搜档网
当前位置:搜档网 › 旋翼机身组合模型试验台技术改进及验证

旋翼机身组合模型试验台技术改进及验证

旋翼机身组合模型试验台技术改进及验证
旋翼机身组合模型试验台技术改进及验证

复合材料实验讲义

实验1 环氧树脂的环氧值测定 一、实验目的 掌握分析环氧树脂环氧值的方法。 二、实验原理 环氧值E定义为100g环氧树脂中环氧基团物质的量(摩尔数)。 基于0.1mol高氯酸标准滴定液与溴化四乙铵作用所生成的初生态溴化氢同环氧基的反应。使用结晶紫作指示剂,或对于深色产物使用电位滴定法测定终点。其化学反应方程式为一旦高氯酸过量则HBr就过量。由空白实验与试样所耗高氯酸的差值计算样品的环氧值。该方法的缺点是不适用于含氮元素的环氧树脂。 三、实验仪器和设备 分析天平、滴定管等及必要的分析纯化学试剂。 四、实验步骤 1、取100ml冰乙酸与0.1g结晶紫溶解后作为滴定指示剂。 2、取8.5ml 70%高氯酸水溶液加入1000ml的容量瓶中,在加入 300ml冰乙酸,摇匀后再 加20ml乙酸酐,最后以冰乙酸冲稀到刻度。 3、标定高氯酸溶液。称m克邻苯二甲酸氢钾(分子质量204.22),用冰乙酸溶解,再用V 毫升高氯酸溶液滴定至显绿色终点,高氯酸浓度(单位:mol/L)为: 4、取100g溴化四乙铵溶于400ml冰乙酸中,加几滴结晶紫指示剂于其中。 5、称取环氧树脂0.5g左右(精确至0.2mg)放入烧瓶中,加入10ml三氯甲烷溶解,加入 20ml冰乙酸,再用移液管移10ml溴化四乙铵溶液,立即用已标定了的高氯酸溶液滴定,由紫色变为稳定绿色为滴定终点。记下所耗毫升数V 1 和温度t。 6、同时并行取10ml 三氯甲烷、20ml冰乙酸以及用移液管移10ml溴化四乙铵溶液放入烧 瓶中,立即用高氯酸滴定,同样由紫色变成稳定绿色为滴定终点。记录所耗毫升数V 0(空白实验)。 7、环氧值按下式计算: 式中:m——环氧树脂质量g; N ——高氯酸标准溶液浓度mol/L; V 1、V ——试样和空白试验所耗高氯酸体积ml; 8、注意所用环氧树脂应不含氮元素。

SPIN安装及模型验证实验报告

实验报告 实验题目:基于SPIN的LTL模型检测课程名:形式化方法 姓名:王燕霞 学号:201428013229141

一、SPIN概述 SPIN是由贝尔实验室形式化方法与验证小组用ANSI C开发,可以在所有UNIX操作系统版本使用,也可以在安装了Linux、Windows95以上版本等操作系统中使用,适合于分布式并发系统,尤其是协议一致性的辅助分析检测工具。SPIN模型检验工具的基本思想是求两种自动机所接受语言的交集,若交集为空集,则安全特性得到验证,否则输出不满足安全特性的行为迹。 SPIN可以用于以下三种基础模型中: 1)作为一个模拟器,允许快速对建立的系统模型进行随意的、引导性的或交互的仿真。 2)可以作为一个详尽的分析器,严格的证明用户提出的正确性要求是否满足(使用偏序简约进行最优化检索)。 3)用于大型系统近似性证明,用SPIN可以对大型的协议系统进行有效的正确性分析,即使这个系统覆盖了最大限度的状态空间。 二、SPIN的安装 2.1安装Cygwin Cygwin是一个在windows平台上运行的类UNIX模拟环境,我们可以通过这个软件在windows 系统上模拟简单的unix环境。 (1)首先从官网https://www.sodocs.net/doc/182272465.html,/,下载Cygwin安装包,选择64位windows系统(2)打开软件安装包setup-x86_64.exe,界面如下:

(3)选择install from Internet,下一步 (4)选择安装路径 (5)选择模拟的Unix环境在系统中的路径

(6)选择Use Internet Explorer Proxy Setting,根据自己的网络链接状态选择 (7)选择镜像,最好是选国内的,以.cn结尾或者含有.cn的,国外镜像下载速度只有几K,所以可以不用尝试。在这里我选择的是中科大的一个镜像https://www.sodocs.net/doc/182272465.html, (8)选择要安装的包,Cygwin默认安装的东西很少,像gcc、make、X11、tcl/TK这些都没有,需要自己勾选,可以在Search中直接输入关键字进行查找。如果一次安装没有全都装上也不要紧,可以再次运行setup.exe,然后继续安装其他的包。

投资组合优化模型研究

投资组合优化模型研究 学生姓名:刘铭雪学号:20095031277 数学与信息科学学院数学与应用数学专业 指导老师:韩建新职称:讲师 摘要:本文在VaR方法约束的基础上,对Markwitz均值—方差模型进行深入研究,给出了一种几何求解方法,并分析了该组合的特性,研究了在VaR约束条件下的最优投资组合的确定问题. 关键词:VaR;均值;方差;投资组合 Research on Portfolio Optimization Modle under The VaR Constraint Abstract: The basic constraint in VaR(Value at Risk)method is used in the article, Markwitz mean-variance model is in-depth studied, a geometrical method is gave , and the characteristics of the portfolio is analyzed,Determination of optimal portfolio VaR constraint conditions are researched. Keywords: VaR(Value at Risk); mean value;variance;investment portfolio 前言 在丰富的金融投资理论中,组合投资理论占有非常重要的地位,投资决策也是金融机构经营活动中最基本的决策之一.现代投资组合理论试图解释获得最大投资收益与避免过分风险之间的基本权衡关系,也就是说投资者将不同的投资品种按一定的比例组合在一起作为投资对象,以达到在保证预定收益率的前提下把风险降到最小或者在一定风险的前提下使收益率最大.对金融机构和投资者来说,相对与资产向上波动,资产价格

