利用公式,求一些函数的导数; 3.知道变化率的概念,解决一些物理上的简单问题. 学习重难点:会利用公式求函数导数,公式的证明过程 学习过程 合作探究 探究任务一:函数()y f x c ==的导数. 问题:如何求函数()y f x c ==的导数 新知:0y '=表示函数y c =图象上每一点处的切线斜率为 . 若y c =表示路程关于时间的函数,则y '= ,可以解释为 即一直处于静止状态. 试试: 求函数()y f x x ==的导数 反思:1y '=表示函数y x =图象上每一点处的切线斜率为 . 若y x =表示路程关于时间的函数,则y '= ,可以解释为 探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x ===的图象,并根据导数定义,求它们的导数. (1)从图象上看,它们的导数分别表示什么? (2)这三个函数中,哪一个增加得最快?哪一个增加得最慢? (3)函数(0)y kx k =≠增(减)的快慢与什么有关? 典型例题 例1 求函数1()y f x x ==的导数 解析:因为11()()y f x x f x x x x x x x -?+?-+?==???

高中数学二轮复习专题二—利用导数研究函数的性质

专题二——利用导数研究函数的性质2009-2-24 高考趋势 导数作为进入高中考试范围的新内容,在考试中占比较大.常利用导数研究函数的性质,主要是利用导数求函数的单调区间、求函数的极值和最值,这些内容都是近年来高考的重点和难点,大多数试题以解答题的形式出现,通常是整个试卷的压轴题。试题主要先判断或证明函数的单调区间,其次求函数的极值和最值,有时涉及用函数的单调性对不等式进行证明。 考点展示 1.二次函数y f x =()的图象过原点且它的导函数y f x ='()的图象是如图所示的一条直线,则y f x =()图象的顶点在第 一 象限 2.如图,函数()f x 的图象是折线段ABC ,其中A B C ,,的坐标分别 为(04)(20)(64),,,,,,则((0))f f = 2 ; 函数()f x 在1x =处的导数(1)f '= -2 . 3.曲线324y x x =-+在点(13),处的切线的倾斜角为 45° 4.设曲线2 ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a 1 5.设R a ∈,若函数ax e y x +=,R x ∈有大于零的极值点,则a 的取值范围1-,对于任意实数x ,有()0f x ≥,则 (1) (0) f f '的最小值为 2 . 7.已知函数3 ()128f x x x =-+在区间[]33-,上的最大值与最小值分别为M ,m ,则M m -=__32_ _ 8.过点P (2,8)作曲线3 x y =的切线,则切线方程为_ 12x-y -16=0或3x-y+2=0 样题剖析 例1、设函数32 3()(1)1,32 a f x x x a x a = -+++其中为实数。 (Ⅰ)已知函数()f x 在1x =处取得极值,求a 的值; (Ⅱ)已知不等式'2 ()1f x x x a >--+对任意(0,)a ∈+∞都成立,求实数x 的取值范围。 解: (1) ' 2 ()3(1)f x ax x a =-++,由于函数()f x 在1x =时取得极值,所以 ' (1)0f = 即 310,1a a a -++==∴ (2) 方法一:由题设知:2 2 3(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即2 2 (2)20a x x x +-->对任意(0,)a ∈+∞都成立 设 2 2 ()(2)2()g a a x x x a R =+--∈, 则对任意x R ∈,()g a 为单调递增函数()a R ∈ 所以对任意(0,)a ∈+∞,()0g a >恒成立的充分必要条件是(0)0g ≥ 即 2 20x x --≥,20x -≤≤∴ 于是x 的取值范围是}{ |20x x -≤≤ 方法二:由题设知:2 2 3(1)1ax x a x x a -++>--+对任意(0,)a ∈+∞都成立 即2 2 (2)20a x x x +-->对任意(0,)a ∈+∞都成立 于是2222x x a x +>+对任意(0,)a ∈+∞都成立,即22 202 x x x +≤+ 20x -≤≤∴ 于是x 的取值范围是}{|20x x -≤≤ 点评:函数在某点处取得极值,则在这点处的导数为0,反过来,函数的导数在某点的值为0,则在函数这点处取得极值。 变式1.若f(x)=2 1ln(2)2 x b x - ++∞在(-1,+)上是减函数,则b 的取值范围是 1b ≤- 由题意可知' ()02 b f x x x =-+<+,在(1,)x ∈-+∞上恒成立, 即(2)b x x <+在(1,)x ∈-+∞上恒成立,由于1x ≠-,所以1b ≤-, 变式2.已知函数1 1()3 x p f x -=,2 2()23 x p f x -=?(12,,x R p p ∈为常数).则()()12f x f x ≤对所有实 数x 成立的充分必要条件(用12,p p 表示)为 (1)由()f x 的定义可知,1()()f x f x =(对所有实数x )等价于 ()()12f x f x ≤(对所有实数x )这又等价于1 2 3 23 x p x p --≤,即 12 3log 23 32x p x p ---≤=对所有实数x 均成立. (*) 由于121212()()()x p x p x p x p p p x R ---≤---=-∈的最大值为12p p -, 2 B C A y x 1 O 3 4 5 6 1 2 3 4

