搜档网
当前位置:搜档网 › 动量守恒定律、碰撞、反冲现象知识点总结

动量守恒定律、碰撞、反冲现象知识点总结

动量守恒定律、碰撞、反冲现象知识点总结
动量守恒定律、碰撞、反冲现象知识点总结

动量守恒定律、碰撞、反冲现象知识点归纳总结

一.知识总结归纳

1. 动量守恒定律:研究的对象是两个或两个以上物体组成的系统,而满足动量守恒的物理过程常常是物体间相互作用的短暂时间内发生的。

动量守恒定律的条件:

(1)理想守恒:系统不受外力或所受外力合力为零(不管物体间是否相互作用),此时合外力冲量为零,故系统动量守恒。当系统存在相互作用的内力时,由牛顿第三定律得知,相互作用的内力产生的冲量,大小相等,方向相反,使得系统内相互作用的物体动量改变量大小相等,方向相反,系统总动量保持不变。即内力只能改变系统内各物体的动量,而不能改变整个系统的总动量。

(2)近似守恒:当外力为有限量,且作用时间极短,外力的冲量近似为零,或者说外力的冲量比内力冲量小得多,可以近似认为动量守恒。

(3)单方向守恒:如果系统所受外力的矢量和不为零,而外力在某方向上分力的和为零,则系统在该方向上动量守恒。

2.几种常见表述及表达式

;

(1)p=p′(系统相互作用前的总动量p等于相互作用后的总动量p′).

(2)Δp=0(系统总动量不变).

(3)Δp1=-Δp2(相互作用的两物体组成的系统,两物体动量的增量大小相等、方向相反).

其中(1)的形式最常用,具体到实际应用时又有以下三种常见形式:

①m1v1+m2v2=m1v1′+m2v2′(适用于作用前后都运动的两个物体组成的系统).

②0=m1v1+m2v2(适用于原来静止的两个物体组成的系统,比如爆炸、反冲等,两者速率与各自质量成反

比).

③m1v1+m2v2=(m1+m2)v(适用于两物体作用后结合为一体或具有相同速度的情况,如完全非弹性碰撞).

[

3.理解动量守恒定律:矢量性?瞬时性?相对性?普适性.

4.应用动量守恒定律解题的步骤:

(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);

(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);

(3)规定正方向,确定初、末状态动量;

(4)由动量守恒定律列出方程;

(5)代入数据,求出结果,必要时讨论说明.

|

碰撞现象

完全非弹性碰撞动量守恒,机械能损失最大

#

碰撞前后动量是否共线

对心碰撞(正碰)碰撞前后速度共线

非对心碰撞(斜碰)

碰撞前后速度不共线

2.弹性碰撞的规律

两球发生弹性碰撞时满足动量守恒定律和机械能守恒定律.

在光滑的水平面上,有质量分别为m1、m2的钢球沿一条直线同向运动,m1、m2的速度分别是v1、v2,(v1、>v2)m1与

m2发生弹性正碰。则由动量守恒定律和动能守恒可以列出以下方程

利用(3)式和(4)式,可讨论以下两种特殊情况:

A.如果两物体质量相等,即m1=m2,则可得

B.如果一个物体是静止的,例如质量为m2的物体在碰撞前是静止的,即v2=0,则可得

这里又可有以下几种情况:

a.

b.

质量较大的物体向前运动。

c.

d.以原速率反弹回来,而质量

很大的物体几乎不动。例如橡皮球与墙壁的碰撞。

e.速度几乎不变,而质量很小的物体获得的速度是原来运动物体速度的2倍,这是原来静止的物体通过碰撞可以获得的最大速度,例如铅球碰乒乓球。

^

3.一般碰撞现象满足的规律

(1)动量守恒定律:系统的总动量或某一方向上的总动量保持不变

(2)能量守恒:系统的总动能不会增加(特殊碰撞除外)

(3)速度要合理:

①若碰前两物体同向运动,则有v后>v前,碰后原来在前的物体速度一定增大,若碰后两物体同向运动,则应有v前′≥v后′.

②碰前两物体相向运动,碰后两物体的运动方向不可能都不改变.

5. 反冲现象指在系统内力作用下,系统内一部分物体向某方向发生动量变化时,系统内其余部分物体向相反的方向发生动量变化的现象。显然在反冲运动过程中,系统不受外力作用或外力远远小于系统内物体间的相互作用力,所以在反冲现象里系统的动量是守恒的。

@

【典型例题】

例1. 如图1所示的装置中,木块B与水平面间接触是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短,现将子弹、木块和弹簧合在一起做为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中()

A.动量守恒,机械能守恒

B.动量不守恒,机械能不守恒

C.动量守恒,机械能不守恒

D.动量不守恒,机械能守恒

)

分析:合理选取研究对象和运动过程,利用机械能守恒和动量守恒的条件分析。

如果只研究子弹A射入木块B的短暂过程,并且只选A、B为研究对象,则由于时间极短,则只需考虑在A、B之间的相互作用,A、B组成的系统动量守恒,但此过程中存在着动能和内能之间的转化,所以A、B 系统机械能不守恒。

本题研究的是从子弹开始射入木块到弹簧压缩至最短的整个过程,而且将子弹、木块和弹簧合在一起为研究对象,在这个过程中有竖直墙壁对系统的弹力作用,(此力对系统来讲是外力)故动量不守恒。

解答:由上面的分析可知,正确选项为B

例2. 质量为m1=10g的小球在光滑的水平面上以v1=30cm/s的速率向右运动,恰遇上质量m2=50g的小球以v2=10cm/s的速率向左运动,碰撞后,小球m2恰好停止,那么碰撞后小球m1的速度是多大方向如何^