保理系统自动化验证模型

保理系统自动化验证模型 一、借款企业自动拒绝条件 1.企业成立低于2年; 2.企业年营业额低于1000万元; 3.企业负债率大于90%; 4.企业当前有贷款逾期; 5.企业最近两年累计逾期大于5次; 6.企业最近两年有逾期1+; 7.企业与买家合作低于1年; 8.关联企业; 9.涉及两高一剩行业:两高行业指高污染、高能耗的资源性的行业;一剩行业即产能过剩行业。主要包括钢铁、造纸、电解铝、平板玻璃、风电和光伏等产业;10.企业经营地位于东北、新疆、西藏、云南、贵州; 11.企业实际控制人有吸毒、赌博等不良嗜好; 12.企业有当前未判决被诉讼记录且涉案金额超过100万元; 13.企业有过往被诉讼记录且被判决涉及诈骗、拒不履合同或协议; 14.企业或者其实际控制人被列入失信人名单的; 15.内部黑名单名录; 16.外部黑名单名录(第三方外部黑名单提供商)。 二、内部黑名单数据库 1.提供的核心贸易资料或证明其自身实力的财务数据为虚假资料被发现的;2.逾期30天仍未回购应收账款(对供应商); 3.有三笔或多于三笔应付账款逾期超30天(对核心企业); 4.企业最近两年累计逾期大于5次; 5.企业最近两年有逾期M1+; 三、反欺诈监控模型 1.贸易真实性审查,贷前审查买卖双方贸易背景是否真实、合法、有效;所提供的商务合同、商业发票、货运及质检单据等所显示的信息能够相互印证,对产品信息、买卖双方名称、结算方式等重要信息的规定应保持一致;

2.贷中对保理业务期限、还款资金来源是否合理合规;对买方资金的监控,保证买方资金按期回流; 3.贷后需规范卖方企业的频繁回购行为,对于频繁回购的企业,对回购资金来源的审查,回购资金不得为平台信贷资金(如新发放的保理预付款或贴现资金等),以避免企业出现假交易真融资或重复融资的行为; 4.系统收集买卖双方过往交易数据并动态监测,系统自动交叉验证并进行简单趋势预测。 5.第三方数据的借用,如:全国工商企业信用网、中国裁判文书网、中国人民银行征信中心、风险信息网、被执行人信息查询网、中国执行信息公开网、风控搜、巨潮资讯网等等; 6.交易双方的物流、信息流、资金流闭环的动态监控。

复合材料超声检测技术

复合材料超声检测技术 立陶宛考纳斯科技大学的Kazys等人采用斜入射同侧检测方式,研究了航空用复合材料垂直结构蜂窝板中A0模式Lamb波的板边回波特性,由于损伤区域有很强的能量泄漏,所以可用于检测脱粘和结构损伤等缺陷,并估计其大小。波兰格坦斯克科技大学的Imielinska等人采用空气耦合探头和穿透式超声C扫描技术对多层聚合体复合材料的冲击损伤进行了检测研究,与X射线检测结果比较后表明,该方法更快、更方便、更准确,且可用于检测一些X射线无法检测的材料。美国爱荷华州立大学无损检测中心的HSU和印度GE全球研究中心的Kommareddy等合作,利用压电陶瓷空气耦合换能器,开展了复合材料零部件的缺陷检测和修复评价的研究工作,并研制了相应的空气耦合超声扫描系统,在飞机零部件阵地探伤中得以使用;英国伦敦大学的Berketis等人利用空气耦合超声检测方法对潜艇用玻璃纤维增强型复合材料的损伤和退化进行了检测和评价,获得了用水耦合超声检测方法得不到的效果。丹麦国家实验室的Borum与丹麦工业大学的Berggreen等人合作,利用空气耦合超声波,采用穿透法,对海军舰艇用层状叠合复合材料板进行检测,结果显示,该方法可以检测出上述材料板中的脱粘。 4、激光超声检测技术 激光超声是目前国内外研究最活跃的非接触超声检测方法之一。它利用高能量的激光脉冲与物质表面的瞬时热作用,在固体表面产生热特性区,形成热应力,在物体内部产生超声波。激光超声检测可分3种:一种用激光在工件中产生超声波,用PZT等常规超声探头接收超声波进行检测;另一种用PZT等常规超声波探头激励超声波,用激光干涉法检测工件中的超声波;还有一种用激光激励超声波,并用激光干涉法检测工件中的超声波,此法是纯粹意义上的激光超声检测技术。超声波的激励或探测可通过激光进行,不需要耦合剂,因而可实现远距离非接触检测,检测距离可从几十厘米到数米。所激发的超声波具有很宽的频带,从几百kHz到几GHz,可用于薄膜测量分析等一些特殊应用场合。而且探测激光可聚焦到非常小的点,可实现高达数微米的空间分辨力。此外,激光超声源能同时激发纵波、横波、表面波以及各种导波,是试验验证各种复杂媒质中声传播理论的有效手段。近年来,已发展成超声学中的重要分支,并在激光超声信号的激发与接收、传播以及应用等方面取得很大进展。 激光超声检测的快速、远距离和高分辨力等特性适用于常规压电检测技术难以检测的形状结构较复杂或尺寸较小的复合材料以及材料的高温特性等研究,如飞机上各个部件的定位和成像等。加拿大A.Blouin用激光超声研究了蜂窝芯复合材料的分层、脱粘等缺陷。美国洛克希德·马丁公司开发了LaserUT激光超声检测系统,在检测F-22复合材料构件时获得了清晰的B扫描、C扫描图像,不需要任何特殊夹具,检测时间大大缩短,达到了传统超声无法达到的效果。国内钱梦騄等在激光超声的特性和检测各种材料的力学特性方面进行了大量的研究。刘松平研究了碳纤维增强树脂基复合材料中常见缺陷的激光超声信号特性与缺陷识别评估方法。利用激光发射-超声接收检测系统有效地提取了反映复合材料中缺陷的声波信息,并可进行缺陷的判别,确定缺陷的性质。 尽管激光超声在复合材料检测中取得了很大的进展,但现阶段仍存在2个主要问题:一个是光声能量的转换效率较低;另一个是激光超声信号微弱,需要提高检测灵敏度。适当增大激光的能量,可提高激光超声信号强度。但当能量增大到一定程度时,又容易将材料的表面灼伤。因此,揭示激光发声机理、提高光声转换效率及其检测灵敏度已成为激光超声研究的3个主要方向。