利用导数研究函数的零点

利用导数研究函数的零点 (求导求出极值,画出函数的草图分析) 1.已知曲线C :32 112132 y x x x = --+,直线:l y a = (1)若直线l 与曲线C 有唯一一个交点,求a 的取值范围;(73a <-或13 6a >) (2)若直线l 与曲线C 有两个不同的交点,求a 的取值范围;(73a =-或13 6a =) (3)若直线l 与曲线C 有三个不同的交点,求a 的取值范围.(76a -<13 6 <) 解:令2 '2(1)(2)y x x x x =--=+-0=得11,x =-或22x = 当12x -<<时,'0y <;当1x <-或2x >时,'0y >. 所以()g x 在(1,2)-为减函数,在(,1)-∞-,(2,)+∞为增函数. 当1x =-时,取得极大值max 13 6 y =;当2x =时, 取得极大值min 73y =- ; (1)当73a <-或13 6a >时,直线l 与曲线C 有唯一一个交点; (2)当73a =-或13 6a =时,直线l 与曲线C 有两个不同的交点; (3)当713 36 a -<<时,直线l 与曲线C 有三个不同的交点. 2.已知函数3 ()31,1f x x ax a =--≠ (1)函数()y f x =的单调区间; (2)若()f x 在1x =-处取得极值,直线y m =与()y f x =的图象有三个不同的交点,求m 的取值范围.(-3,1) 解: (1)f ′(x )=3x 2-3a =3(x 2-a ),当a <0时,对x ∈R ,有f ′(x )>0, ∴当a <0时,f (x )的单调增区间为(-∞,+∞).当a >0时,由f ′(x )>0,解得x <-a 或x >a . 由f ′(x )<0,解得-a 0时,f (x )的单调增区间为 (-∞,-a ),(a ,+∞),单调减区间为(-a ,a ). (2)∵f (x )在x =-1处取得极值,∴f ′(-1)=3×(-1)2-3a =0, ∴a =1.∴f (x )=x 3-3x -1,f ′(x )=3x 2-3, 由f ′(x )=0,解得x 1=-1,x 2=1. 由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值 f (-1)=1,在x =1处取得极小值f (1)=-3.∵直线y =m 与函数y =f (x )的图象有三个不同的交点,结合如图所示f (x )的图象可知:实数m 的取值范围是(-3,1). x y (2,-7 6 )(-1,7 3 )f x () = 13?x 3 1 2 ?x 2 2?x + 1 2-1