分析:由于两小球在光滑水平面上,以两小球组成的系统为研究对象,该系统沿水平方向不受外力,因此系统动量守恒。

解答:碰撞过程两小球组成的系统动量守恒。

设v1的方向,即向右为正方向,则各速度的正负及大小为:

v 1=30cm/s ,v 2=-10cm/s ,2v '=0 据:m 1v 1+m 2v 2=221

1v m v m '+' 代入数值得:1

v '=-20cm/s 则小球m 1的速度大小为20cm/s ,方向与v 1方向相反,即向左。

说明:注意在应用动量守恒定律时要明确以下几个问题: (1)明确研究对象,即所研究的相互作用的物体系统。

(2)明确所研究的物理过程,分析该过程中研究对象是否满足动量守恒条件。

(3)明确系统中每一物体在所研究的过程中初、末状态的动量及整个过程中动量的变化。 (4)明确参考系,规定正方向,根据动量守恒定律列方程,求解。

例3. 如图2所示,甲、乙两个小孩各乘一辆冰车在水平冰面上游戏,甲和他的冰车的质量共为M =30kg ,乙和他的冰车的质量也是30kg ,游戏时,甲推着一个质量为m =15kg 的箱子,和他一起以大小为v 0=s 的速度滑行,乙以同样大小的速度迎面滑来。为了避免相撞,甲突然将箱子沿冰面推给乙,箱子滑到乙处时乙迅速把它抓住。若不计冰面的摩擦力,求:甲至少要以多大的速度(相对于地面)将箱子推出,才能避免与乙相撞

分析:甲、乙不相碰的条件是相互作用后三者反。而要使甲与乙及箱子的运动方向相反,则需要甲以更大的速度推出箱子。因本题所求为“甲至少要以多大速度”推出木箱,所以要求相互作用后,三者的速度相同。以甲、乙和箱子组成的系统为研究对象,因不计冰面的摩擦,所以甲、乙和箱子相互作用过程中动量守恒。

解答:设甲推出箱子后的速度为v 甲,乙抓住箱子后的速度为v 乙,则由动量守恒定律,得:

甲推箱子过程:

(M+m)v 0=Mv 甲+mv ① 乙抓住箱子的过程: mv-Mv 0=(M+m)v 乙② 《

甲、乙恰不相碰的条件:

v 甲= v 乙 ③

代入数据可解得:v =s

说明:仔细分析物理过程,恰当选取研究对象,是解决问题的关键。对于同一个问题,选择不同的物体对象和过程对象,往往可以有相应的方法,同样可以解决问题。本例中的解答过程,先是以甲与箱子为研究对象,以甲和箱子共同前进到甲推出箱子为过程;再以乙和箱子为研究对象,以抓住箱子的前后为过程来处理的。本题也可以先以甲、乙、箱子三者为研究对象,先求出最后的共同速度v =s ,再单独研究甲推箱子过程或乙抓住箱子的过程求得结果,而且更为简捷。

例4. 一只质量为M 的平板小车静止在水平光滑面上, 小车上站着一个质量为m 的人,M >m ,在此人从小车的一端走到另一端的过程中,以下说法正确的是(不计空气的阻力)( )

A. 人受的冲量与平板车受的冲量相同

·

B. 人向前走的速度大于平板车后退的速度

C. 当人停止走动时,平板车也停止后退

D. 人向前走时,人与平板车的总动量守恒

分析:由于平板车放在光滑水平面上,又不计空气阻力,以人、车组成的系统为研究对象,该系统沿水平方向不受外力,因此系统动量守恒,可判断选项D 正确。

在相互作用的过程中,人与车之间的相互作用的内力对它们的冲量大小相等、方向相反,冲量是矢量,选项A 错误。

开始时二者均静止,系统的初动量为0,根据动量守恒,整个过程满足0=mv 人+Mv 车,即人向一端走动时,车必向反方向移动,人停车也停,又因M >m ,v 人的大小一定大于v 车,选项B 、C 正确。

解答:根据上面的分析可知正确选项为B 、C 、D 。 (

说明:分析反冲类问题,例如爆竹爆炸,发射火箭、炮车发射炮弹等,应首先判断是否满足动量守恒,其次要分析清楚系统的初动量情况、参与作用的物体的动量变化情况及能量转化情况。

例5. 在光滑的水平面上,动能为E 0、动量大小为p 0的小球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反,将碰撞后球1的动能和动量的大小分别记为E 1、p 1,球2的动能和动量的大小分别记为E 2、p 2,则必有 ( )

A. E 1<E 0

B. p 1<p 0

C. E 2>E 0

D. p 2>p 0

分析:理解碰撞的可能性的分析方法,从动量守恒、能量守恒、及可行性几个角度进行分析。设碰撞前球1的运动方向为正方向,根据动量守恒定律有:p 0=-p 1+p 2,可得到碰撞后球2的动量等于p 2=p 0+p 1。

速度相同,或甲与乙、箱子的运动方向相由于碰撞前球2静止,所以碰撞后球2一定沿正方向运动,所以p 2>p 0,选项D 正确.

由于碰撞后系统的机械能总量不可能大于碰撞前系统机械能总量,即E 0≥E 1+E 2,故有E 0>E 1和E 0>E 2,选项A 正确,选项C 错误。

由动能和动量的关系E k =m

p 22

,结合选项A 的结果,可判断选项B 正确。

解答:根据上面的分析可知正确选项为A 、B 、D .