水工结构静力模型实验指导书

水工结构静力模型实验指导书 河海大学 一、课程性质和目的: (1)水工结构模型试验 所谓水工结构模型试验就是将原型以某一比例关系缩小成模型,然后向该模型施加与原型相关的荷载,根据从模型上获得的信息如应变位移等,通过一定的相似关系推出原型建筑物在应力、变形强度等成果。 (2)进行水工结构模型试验的目的和意义 水工建筑物因其受力特征、几何形状、边界条件等均较复杂,特别是修建在复杂地基上建筑物更为如此,尽管计算机技术和空间有限元等正迅速发展,但目前还不能用理论分析方法完美地解决建筑物的稳定和应力问题,因此模型试验作为一种研究手段则具有重要的意义,可归纳成如几个方面: 1.通过对水工建筑物的模型试验研究可以验证理论设计,国内外大型和重要的水工建筑物的设计,都同时要求进行计算分析和试验分析,以期达到互相验证的目的。 2.通过对原型结构的模拟试验,预测水工建筑物完建后的运行情况以及抵御事故的能力。 3.由于物理模型是对实际结构性态的模拟,在模型上还有可能出现原先未知而又实际存在的某些现象,因此模型试验研究不仅仅是对数理分析方法的验证,而且是获得更丰富切合实际的资料的积极探索,所以进行水工结构模型试验目的也是更好地探索新理论、新材料、新技术、新工艺的一种手段。 (3)结构模型试验研究的主要内容: a.大型水工建筑物的整体应力及变形问题。 b.结构物之间的联合作用问题。 c.地下结构的应力与稳定问题。 d.大坝安全度及破坏机理问题。 e.水工结构的动力特性问题。 f.验证新理论、新方法、新材料、新工艺等。 (4)模型试验的分类方法 ①按建筑物的模拟范围和受力状态分类 a.整体结构模型试验:研究整体建筑物在空间力系作用下的强度或稳定问题。 b.平面结构模型试验:研究结构单位长度断面在平面力系作用下的强度和稳定问题,如重力坝坝段平面结构模型试验就是研究重力坝在水荷载作用下的应力和变形。 c.半整体结构模型试验: ②按作用荷载特性分类 a.静力结构模型试验:研究水工建筑物在静荷载(静水压力、自重、温度等)作用下

水力火箭数学模型建立和实验验证

《工程热力学》三级项目 《水力火箭》 项 目 总 结 报 告 汕头大学工学院机械电子工程系 2014年12月 一、项目目的

1、利用工程热力学所学的知识理论分析水火箭发射的理论高度。与实际的 高度进行对比 2、用本课程的知识为最优灌水比提供理论依据,分析当灌水量低于或者高 于最优值时发射高度下降的原因。 3、在正负10%和正负25%的范围内修改阻力系数和空瓶质量,并计算在相 应发射最优化设计下火箭能达到的高度,用一张清楚简明的表格展示估 算结果。 4、分析不同次试射实验结果存在变化的可能原因。分析须以简明、观点清 晰的段落化分析的形式,而非仅仅原因的罗列;分析试射结果与数据表 估算结果之间差异的可能原因。哪些数学模型的假设和局限性是造成这 些差异最直接的原因。同样,观点清晰、段落化的分析为佳。 二、项目要求 1、完成一张与同伴共同设计和试射的水力火箭的图纸。要求对图进行正确 地标注,并提供足够的细节内容以便别人能够模仿复制相同的设计。不 能剪切瓶子,但可以使用多个不同大小的瓶子,或其它减小阻力的用具 等列出一张所有重要设计特征的列表并说明支持各相应设计的理由。利 用数据表估算火箭能够达到的最大高度。 2、确定发射最优化设计(即达到最大高度时的灌水比例)。 3、需要水火箭能垂直发射(一定范围内的偏离可以允许)。 三、实施条件 1、材料:1.25L的可乐瓶×1,KT板×1,卡纸×1,双面胶、电胶布;工 具:剪刀×1,直尺×1,秒表×1 2、场地:足球场 3、发射工具:脚踏式打气筒,可控制发射架 4、合作人:吴已帆 四、原理、数据处理及分析 1、发射原理: 盖上阀门,形成一个密闭的空间,把气体打入到火箭机身里,使得机身内空气的气压增大,压强够大时,箭内水向后喷出,水火箭由于反作用力射 出。水火箭和现实中火箭最大的不同是在发射水火箭前我们会在机身内注入空气使其达到一定压力,由于高压会自然向低压流去,故在喷嘴被打开时,空气自然向喷嘴流去,但由于水挡在前方,故水会被空气推出火箭,而火箭也借此获得向前的动力。发射原理简单言之是利用瓶内压强与大气压的差喷出水,水与地面冲击,从而使瓶子获得一个向上的力,该力大于重力时,使瓶子获得一个向上的加速度,得以上升。 2、估算水力火箭发射高度 1)