高中数学函数与导数常考题型整理归纳

高中数学函数与导数常考题型整理归纳 题型一:利用导数研究函数的性质 利用导数研究函数的单调性、极值、最值是高考的热点问题之一,每年必考,一般考查两类题型:(1)讨论函数的单调性、极值、最值,(2)利用单调性、极值、最值求参数的取值范围. 【例1】已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求实数a 的取值范围. 解 (1)f (x )的定义域为(0,+∞),f ′(x )=1x -a . 若a ≤0,则f′(x )>0,所以f (x )在(0,+∞)上单调递增. 若a >0,则当x ∈? ?? ??0,1a 时,f ′(x )>0; 当x ∈? ?? ??1a ,+∞时,f ′(x )<0, 所以f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. 综上,知当a ≤0时,f (x )在(0,+∞)上单调递增; 当a >0时,f (x )在? ????0,1a 上单调递增,在? ?? ??1a ,+∞上单调递减. (2)由(1)知,当a ≤0时,f (x )在(0,+∞)上无最大值; 当a >0时,f (x )在x =1a 处取得最大值,最大值为f ? ????1a =ln 1a +a ? ?? ??1-1a =-ln a +a -1. 因此f ? ?? ??1a >2a -2等价于ln a +a -1<0. 令g (a )=ln a +a -1,则g (a )在(0,+∞)上单调递增, g (1)=0. 于是,当0<a <1时,g (a )<0; 当a >1时,g (a )>0. 因此,实数a 的取值范围是(0,1). 【类题通法】(1)研究函数的性质通常转化为对函数单调性的讨论,讨论单调性要先求函数定义域,再讨论导数在定义域内的符号来判断函数的单调性. (2)由函数的性质求参数的取值范围,通常根据函数的性质得到参数的不等式,再解出参数的范围.若不等式是初等的一次、二次、指数或对数不等式,则可以直接解不等式得参数的取值范围;若不等式是一个不能直接解出的超越型不等式时,如求解ln a +a -1<0,则需要构造函数来解.

专题3.3 利用导数研究函数的最值、极值-2020届高考数学一轮复习学霸提分秘籍(解析版)

第三篇 导数及其应用 专题3.03 利用导数研究函数的极值、最值 【考点聚焦突破】 考点一 利用导数解决函数的极值问题 角度1 根据函数图象判断函数极值 【例1-1】 已知函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( ) A.函数f (x )有极大值f (2)和极小值f (1) B.函数f (x )有极大值f (-2)和极小值f (1) C.函数f (x )有极大值f (2)和极小值f (-2) D.函数f (x )有极大值f (-2)和极小值f (2) 【答案】 D 【解析】 由题图可知,当x <-2时,f ′(x )>0;当-22时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【规律方法】 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点. 角度2 已知函数求极值 【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =1 2 时,求f (x )的极值; (2)讨论函数f (x )在定义域内极值点的个数. 【答案】见解析 【解析】(1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x 2x , 令f ′(x )=0,得x =2, 于是当x 变化时,f ′(x ),f (x )的变化情况如下表.

原函数和导函数的关系

课题:探究原函数与导函数的关系 首师大附中数学组王建华 设计思路 这节课是在学完导数和积分之后,学生从大量的实例中对原函数和导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律和对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣和成就感。教师实际上是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的是研究相互关联的事物的一般思路和方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1. 从经验观察发现,猜想得命题p,q. 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2. 学生自然会想到这个命题的逆命题是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3. 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶 对称,研究前面的四个命题还是否成立。研究方法可以类函数的性质拓展为关于直线x a 比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4.已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1.加强学生对导函数与原函数相生相伴的关系的理解; 2.增强学生对函数对称性的理解和抽象概括表达能力; 3体验研究事物的角度,一个新定理是怎样诞生的,怎样才是全面地认识了一个事物。 4.培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。 教学难点 灵活运用所学知识探索未知领域。 新课引入 前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,你能根据原函数的图像画出导函数的示意图吗? 一.探究由原函数的奇偶性能否推出导函数的奇偶性。

相关主题