说明:1. 分析处理碰撞类问题,除注意动量守恒及其动量的矢量性外,对同一状态的动能和动量的关系

也要熟练掌握,即E k =m

p 22

,或k 2mE p 。

2. 在定量分析碰撞后的可能性问题中,应注意以下三点: (1)动量守恒原则:碰撞前后系统动量相等。

(2)动能不增加原则:碰后系统总动能不可能大于碰前系统的总动能.(注意区别爆炸过程)。

(3)可行性原则:即情景要符合实际。如本例中若1球碰后速度方向不变,则1球的速度一定小于2球的速度,而不可能出现1球速度大于2球速度的现象。这就是实际情景对物理过程的约束。

动量守恒定律模块知识点总结

动量守恒定律模块知识点总结 1.定律内容:相互作用的几个物体组成的系统,如果不受外力作用,或者它们受到的外力之和为零,则系统的总动量保持不变。 2.一般数学表达式:''11221122m v m v m v m v +=+ 3.动量守恒定律的适用条件 : ①系统不受外力或受到的外力之和为零(∑F 合=0); ②系统所受的外力远小于内力(F 外 F 内),则系统动量近似守恒; ③系统某一方向不受外力作用或所受外力之和为零,则系统在该方向上动量守恒(分方向动量守恒) 4.动量恒定律的五个特性 ①系统性:应用动量守恒定律时,应明确研究对象是一个至少由两个相互作用的物体组成的系统,同时应确保整个系统的初、末状态的质量相等 ②矢量性:系统在相互作用前后,各物体动量的矢量和保持不变.当各速度在同一直线上时,应选定正方向,将矢量运算简化为代数运算 ③同时性:12,v v 应是作用前同一时刻的速度,''12,v v 应是作用后同—时刻的速度 ④相对性:列动量守恒的方程时,所有动量都必须相对同一惯性参考系,通常选取地球作参考系 ⑤普适性:它不但适用于宏观低速运动的物体,而且还适用于微观高速运动的粒子.它与牛顿运动定律相比,适用范围要广泛得多,又因动量守恒定律不考虑物体间的作用细节,在解决问题上比牛顿运动定律更简捷 例题. 1.质量为m 的人随平板车以速度V 在平直跑道上匀速前进,不考虑摩擦阻力,当此人相对于车竖直跳起至落回原起跳位置的过程中,平板车的速度 ( A ) A .保持不变 B .变大 C .变小 D .先变大后变小 E .先变小后变大 2.两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在其中一人向另一人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后的速率关系是 ( B ). A .若甲先抛球,则一定是V 甲>V 乙 B .若乙最后接球,则一定是V 甲>V 乙 C .只有甲先抛球,乙最后接球,才有V 甲>V 乙 D .无论怎样抛球和接球,都是V 甲>V 乙 3.一小型宇宙飞船在高空绕地球做匀速圆周运动如果飞船沿其速度相反的方向弹射出一个质量较大的物体,则下列说法中正确的是( CD ). A .物体与飞船都可按原轨道运行 B .物体与飞船都不可能按原轨道运行 C .物体运行的轨道半径无论怎样变化,飞船运行的轨道半径一定增加 D .物体可能沿地球半径方向竖直下落 4.在质量为M 的小车中挂有一单摆,摆球的质量为m 。,小车(和单摆)以恒定的速度V 沿光滑水平地面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞时间极短,在此碰撞过程中,下列哪些说法是可能发生的( BC ). A.小车、木块、摆球的速度都发生变化,分别变为V 1、V 2、V 3,满足(m 。十M )V =MV l 十mV 2十m 。V 3 B .摆球的速度不变,小车和木块的速度变为V 1、V 2,满足MV =MV l 十mV 2 C .摆球的速度不变,小车和木块的速度都变为V ’,满足MV=(M 十m )V ’ D.小车和摆球的速度都变为V 1,木块的速度变为V 2,满足(M +m o )V =(M +m o )V l +mV 2

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案) 一、高考物理精讲专题动量守恒定律 1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞. ①求弹簧恢复原长时乙的速度大小; ②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】 (1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得: 又知 联立以上方程可得 ,方向向右。 (2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为 由动量定理可得,挡板对乙滑块冲量的最大值为: 2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的 1 2 反弹,小球向右摆动一个小角度即被取走。已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度2 10m/s g =。求: (1)碰撞后瞬间,小球受到的拉力是多大? (2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】 解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:

§6.3碰撞与爆炸及反冲

【知识要点】 一、碰撞与爆炸 1、碰撞与爆炸具有一个共同的特点:即相互作用的力为变力,作用的时间,作用力,且系统受的外力,故均可用动量守恒定律来处理。 2、爆炸过程中,因有其他形式的能转化为动能,所以系统的动能会。 3、在碰撞过程中,由于有等物理现象的发生,故碰撞后系统的总动能是不守恒的,同时若碰撞后二物体的速度方向相同,则后一个物体的速度将前面物体的运动速度,即二物体不能相互穿越。 4、碰后两个物体若粘合在一起,具有共同的速度,这一碰撞过程最大。 5、由于碰撞(或爆炸)的作用时间极短,因此作用过程中物体的位移很小,一般可忽略不计,可认为,碰撞(或爆炸)后还从碰撞(或爆炸)前瞬间的位置以新的动量开始运动。 二、反冲运动 1、反冲运动是相互作用的物体之间的作用力与反作用力产生的效果,如发射炮弹时炮身的后退,火箭因喷气而发射等。 2、反冲运动的过程中,如果没有外力作用或外力的作用远小于物体间的相互作用力,可利。 3、研究反冲运动的目的是找反冲速度的规律,求反冲速度的关系是确定相互作用的对象和各个物体对地的运动状态。 【能力提高】 1、碰撞问题是深入理解动量守恒定律的重要内容,在解决碰撞问题过程中涉及的:1)动量守恒的条件判断和近似处理;2)碰撞后可能运动状态的判断。以上是提高我们理解、分析判断和综合运用能力的可能手段。 2、碰撞是指物体间碰撞力极大而碰撞时间极短的相互作用过程。相碰撞的两个物体的作用时间虽然很短,但因相互作用力很大,所以它们相互作用的冲量不可忽略,系统中物体的动量因此都要发生变化;但在它们相互作用的极短的时间内,一般的重力、摩擦力的冲量与碰撞力的冲量相比可以忽略不计,所以我们可以近似地认为一切碰撞过程中碰撞物体组成的系统的系统总动量都是守恒的。 【典型例题】 例1、两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一人抛出篮球,另一人接球后再抛回。如此反复进行几次后,甲和乙最后速率关系是()A、若甲最先抛球,则一定是v甲>v乙B、若乙最后接球,则一定是v甲>v 乙 C、只有甲先抛球,乙最后接球,才有v甲>v乙 D、无论怎样抛球和接球,都是v甲>v乙 例2、静止在匀强磁场中的某放射性元素的核,放出一个a粒子,其速度方向与磁场方向垂直,测得a 粒子和反冲核轨道半径之比R∶r=30∶1,如图,则( ) A、 粒子与反冲核的动量大小相等,方向相反 B、反冲核的原子序数为62 C、原来放射性元素的原子序数为62 D、反冲核与α粒子的速度之比为1∶62