使用基于模型的设计进行早期验证和确认

使用基于模型的设计进行早期验证和确认 MATLAB 简化了线性控制设计,但是在实际应用中,系统很少是线性的。因此,即使在设 计了控制器后,对其进行测试和调整仍然意味着需要构建系统的硬件原型,并对算法进行编码。或者,因为没有样机而无法进行测试,只有等到开发流程后期才能开展测试活动。 为了将算法应用到硬件之前验证这些算法,工程师们借助数值技术来仿真控制算法对系统(也称为“对象”)的控制行为。控制工程师们学习编写C 或Fortran 程序来尝试构建系统模型,借用他们认为可能会适用于其系统类型的数值积分例程,在系统模型程序中复制其控制算法,并仿真整个系统。如果要使系统完全正常工作,那么整个仿真-开发流程需要耗费大量时间并且极具挑战性。 The MathWorks 在1990 年发布了Simulink,一种用于对动态系统进行建模和仿真的软件环境。在控制设计中使用Simulink 可带来两大好处。首先,该软件提供了一种直观的框图 环境,可用于对算法和对象以及可能影响系统行为的非线性实际效果进行建模。其次,该软件包括一个基于一流数值积分方法创建的仿真引擎。这些核心功能极大地简化了控制工程师通过仿真来验证控制算法的工作。但是控制工程师们仍然必须在最后对算法进行编码,以在硬件样机或实际系统上测试这些算法。 大约五年后,随着Simulink 模型自动代码生成的推出,此流程变得简单得多。对于调试和 测试在原型系统中运行的代码,控制工程师们不必再担心将算法模型转换为代码时出现错误。 控制工程发展的下一步曾是个很大的挑战:产品级的代码生成。快速原型代码通常包含许多调试例程、数据收集代码、主机-目标通信代码以及用于交互测试的其他补充代码。一般而 言,这些代码的优化程度不足以将其运用在可交付使用的系统中。代码生成工具经过改进后,可以生成高效率的代码,足以部署到产品级嵌入式系统中。今天,许多行业都认为从控制模型自动生成产品级代码是最佳的做法。 Model-Based Design(基于模型的设计) 处理器速度和内存的快速增加有助于在桌面上开发建模、仿真和代码生成工具,同样也使嵌入式软件开发人员可以改进嵌入式控制器的功能和复杂性。此步骤继而推动了这样一种需求:即使用文本编辑器和调试器的传统代码开发技术不再是一种局限,未来的设计将以模型 为中心。这种以模型为中心的开发方法称为Model-Based Design(基于模型的设计)(图1)。

统一的模型和代码验证

统一的模型和代码验证 23 June2016 宋登Application Engineering

?当前大多数控制系统软件既包含模型自动生成代码又包含手写代码?如何高效的测试混在一起的手写代码和自动生成代码呢? ?MathWorks提供了不同的工具用于测试模型和代码 ?有没有一个流程可以以最高效的方式使用这些工具呢?

?功能测试之前模型和代码的静态分析 ?动态测试:对模型、S-function和自动生成的代码进行功能验证?静态分析集成的代码:手写代码、S-function和自动生成代码?统一的、互为补充的模型和代码验证流,持续提高产品信心

案例研究: 巡航定速控制应用 65mph 目标: 根据驾驶员的操控和车辆的运行工况设定目标速度和踏板位置 巡航定速控制应用(C 代码) ?手写代码模块单元 ?基于模型的Stateflow 模块单元 ?基于模型的S-function 模块单元

案例研究: 巡航定速控制系统架构 巡航定速控制系统 读取输入 故障日志 踏板命令控制模块 控制输出 手写代码自动生成代码S-function 代码 目标速度控制模块 功能调度 系统输入 Cruise Power Brake Vehicle Speed Coast/Set Accel/Resume 系统输出 Target Speed Engaged Pedal Position

案例研究: Roles & Workflow ?MBD 控制模块负责人: Chuck –基于Simulink模型进行开发 –通过s-functions在模型中集成C代码–产生代码 –依靠基于模型的测试方法 ?集成和编译负责人: Anthony –基于手写C代码进行开发 –集成手写代码和自动生成代码–创建ECU编译 –依靠HiL设备进行测试 读取输入 故障日志 控制输出 巡航定速控制应 用系统 目标速度控制模块 踏板命令控制模块 自动生成的 C代码 集成的 C 代码

水工模型试验测量技术综述

水工模型试验测量技术综述 摘要:水工模型试验是解决工程实际问题,为理论研究和工程设计提供依据的重要手段。基础数据的准确度与精确度直接关系到试验成果的质量,因此试验中的测量技术非常关键。流速、流量、水位、压力、地形、泥沙含量等是模型试验中测量的主要数据,本文主要介绍了模型试验中这些数据的测量技术及存在的问题。 关键字:水工模型试验测量方法发展现状问题分析 引言 水工模型试验是根据相似原理,按照一定的相似比将需要研究的对象,如河流、水工建筑物等按一定比例缩小后,在缩小的模型中复演与原型相似的水流,进行水工建筑物各种水力学问题研究的实验技术,旨在定性或定量的揭示其运动规律或水力学特性,为理论研究和工程设计等提供依据。 自1870年弗劳德(Froude)首先按水流相似准则进行了船舶模型试验以来,随着水利事业的发展,水工模型试验水平在很大程度上有了提高,在理论设计、模型制作、试验测量、数据处理等方面都有了创新突破和发展。 模型试验中的数据测量对试验结果的质量起着至关重要的作用,数据的精确度和准确度直接关系到科研成果的质量。在水工模型试验中主要需要控制和测量的参数有流速、流量、水位、压力、地形、泥沙等,测量仪器的精度、范围、性能等决定着测量结果的准确性,因而优良的测量技术是模型试验的前提和保障。近年来随着激光技术、超声波技术、计算机技术及数字图像处理技术等先进技术的发展,模型试验测量技术有了较快的发展,但尚存在一些问题有待进一步研究,本文主要论述模型试验测量技术的发展及现在存在的一些问题。1.发展现状 1.1流速测量技术 流体的流速是流场最基本的物理量之一,对流体流动特性的认识很大程度上取决于流场的获得,而大多数描述流场的物理量都直接或间接与流速有关,如环量、涡量、流函数、流速势函数等等。在模型试验中流速的测量非常重要,随着技术的创新突破,流速的测量技术取得了较快的发展,从单点流速测量发展到多点测量,从单向到多向、从稳态向瞬态发展,从毕托管、旋浆流速仪、热线/热膜流速仪、电磁流速仪、超声波多普勒流速仪(ADV)、激

复合材料的无损检测技术

复合材料的无损检测技术 复合材料(composite materials)是指由两种或两种以上不同性能、不同形态的组分通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点又显示了原组分材料所没有的新性能。复合材料是应用现代技术发展涌现出的具有极大生命力的材料,具有刚度大、强度高、重量轻的优点,而且可根据使用条件的要求进行设计和制造,以满足各种特殊用途,从而极大地提高工程结构的效能,已成为一种当代新型的工程材料。 然而由于复合材料的非均质性和各项异性,在制造过程中工艺不稳定,极易产生缺陷。在应用过程中,由于疲劳累积、撞击、腐蚀等物理化学的因素影响,复合材料也容易产生缺陷,这些缺陷很大一部分还是产生在复合材料内部。 复合材料在制造过程中的主要缺陷有: 气孔、分层、疏松、越层裂纹、界面分离、夹杂、树脂固化不良、钻孔损伤;在使用过程中的主要缺陷有:疲劳损伤和环境损伤,损伤的形式有脱胶、分层、基本龟裂、空隙增长、纤维断裂、皱褶变形、腐蚀坑、划伤、下陷、烧伤。 由于复合材料在使用工程中承担着重要作用,因此在材料进入市场前,应该进行严格的缺陷检测,这是对使用者和加工者负责的行为。相应的,复合材料检测技术也得到了快速的发展,在检测技术中无损检测技术发展尤为突出。下面就主要的复合材料无损检测技术作简要的概述: 一、射线检测技术 1.X射线检测法 X射线无损探伤是检测复合材料损伤的常用方法。目前常用的是胶片照相法,它是检查复合材料中孔隙和夹杂物等体积型缺陷的优良方法,对增强剂分布不均也有一定的检出能力,因此是一种不可缺少的检测手段。该方法检测分层缺陷很困难,一般只有当裂纹平面与射线束大致平行时方能检出,所以该法通常只能检测与试样表面垂直的裂纹,可与超声反射法互补。中北大学电子测试国防重点实验室的研究人员将X射线与现代测试理论相结合,在数字图像处理阶段,通过小波变换与图像分解理论,将一幅图像分解为大小、位置和方向都不同的分量,改变小波变换域中的某些参数的大小,实时地识别出X射线图像的内部缺陷。 2.计算机层析照相检测法 计算机层析照相(CT)应用于复合材料研究已有十多年历史。这项工作的开展首先利用的是医用CT扫描装置,由于复合材料和非金属材料元素组成与人体相近,医用CT非常适合于复合材料和非金属材料内部非微观(相对于电子显微镜及金相分析)缺陷的检测及密度分布的测量,但医用CT不适合检测大尺寸、高密度(如金属件)的物体,为此八十年代初,美国RACOR公司率先研制出用于检测大型固体火箭发动机和小型精密铸件的工业CT。CT主要用于检测非微观缺陷(裂纹、夹杂物、气孔和分层等);测量密度分布(材料均匀性、复合材料微气孔含量);精确测量内部结构尺寸(如发动机叶片壁厚);检测装配结构和多余物;三维成像与CAD /CAM等制造技术结合而形成的所谓反馈工程(RE)。航天材料及工艺研究所的研究人员用这种方法对碳/碳复合材料的研究表明,CT检测技术的空间分辨率和密度分辨率完全可以满足碳/碳复合材料内部缺陷的检出要求,但应注意伪像与产品自身缺陷的区别,以避免产生误检。 3.微博检测法 微波无损检测的基本原理是综合利用微波与物质的相互作用,一方面,微波在不连续面产生反射、散射和透射;另一方面,微波还能与被检材料产生相互作用,此时微波均会受到材料

关于模型校核与验证

关于模型校核与验证标准化管理部编码-[99968T-6889628-J68568-1689N]