磁现象磁场知识点练习

1、磁性:物体具有的性质,叫磁性。 2.磁体: (1)定义:具有的物体。 (2)分类: ①形状:条形磁体、蹄形磁体、针形磁体; ②来源:天然磁体、; ③保持磁性的时间长短:硬磁体(永磁体)、。 (3)性质:磁体具有性和性。 3磁极: (1)定义:磁体上磁性的两个部位叫磁极。 ①条形磁体中间磁性最。 ②任何一磁体都有个磁极。 ③磁极的规定:能够自由转动的磁体,静止时指南的的磁极叫极,用符 号表示;指北的的磁极叫极,用符号表示; (2)磁极间相互作用规律:同名磁极相互,异名磁极相互。 4、磁化: (1)定义:一些物体在或的作用下获得,这种现象叫磁化。(2)磁化的方式:与磁体接触;与磁体摩擦;通电。 (3)磁性材料:能够被磁化的物质叫磁性材料。如铁钴镍以及它们的合金。 有些物体在磁化后磁性能长期保存,叫磁体(如钢);有些物体在磁化后磁性在短时间内就会消失,叫磁体(如软铁)。 (4)磁化的利与弊: ①利:制作永磁体,指南针,应用于磁记录。 ①弊:机械手表磁化后走时不准;彩色电视机显像管磁化后色彩失真。 (5)消磁:使原来有磁性的物体的过程。 方法:敲击法、灼烧法。 5.磁的应用:冰箱门上的门封、磁悬浮列车、录音带、公交卡、磁盘,等。 6.磁场: (1)磁场:磁体周围存在一种看不见,摸不着的,叫做磁场。 (2)磁场的基本性质:对放入其中的磁体会产生的作用。 磁极间的相互作用是通过发生的。 (3)磁场的强弱:磁场存在于磁体周围,越靠近磁体两极,磁场越。 (4)磁场方向:在磁场中的某一点,小磁针时所指的方向就是该点的磁场方向。 磁场中的不同位置,一般说磁场方向不同。 【提示】磁场看不见,摸不着,但我们可以通过它对其他物体的作用来认识。这应用了转换法 7磁感线:把小磁针在磁场中的情况,用一些的曲线画出来,可以方便形象地描述磁场,这样的曲线叫做磁感线。 8.作用:描述磁场的强弱和方向。 9.磁感线的方向:在磁体外部,磁感线都是从磁体的极出发,回到极。在磁 体内部正好相反。 10.对磁感线的认识: ①磁感线并不真实存在,而是人们为了表示磁场的分布而假想出来的曲线。

动量、动量守恒定律知识点总结教学内容

龙文教育动量知识点总结 一、对冲量的理解 1、I =Ft :适用于计算恒力或平均力F 的冲量,变力的冲量常用动量定理求。 2、I 合 的求法: A 、若物体受到的各个力作用的时间相同,且都为恒力,则I 合=F 合.t B 、若不同阶段受力不同,则I 合为各个阶段冲量的矢量和。 1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。 2、矢量性:ΔP 的方向由v ?决定,与1p 、2p 无必然的联系,计算时先规定正方向。 三、对动量守恒定律的理解:1、研究对象:相互作用的物体所组成的系统 2、条件: A 、理想条件:系统不受外力或所受外力有合力为零。 B 、近似条件:系统内力远大于外力,则系统动量近似守恒。 C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。 结论:等质量 弹性正碰 时,两者速度交换。 依据:动量守恒、动能守恒 五、判断碰撞结果是否可能的方法: 碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。 动能和动量的关系:m p E K 22 = K mE p 2= 六、反冲运动: 1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。 2、规律:系统动量守恒 3、人船模型: 条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。

七、临界条件: “最”字类临界条件如压缩到最短、相距最近、上升到最高点等的处理关键是——系统各组成部分具有共同的速度v。 八、动力学规律的选择依据: 1、题目涉及时间t,优先选择动量定理; 2、题目涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒; 3、题目涉及位移s,优先考虑动能定理、机械能守恒定律、能量转化和守恒定律; 4、题目涉及运动的细节、加速度a,则选择牛顿运动定律+运动学规律; 九、表达规范:说明清楚研究对象、研究过程、规律、规定正方向。 典型练习 一、基本概念的理解:动量、冲量、动量的改变量 1、若一个物体的动量发生了改变,则物体的() A、速度大小一定变了 B、速度方向一定变了 C、速度一定发生了改变 D、加速度一定不为0 2、质量为m的物体从光滑固定斜面顶端静止下滑到底端,所用的时间为t, 斜面倾角为θ。则() A、物体所受支持力的冲量为0 B、物体所受支持力冲量为 θ cos mgt C、重力的冲量为mgt D、物体动量的变化量为 θ sin mgt 3、在光滑水平面上水平固定放置一端固定的轻质弹簧,质量为m的小球沿弹簧所位于的直线方向以速度v运动,并和弹簧发生碰撞,小球和弹簧作用后又以相同的速度反弹回去。在球和弹簧相互作用过程中,弹簧对小球的冲量I的大小和弹簧对小球所做的功W分别为: A、I=0、W=mv2 B、I=2mv、W = 0 C、I=mv、W = mv2/2 D、I=2mv、W = mv2/2 二、动量定理的应用: 4、下列运动过程中,在任意相等时间内,物体动量变化相等的是:() A、匀速圆周运动 B、自由落体运动 C、平抛运动 D、匀减速直线运动

最新高考回归复习—力学选择之爆炸与反冲问题

高考回归复习—力学选择之爆炸与反冲问题 1.如图所示,一枚手榴弹在空中竖直下落,一段时间后爆炸成a 、b 两块,又过了一段时间,a 、b 两块同时落到水平地面上,其中a 飞行的水平距离OA 是b 飞行的水平距离OB 的2倍,忽略空气阻力,则a 、b 两块在爆炸前后( ) A .动量增加量之比是1:2 B .动量增加量之比是2:1 C .动能增加量之比是1:2 D .动能增加量之比是2:1 2.一质量为m 的炮弹在空中飞行,运动至最高点时炸裂成质量相等的a 、b 两块,爆炸前瞬间炮弹速度为v ,方向水平向右,爆炸后a 的速度为2v ,方向水平向左.爆炸过程中转化为动能的化学能是() A .21 2mv B .2mv C .29 2mv D .25mv 3.如图所示,半径为R 、质量为M 的1/4 光滑圆槽置于光滑的水平地面上,一个质量为m 的小木从槽的顶端由静止滑下.则木块从槽口滑出时的速度大小为()

A B C D 4.一弹丸在飞行到距离地面5 m高时仅有水平速度 v=2 m/s,爆炸成为甲、乙两块水平飞出,甲、乙的质量比为3∶1.不计质量损失,取重力加速度 g=10 m/s 2,则下列图中两块弹片飞行的轨迹可能正确的是() A.B.C. D. 5.用如图所示实验能验证动量守恒定律,两块小木块A和B中间夹着一轻质弹簧,用细线捆在一起,放在光滑的水平台面上,将细线烧断,木块A、B被弹簧弹出,最后落在水平地面上落地点与平台边缘的水平距离分别为1m l=, A l=.实验结果表明下列说法正确的是() 2m B A.木块A、B离开弹簧时的速度大小之比:1:4 v v= A B B.木块A、B的质量之比:1:2 m m= A B C.弹簧对木块A、B做功之比:1:1 W W= A B D.木块A、B离开弹簧时的动能之比:1:2 E E= A B

中考物理知识点复习:磁现象和磁场

中考物理知识点复习:磁现象和磁场 磁现象: 磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。 磁体:具有磁性的物体,叫做磁体。 磁体的分类: ①形状:条形磁体、蹄形磁体、针形磁体; ②来源:天然磁体(磁铁矿石)、人造磁体; ③保持磁性的时间长短:硬磁体(永磁体)、软磁体。 磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。 磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。 磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。 无论磁体被摔碎成几块,每一块都有两个磁极。 磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。 钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。

磁场: 磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。 磁场的基本性质:对放入其中的磁体产生磁力的作用。 磁场的方向:物理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。 磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。 对磁感线的认识: ①磁感线是假想的曲线,本身并不存在; ②磁感线切线方向就是磁场方向,就是小磁针静止时N 极指向; ③在磁体外部,磁感线都是从磁体的N极出发,回到S 极。在磁体内部正好相反; ④磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密; 地磁场: 地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。 指南针:小磁针指南的叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析

高中物理动量守恒定律解题技巧及经典题型及练习题(含答案)及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ; (2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地? 【答案】(1)1m (2)4282 25 t s = 【解析】 【分析】 根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】 解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122 mgL mv mv μ= - 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:22 01211()(cos53)22 mv m M v mg R R =++- 联立解得:1R m = (2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有: 22 00311(cos53)22 mv mv mg R R =+- 解得:322/v m s = 物块从C 抛出后,在竖直方向的分速度为:38 sin 532/5 y v v m s =?= 这时离体面的高度为:cos530.4h R R m =-?=

爆炸与反冲现象问题

爆炸与反冲现象问题 1.爆炸现象的三个规律 (1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸物体间的相互作用力远大于受到的外力,所以在爆炸过程中,系统的总动量守恒. (2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加. (3)位置不变:爆炸的时间极短,因而作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸的位置以新的动量开始运动. 2.反冲现象 (1)系统内的不同部分在强大内力作用下向相反方向运动,通常用动量守恒来处理.