轨道线网客流预测模型建立后,必须进行校核、验证与确认,以便确定该模型是否能足以准确地反映实际系统的各种动、静态特性、是否可保证放心地使用所建立的模型。如果不满足要求,还将进行相应的修正。建模和模型校核、验证与确认是一个相互交替的过程,而且贯穿于模型研究过程的整个生命周期中。 模型校核、验证与确认实质上是进行模型有效性分析,它发生在模型发展的每个阶段,概括地讲,模型校核是一个过程,在这个过程中要检查和确定计算模型是否准确地表达了概念模型(数学模型,物理模型)。 模型验证是在建模目的意义下模型能否准确地代表实际系统,有两个方面的含义:一是首先要检查概念模型(数学模型,物理模型)是否正确地描述了实际系统;二是进一步考察模型输出是否充分接近实际系统的行为。模型验证的目的并不是为了使模型与实际系统完全一致,由于模型只是对实际系统的一种相似,所以让模型百分之百地复现真实系统的行为是不可能的,也是不必要的。 模型校核与验证的难点: (1)模型验证工作是一个过程 模型是建模者根据建模目的按照相似原理对于实际系统的科学抽象与简化描述。它反映了建模者对实际系统由感性到理性认识的一个阶段,这种认识是否正确与精确,还得经过实践的检验。因此,模型验证工作,实际上是由实践到理论,再由理论到实践的过程。有时得经过多次反复才能完 成。 (2)模型验证工作具有模糊性 模型是原型(研究对象)的相似系统,而相似程度具有一定的模糊或不确定型。这种不确定性不仅与建模者对原型认识的深刻程度有关,而且与他所采用的方法与技巧有关。就是说对于同一原型系统,抱着同样的建模目的,不同的人可能建造出与原型相似程度不同的模型。 (3)模型验证工作受多种因素影响 首先是模型本身的因素,总所周知一个完成的模型包含两个方面的内容:一方面是它的结构,另一方面是它的参数。结构往往可以代表某一类模型的共性,而参数的加入,体现的是模型的个性。这两方面是模型能否代表原型的决定因素。是内因。因此,在进行模型验证时,要倍加关注它的正确性与准确性。 其次是模型运行的环境即外因,其中最基本的是给模型系统施加的输入作用。这种作用应与给实际系统施加的作用相似,只有这样,才能为分析判断模型的有效性创造条件。 4模型验证过程往往存在大量的统计分析与计算 假设检验、统计判断、置信区间估计等都要涉及到复杂的计算。因此,模型验证工作需要付出很高的代价。特别是对于复杂的大型仿真系统更是如此,以致使得模型的全面验证实际上成为不可能。

计算机系统形式化验证中的模型检测方法综述论文.doc

面临的挑战和未来发展方向等问题。 2 模型检测及相关技术 模型检测方法最初由Clarke,Emerson等人于1981年提出,因其自动化高效等特点,在过去的几十年里被广泛用于实时系统、概率系统和量子等多个领域。模型检测基本要素有系统模型和系统需满足的属性,其中属性被描述成时态逻辑公式Φ。检测系统模型是否满足时态逻辑公式Φ,如果满足则返回“是”,不满足则返回“否”及其错误路径或反例。时态逻辑主要有线性时态逻辑LTL(Linear TemporalLogic)和计算树逻辑CTL(Computation Tree Logic)。 2.1 线性时态逻辑 对一个系统进行检测,重要的是对系统状态正确性要求的形式化,其中一个基本维度是时间,同时需要知道检验结果与时间维度的关系。使用线性时态逻辑(LTL)来描述系统,可以使得系统更容易被理解,证明过程更加直截了当。LTL公式是一种线性时态逻辑。它在表示授权约束时,定义了无限的未来和过去,这样扩展了常用语义,并且保证了证明中判定的结果在各个时间点中都是成立的。LTL公式用逻辑连接符和时态算子表达系统运行时状态之间的关系。LTL的逻辑连接符包括:∧(与),∨(或),—|(非),→(逻辑包含),←→(逻辑对等)。时态算子包括:G(Globally),U(Until),F(Future),X(neXt-time)。LTL模型检测验证系统状态转换模型是否满足属性,使用可满足性判定,即为检测系统模型M 中是否存在从某个状态出发的并满足LTL公式—|Φ的路径,如果所有路径都满足LTL公式Φ则不存在有路

径满足—|Φ。使用LTL公式也有一定的局限性,LTL公式只能包括全称量词,对于混用了全称和存在量词的性质,一般无法用这种方法进行模型检测。 2.2 计算树逻辑 计算树即为通过将迁移系统M 某一状态作为根,将M 用树形结构展开表示出来,CTL使用路径量词(包括:A(All),E(Exist))和时态算子(包括F,G,X,U)对计算树属性进行形式化的描述,表示出系统的状态变化以及状态的分枝情况。LTL的时间定义是与路径相关的,每个时刻只有唯一的一个后继状态。LTL可用于有重点的选择感兴趣的路径分析,并且LTL可以表达公平概念而CTL不能。但是对于一些复杂属性,如每个计算总是可能返回到初始状态,LTL将无法描述,但是CTL可以。CTL的时间定义是与状态相关的,每个状态都有多个可能的后继状态,从一个给定的状态量化分离出路径,能够断言行为的存在。CTL可以用路径量词E,而LTL不可以;CTL公式使用路径量词A时与LTL公式表达内容可以相同。LTL和CTL各有优势,Emerson等人提出扩展的时间逻辑CTL,提供了一种统一的框架,包含了LTL和CTL,但是可满足性判定代价较高。 2.3 模型检测工具 模型检测因其自动化、高效等特点得到广泛应用,各类模型检测工具也层出不穷。以下是几类典型的模型检测工具。SPIN 是1980年美国贝尔实验室开发的模型检测工具,主要关心系统进程间的交互问题。它以promela为建模语言,以LTL为系统属性的逻辑描述语言,支持on-the-fly技术,可以根据用户的需要