(2)反冲运动中,由于有其他形式的能转变为机械能,所以系统的总动能增加. (3)反冲运动中平均动量守恒. 若系统在全过程中动量守恒,则这一系统在全过程中平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用中均发生运动, 则由m1v1-m2v2=0,得m1s1=m2s2,该式的适用条件是: ①系统的总动量守恒或某一方向的动量守恒. ②构成系统的m1、m2原来静止,因相互作用而运动. ③s1、s2均为沿动量守恒方向相对于同一参考系的位移. 3.人船模型知识

(1)人船模型的适用条件:物体组成的系统动量守恒且系统中物体原来均处于静止状态,合动量为0. (2)人船模型的特点:两物体速度大小、位移大小均与质量成反比,方向相反,两物体同时运动,同时停止. (3)人船模型的动量与能量规律:遵从动量守恒定律,系统或每个物体动能均发生变化.力对“人”做的功量度“人”动能的变化;力对“船”做的功量度“船”动能的变化.

例题精选 1. 质量为m的人站在质量为M,长为L的静止小船的右端。小船的左端靠在岸边。当他向左走到船的左端时,船左端离岸多远? 解:人、船系统动量守恒,总动量始终为零,所以人、船动量大小始终相等。从图中可以看出,人、船的位移大小之和等于L。设人、船位移大小分别为l1、l2,则:mv1=Mv2,两 边同乘时间t,ml1=Ml2,而l1+l2=L,∴

磁现象知识点

十五、磁场 1、物体具有吸引铁、钴、镍等物体的性质,该物体就具有了磁性。具有磁性的物体叫做磁体。 2、磁体两端磁性最强的部分叫磁极,磁体中间磁性最弱。当悬挂静止时,指向南方的叫南极(S),指向北方的叫北极(N)。任一磁体都有两个磁极。相互作用规律:同名磁极互相排斥,异名磁极互相吸引。 3、磁化:使没有磁性的物体获得磁性的过程。方式有:与磁体接触;与磁体摩擦;通电。有些物体在磁化后磁性能长期保存,叫永磁体(如钢);有些物体在磁化后磁性在短时间内就会消失,叫软磁体(如软铁)。 4、磁体周围存在一种看不见,摸不着的物质,能使磁针偏转,叫做磁场。磁场对放入其中的磁体会产生磁力的作用。 5、磁场方向:磁场的方向:在磁场中的某一点,小磁针静止时北极所指的方向就是该点的磁场方向。磁场中某点的磁场方向、磁感线方向、小磁针静止时北极指的方向相同。 6、在物理学中,为了研究磁场方便,我们引入了磁感线的概念。磁感线总是从磁体的北极出来,回到南极。 7、地球也是一个磁体,周围也存在着磁场,叫地磁场。所以小磁针静止时会由于同名磁极互相排斥,异名磁极互相吸引的原理指向南北,由此可知,地磁南极在地理北极附近,地磁北极在地理南极附近。 8、地磁南极与地理北极、地磁北极与地理南极并不完全重合,中间有一个夹角,叫做磁偏角,是由我国宋代学者沈括首先发现的。 十六、电生磁 1、奥斯特实验证明:通电导线的周围存在着磁场,磁场的方向跟电流的方向有关,这种现象叫做电流的磁效应。这一现象是由丹麦物理学家奥斯特在1820年发现的。 2、把导线绕在圆筒上,做成螺线管,也叫线圈,在通电情况下会产生磁场。通电螺线管的磁场相当于条形磁体的磁场,通电螺线管的两端相当于条形磁体的两个磁极。 3、通电螺线管的磁场方向与电流方向有关。磁场的强弱与电流强弱、线圈匝数、有无铁芯有关。 4、在通电螺线管里面加上一根铁芯,就成了一个电磁铁。电磁铁磁场的强弱与电流的强弱、线圈的匝数、铁芯的有无有关。可以制成电磁起重机、扬声器和吸尘器等。 5、判断通电螺线管的磁场方向可以使用安培(右手)定则:将右手的四指顺着电流方向抓住螺线管,姆指所指的方向就是该螺线管的N极。 十七、电磁继电器 1、继电器是利用低电压、弱电流电路的通断,来间接地控制高电压、强电流电路的装置。实质上它就是利用电磁铁来控制工作电路的一种开关。

第十六章 动量守恒定律知识点总结

第十六章 动量守恒定律知识点总结 一、动量和动量定理 1、动量P (1)动量定义式:P=mv (2)单位:kg ·m/s (3)动量是矢量,方向与速度方向相同 2、动量的变化量ΔP 12P -P P =? (动量变化量=末动量-初动量) 注意:在求动量变化量时,应先规定正方向,涉及到的矢量的正负根据规定的正方向确定。 3/冲量 (1)定义式:I=Ft 物体所受到的力F 在t 时间内对物体产生的冲量为F 与t 的乘积 (2)单位:N ·s (2)冲量I 是矢量,方向跟力F 的方向相同 4、动量定理 (1)表达式:12P -P I =(合外力对物体的冲量=物体动量的变化量) 注意:应用动量定理时,应先规定正方向,涉及到的矢量的正负根据规定的正方向确定。 二、动量守恒定律 1、系统内力和外力 相互作用的两个(或多个)物体,组成一个系统,系统内物体之间的相互作用力,称为内力;系统外其他物体对系统内物体的作用力,称为外力。 2、动量守恒定律: (1)内容:如果一个系统不受外力,或者受外力的矢量和为零,这个系统的总动量保持不变。 (2)表达式:22112211v m v m v m v m '+'=+ (两物体相互作用前的总动量=相互作用后的总动量) (3)对条件的理解: ①系统不受外力或者受外力合力为零 ②系统所受外力远小于系统内力,外力可以忽略不计 ③系统合外力不为零,但是某个方向上合外力为零,则系统在该方向上总动量守恒 三、碰撞 1、碰撞三原则: (1)碰前后面的物体速度大,碰后前面的物体速度大,即:碰前21v v ?,碰后21 v v '?'; (2)碰撞前后系统总动量守恒 (3)碰撞前后动能不增加,即222211222211v m 2 1v m 21v m 21v m 21'+'≥+ 2、碰撞的分类Ⅰ (1)对心碰撞:两物体碰前碰后的速度都沿同一条直线。 (2)非对心碰撞:两物体碰前碰后的速度不沿同一条直线。