投资组合优化模型

投资组合优化模型 摘要 长期以来,金融资产固有的风险和由此产生的收益一直是金融投资界十分关注的课题。随着经济的快速发展,市场上的新兴资产也是不断涌现,越来越多的企业、机构和个人等都用一部分资金用来投资,而投资方式的多样性决定了人们在投资过程中投资组合的多样性。而每一项投资在有其收益效果的同时也伴随着风险性,所以不同的投资组合方式将带来不同的效果。对于不同类型的投资者必然有不同的要求,从而适合不同的投资方式,所以意在建立在不同投资者的不同要求下应采用哪种投资方式的模型,使投资者能做出正确的选择。 本文研究的主要是在没有风险的条件下,找出投资各类资产与收益之间的函数关系,合理规划有限的资金进行投资,以获得最高的回报。 对于问题一,根据收益表中所给的数据,我们首先建立二元线性回归模型来模拟收益U与x,y之间的关系,对于模型中的各项自变量前的系数估计量,利用spss软件来进行逐步回归分析。发现DW值为0.395,所以原模型的随机误差项违背了互相独立的基本假设的情况,即存在自相关性。为了处理数据间的自相关问题,运用了迭代法,先通过Excel进行数据的处理和修正,达到预定精度时停止迭代,再一次用spss软件来进行检验,发现DW值变为2.572,此时DW值落入无自相关性区域。在进一步对模型进行了改进后,拟合度为进行了残差分析和检验预测,这样预测出的结果更加准确、有效,希望能为投资者实践提供某种程度的科学依据。 对于问题二,根据问题一建立的模型和问题二中所给出的条件,确定目标函数,进行线性规划,用MATLAB软件来求得在资金固定的情况下,选择哪种投资方式能使达到利益最大化。 最后,对模型的优缺点进行评价,指出了总收益与购买A 类资产x份数和B 类资产y份数之间的关系模型的优点与不足之处,并对模型做出了适度的推广和优化。 关键字:经济效益回归模型自相关迭代法线性规划有效投资方法

复合材料实验

材料科学与工程专业实验第三篇复合材料实验 材料科学与工程学院 材料系

目录 实验1 酚醛树脂凝胶时间、挥发分、树脂含量和固体含量测定 实验2 单丝强度和弹性模量测定 实验3 丝束(复丝)表观强度和表观模量测定(参照GB3362-82)实验4 树脂浇注体制作及其巴科尔硬度测试 实验5 手糊成型工艺试验 实验6 复合材料模压工艺试验 实验7 层压工艺试验 实验8 热塑性塑料注射成型 实验 9 复合材料真空导入成型工艺试验 实验10 RTM成型工艺试验

实验1 酚醛树脂凝胶时间、挥发分、树脂含量和固体含量测定 一、实验目的 掌握对酚醛树脂几个重要技术参数的测定方法,证实酚醛树脂由B 阶向C 阶段过度时放出小分 子的事实。 二、实验原理 酚醛树脂由于苯酚上羟甲基(—CH 2OH )的作用,它的固化与环氧树脂和不饱和聚酯树脂不同, 在加热固化过程中两个—CH 2OH 作用将会脱下一个H 2O 和甲醛(CH 2O ),甲醛又会马上与树脂中苯环上的活性点反应生成一个新的—CH 2OH 。这个过程的快慢和放出水分子的本质,将需要用试验证实,从而帮助学生理解树脂含量和固体含量的不同含义。 三、实验仪器和设备 分析天平、智能电热板、秒表、称量瓶或坩埚等。 四、实验步骤 1、 将智能电热板设定至150±1℃且恒定,用一小块铝箔迅速取A 阶酚醛树脂的乙醇溶液 1g~1.5g 放到智能电热板上,同时用秒表记时并开始用玻璃棒摊平和不断搅动,树脂逐渐变成粘稠起丝,直至起丝挑起即断时为终点,停止秒表,记录此时间,即为该树脂样品的150℃条件下的凝胶时间,以秒数表示。重复操作三次,同一树脂每次相差不应大于5s ,取其平均值。 2、 取一已恒重的称量瓶或坩埚,称量为m 1,取1g 左右的A 阶酚醛树脂溶液于称量瓶中,称量 总重为m 2,然后将它放入80±2℃的恒温烘箱中处理60min ,取出放入干燥器中冷却至室温,称量m 3,则树脂含量Rc 是指挥发溶剂后测出的溶液中树脂的百分比,即: %1001 213?--=m m m m R C 3、 将称量为m 3的试样再放入160±2℃恒温烘箱中处理60min ,取出在干燥器中冷却至室温后 称量为m 4,则固体含量Sc 是指A 阶树脂进入C 阶后树脂的百分比,即: %1001 214?--=m m m m S C 挥发分Vc 就是指B 阶树脂进入C 阶段树脂过程中放出的水和其他可挥发的成分所占B 阶树脂的百分比,即:%1001 343?--=m m m m V C 高温固化绝对脱水量(m 3-m 4)和溶剂量(m 2-m 3)与树脂溶液总量(m 2-m 1)之比称为总 挥发量Fc :

模型检验(闵应骅)