爆炸和反冲(教师版)

爆炸和反冲 1.装有炮弹的大炮总质量为M ,炮弹的质量为m ,炮弹射出炮口时对地的速度为v 0,若炮筒与水平地面的夹角为θ,则炮车后退的速度大小为( ) 【答案】B 【解析】发射炮弹时,炮车只可能沿水平地面向后退,水平方向所受的摩擦力远小于火药爆炸时炮弹与炮车间的相互作用力,故系统在水平方向上动量守恒. 由mv 0cos θ=(M-m)v,得 项对. 2.质量为m 的人站在质量为M 、长为L 的静止小船的右端,小船的左端靠在岸边(如图3所示)。当他向左走到船的左端时,船左端离岸的距离是 ( ) A .L B 【答案】D 【解析】本题考查动量守恒定律。人和船组成的系统动量守恒,运动时间相同,12mv Mv =,所以12mv t Mv t =即12mx Mx =,且有12x x L +=,解得2mL x M m =+,选D 。 3.一人静止于光滑的水平冰面上,现欲离开冰面,下列方法中可行的是( ) A.向后踢腿 B.手臂向后甩 C.在冰面上滚动 D.脱下外衣水平抛出 【答案】D 【解析】把人和外衣看作系统,由动量守恒定律可知:衣服向后抛出时,人会向前反冲,故D 对.由于人体各部分总动量为零,故A 、B 皆错.由于冰面“光滑”,故人不可能在冰面上滚动,D 错. 4.如图8-5-3所示,质量为M 的物体P 静止在光滑的水平桌面上,另有一质量为m(M>m)的物体Q 以速度v 0正对P 滑行,则它们相碰后(设桌面足够大)( ) 图8-5-3 A.Q 物体一定被弹回,因为M>m B.Q 物体可能继续向前 C.Q 物体的速度不可能为零 D.若相碰后两物体分离,则过一段时间可能再碰 【答案】B 【解析】因为相碰后Q 、P 有获得相同速度的可能,所以A 错.只有M=m 且M 、m 发生 图3

电与磁知识点(大全)经典

电与磁知识点(大全)经典 一、电与磁选择题 1.如图是关于电磁现象的四个实验,下列说法正确的是() A. 图甲是研究发电机工作原理的实验装置 B. 图乙实验说明通电导体周围存在磁场 C. 图丙是探究磁铁磁性强弱的实验装置 D. 图丁是探究电磁感应现象的实验装置【答案】D 【解析】【解答】解:A、图中有电池,是电动机原理图,故A错误; B、图中有学生电源,这是磁场对电流的作用实验,结论是通电导体在磁场中受力,故B 错误; C、是奥斯特实验,说明通电导线周围存在磁场,故C错误; D、图中没有电池,是电磁感应现象实验,故D正确. 故选:D. 【分析】根据对电与磁几个重要实验装置图的认识来判断: (1)发电机原理图描述了线圈给外界的用电器供电;电动机原理图描述了电源给线圈供电; (2)电磁感应现象装置图没有电池;磁场对电流的作用装置图有电池. 2.以下探究实验装置中,不能完成探究内容的是() A. 磁极间相互作用规律 B. 通电直导线周围存在磁场 C. 磁性强弱与电流大小的关系 D. 产生感应电流的条件

【答案】C 【解析】【解答】解:A、如图,据小磁针偏转的情况可以判断磁极间的作用规律,A选项能探究,故不符合题意; B、如图,该实验装置是奥斯特实验装置图,可探究通电导线周围存在着磁场,B选项能探究,但不符合题意; C、如图,该实验电路中电流大小不能改变,所以不能研究电磁铁磁性的强弱与电流大小的关系.故符合题意; D、如图,此时电路是闭合,导体在磁场中做切割磁感线运动时,能产生感应电流,D能探究,故不符合题意. 故选C. 【分析】(1)磁极间的作用规律是:同名磁极相互排斥,异名磁极相互吸引; (2)据奥斯特实验可知,通电导线周围存在着磁场; (3)电磁铁磁性的强弱与电流的大小和线圈的匝数有关; (4)闭合电路的部分导体在磁场中做切割磁感线运动时,电路中就会产生感应电流,该现象叫电磁感应现象. 3.导线a是闭合电路的一部分,a在磁场中按图中v的方向运动时,能产生感应电滋的是()(a在A、B选项中与磁感线平行,在C、D选项中垂直于纸面) A. A B. B C. C D. D 【答案】 D 【解析】【解答】在电磁感应现象中,金属棒要切割磁感线需要两个条件:①金属棒与磁感线方向之间的夹角不能为0;②金属棒的运动方向与磁感线之间的夹角不能为0. A.导线a与磁感线的夹角为0,且运动方向与磁感线夹角为0,不能产生电流,故A不合题意; B.导线a与磁感线的夹角为0,但运动方向与磁感线夹角不为0,也不能产生电流,故B 不合题意; C.导线a与磁感线的夹角不为0,但运动方向与磁感线夹角为0,也不能产生电流,故C 不合题意; D.导线a与磁感线的夹角不为0,且运动方向与磁感线夹角不为0,能产生电流,故D符合题意。