模型检验(1)(091230) 大家承认,计算机领域的ACM图灵奖相当于自然科学的诺贝尔奖。2007年图灵奖授予Edmund M. Clarke,E. Allen Emerson,和Joseph Sifakis。他们创立了模型检验---一种验证技术,用算法的方式确定一个硬件或软件设计是否满足用时态逻辑表述的形式规范。如果不能满足,则提供反例。他们在1981年提出这个方法,经过28年的发展,已经在VLSI电路、通信协议、软件设备驱动器、实时嵌入式系统和安全算法的验证方面得到了实际应用。相应的商业工具也已出现,估计今后将对未来的硬件和软件产业产生重大影响。 2009年11月CACM发表了三位对模型检验的新的诠释。本人将用几次对他们的诠释做一个通俗的介绍,对我自己也是一个学习的过程。 Edmund M. Clarke现在是美国卡内基梅隆大学(CMU)计算机科学系教授。E. Allen Emerson 是在美国奥斯汀的德州大学计算机科学系教授。Joseph Sifakis是法国国家科学研究中心研究员,Verimag实验室的创立者。 模型检验(2)(091231) 程序正确性的形式验证依靠数学逻辑的使用。程序是一个很好定义了的、可能很复杂、直观上不好理解的行为。而数学逻辑能精确地描述这些行为。过去,人们倾向于正确性的形式证明。而模型检验回避了这种证明。在上世纪60年代,流行的是佛洛伊德-霍尔式的演绎验证。这种办法像手动证明一样,使用公理和推论规则,比较困难,而且要求人的独创性。一个很短的程序也许需要很长的一个证明。 不搞程序正确性证明,可以使用时态逻辑,一种按时间描述逻辑值变化的形式化。如果一个程序可以用时态逻辑来指定,那它就可以用有限自动机来实现。模型检验就是去检验一个有限状态图是否是一个时态逻辑规范的一个模型。 对于正在运行的并发程序,它们一般是非确定性的,像硬件电路、微处理器、操作系统、银行网络、通信协议、汽车电子及近代医学设备。时态逻辑所用的基本算子是F(有时),G(总是),X(下一次),U(直到)。现在叫线性时间逻辑(LTL)。

如何检测一个数学模型的合理性

如何检测一个数学模型的合理性 为了得到正确的结论、在进行系统分析、预测和辅助决策时,必须保证模型能够准确地反映实际系统并能在计算机上正确运行。因此,必须对模型的有效性进行评估。模型有效性评估主要包括模型确认和模型验证两部分内容:模型确认考察的是系统模型(所建立的模型)与被仿真系统(研究对象)之间的关系,模型验证考察的则是系统模型与模型计算机实现之间的关系。 对于一个具体的建模项目来说,模型有效性评估贯穿于研究的始终。必须指出,模型实际上是所研究的系统的一种抽象表述形式,要验证一个模型是否百分之百有效是极其困难的,也是没有实际意义的。另外,模型是否有效是相对于研究目的以及用户需求而言的。在某些情况下,模型达到60%的可信度使可满足要求;而在另外一些情况下,模型达到99%都可能是不满足的。 模型有效性的概念出现在20世纪60年代,随着计算机仿真技术在各个学科和工程领域的普遍应用,模型有效性问题日益受到人们的关注。1967年,美国兰德公司的fishman和Kivtat明确指出,模型有效性研究可划分为两个部分:模型的确认(validation)和验证(verification)。这一观点被国际仿真学界普遍采纳。模型确认指通过比较在相同输入条判和运行环境下模型与实际系统输出之间的一致性,评价模型的可信度或可用性。模型验证则是判断模型的计算机实现是否正确。 尽管确认和验证在各文献中的定义不尽相同,但对于二者之间的区别,专家的看法却是基本一致的。简单地说,模型确认强调理论模型与实际系统之间的一致性,模型验证则强调当前模型与计算机程序之间的一致性。在有些文献中也采用工程技术人员容易接受的“校模”和“验模”两个术语来分别代替“确认”和“验证”。模型的确认和验证与建模的关系见图8.5。 在图8.5中,“问题实体”指被建模的对象,如系统、观念、政策、现象等。“理论模型”是为达到某种特定的研究目的而对问题实体进行的数学/逻辑描述。“计算机模型”(computerized Model)是理论模型在计算机上的实现。 通过“分析与建模”活动可以建立理论模型。计算机模型的建立需通过“编程及实现”这一步骤来完成。经过仿真“实验”即可得到关于问题实体的结果。 模型确认包括理论模型有效性确认、数据有效性确认和运行有效性确认三部分内容,其中运行有效性确认是模型确认的核心。 图8.5 确认和验证与建模的关系 1)理论模型有效性确认

河工模型试验中的DPIV技术及其应用

河工模型试验中的DPIV技术及其应 用 摘要粒子图像测速是一种快速全 流场测量方法。本文根据河工模型试验的特点建立了一套多CCD的DPIV测量系统,在 自然光照明的条件下对河工模型近千平方 米区域内流体的表面流厨行快速测量;根据河工模型中粒子分布的特点,对PIV常用的速度提取算法(互相关和二次傅立叶变换) 进行了改进,提高了速度提取的效率,在一定的分辨率前提下达到了对河工模型表面 流场实时测量和记录的要求,测量误差较小。 关键词粒子图像测速河工模型速度测量 流场显示 0 引言河工模型是探讨河流工程问题 的有效研究方法之一,但由于河工模型尺寸大,观测的范围广,使用单点式速度测量仪器费时费力;对于动床模型或非定常流动模型,床面和边界形态均在不断变化之中,因

此,在河工模型试验中采用全场实时测速技术十分必要,具有很大的科研和经济价值。粒子示踪的图像全场测速技术(Particle Image Velocimetry[1,和Particle Tracking Velocimetry[3,4])以及数字化粒子图像测速技术(Digital PIV和Digital PTV)具有方便快捷的特点,在流体力学研究中得到了广泛应用。国内科研人员根据PIV 和PTV的基本原理,已成功开发出应用于大型河工模型表面流场测量的粒子示踪测速 系统:清华大学研制的DPTV系统、中国科学院力学研究所研制的DPIV系统等。 DPIV系统的核心是对流动图像进行处理,得到示踪粒子代表的流体的速度,这一过程称为速度提取。速度提取一般采用互相关算法和二次傅立叶变换[7,8,9]进行,需优良的硬件设备(运算速度高的计算机和浮点运算加速器件)才能满足实时测量的要求。本文考虑到河工模型中示踪粒子的分布特点 以及自然光照明的条件等,采用了三种改进的速度提取算法,缩短了速度提取时间,在普通Pentium系列微机由软件实现河工模型

相关主题