动量、动量守恒定律知识点总结

1 / 3 选修3-5动量知识点总结 一、对冲量的理解 1、I =Ft :适用于计算恒力或平均力F 的冲量,变力的冲量常用动量定理求。 2、I合 的求法: A 、若物体受到的各个力作用的时间相同,且都为恒力,则I 合=F 合.t B 、若不同阶段受力不同,则I 合为各个阶段冲量的矢量和。 1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。 2、矢量性:ΔP的方向由v ?决定,与1p 、2p 无必然的联系,计算时先规定正方向。 三、对动量守恒定律的理解: 1、研究对象:相互作用的物体所组成的系统 2、条件: A 、理想条件:系统不受外力或所受外力有合力为零。 B 、近似条件:系统内力远大于外力,则系统动量近似守恒。 C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。 结论:等质量 弹性正碰 时,两者速度交换。 依据:动量守恒、动能守恒 五、判断碰撞结果是否可能的方法: 碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。 动能和动量的关系:m p E K 22 = K mE p 2= 六、反冲运动: 1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。 2、规律:系统动量守恒 3、人船模型: 条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。 七、临界条件: “最”字类临界条件如压缩到最短、相距最近、上升到最高点等的处理关键是——系统各组成部分具有共同的速度v 。 八、动力学规律的选择依据: 1、题目涉及时间t,优先选择动量定理; 2、题目涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒; 3、题目涉及位移s,优先考虑动能定理、机械能守恒定律、能量转化和守恒定律; 4、题目涉及运动的细节、加速度a,则选择牛顿运动定律+运动学规律; 九、表达规范:说明清楚研究对象、研究过程、规律、规定正方向。 典型练习 一、基本概念的理解:动量、冲量、动量的改变量 1、若一个物体的动量发生了改变,则物体的( ) A、速度大小一定变了 B 、速度方向一定变了 C 、速度一定发生了改变 D 、加速度一定不为0 2、质量为m 的物体从光滑固定斜面顶端静止下滑到底端,所用的时间为t , 斜面倾角为θ。则( ) A 、物体所受支持力的冲量为0 B 、物体所受支持力冲量为θcos mgt C 、重力的冲量为mgt D 、物体动量的变化量为 θsin mgt 3、在光滑水平面上水平固定放置一端固定的轻质弹簧,质量为 m 的小球沿弹簧所位于的直线方向以速度v 运动,并和弹簧发生碰撞,小球和弹簧作用后又以相同的速度反弹回去。在球和弹簧相互作用过程中,弹簧对小球的冲量I 的大小和弹簧对小球所做的功W 分别为: A 、I =0、 W =mv 2 B 、I=2mv 、W = 0 C 、I =m v、 W = mv 2/2 D 、I=2mv 、 W = mv 2 /2 二、动量定理的应用: 4、下列运动过程中,在任意相等时间内,物体动量变化相等的是:( ) A 、匀速圆周运动 B 、自由落体运动 C 、平抛运动 D、匀减速直线运动

高三物理碰撞爆炸与反冲

碰撞、爆炸与反冲 要点一 碰撞 即学即用 1.如图所示,在光滑水平面上有直径相同的a 、b 两球,在同一直线上运动.选定向右为正方向, 两球的动量分别为p a =6 kg ·m/s 、p b =-4 kg ·m/s .当两球相碰之后,两球的动量可能是 ( ) A .p a =-6 kg ·m/s 、p b =4 kg ·m/s B .p a =-6 kg ·m/s 、p b =8 kg ·m/s C .p a =-4 kg ·m/s 、p b =6 kg ·m/s D .p a =2 kg ·m/s 、p b =0 答案 C 要点二 爆炸与反冲 即学即用 2.抛出的手雷在最高点时的水平速度为10 m/s ,这时突然炸成两块,其中大块质量300 g 仍按原方向飞行,其速度测得 为50 m/s ,另一小块质量为200 g ,求它的速度的大小和方向. 答案 50 m/s 与原飞行方向相反 题型1 反冲问题 【例1】如图所示(俯视图),一玩具车携带若干质量为m 1的弹丸,车和弹丸的总质量为m 2,在 半径为R 的水平光滑固定轨道上以速率v 0做匀速圆周运动.若小车每运动一周便沿运动方向 相对地面以恒定速度u 发射一枚弹丸.求: (1)至少发射多少颗弹丸后小车开始反向运动? (2)小车反向运动前发射相邻两枚弹丸的时间间隔的表达式. 答案 (1)u m m 10 2v (2)Δt = u km m km m R 10212)(π2--v (k =1,2,3,…且k

高二下册物理磁现象及磁场的知识点归纳:高二磁场知识点

高二下册物理磁现象及磁场的知识点归纳:高二磁 场知识点 1、磁现象: 磁性:物体能够吸引钢铁、钴、镍一类物质的性质叫磁性。 磁体:具有磁性的物体,叫做磁体。 磁体的分类:①形状:条形磁体、蹄形磁体、针形磁体; ②来源:天然磁体(磁铁矿石)、人造磁体; ③保持磁性的时间长短:硬磁体(永磁体)、软磁体。 磁极:磁体上磁性最强的部分叫磁极。磁体两端的磁性最强,中间的磁性最弱。 磁体的指向性:可以在水平面内自由转动的条形磁体或磁针,静止后总是一个磁极指南(叫南极,用S表示),另一个磁极指北(叫北极,用N表示)。 磁极间的相互作用:同名磁极互相排斥,异名磁极互相吸引。 无论磁体被摔碎成几块,每一块都有两个磁极。 磁化:一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。 钢和软铁都能被磁化:软铁被磁化后,磁性很容易消失,称为软磁性材料;钢被磁化后,磁性能长期保持,称为硬磁性材料。所以钢是制造永磁体的好材料。 2、磁场: 磁场:磁体周围的空间存在着一种看不见、摸不着的物质,我们把它叫做磁场。

磁场的基本性质:对放入其中的磁体产生磁力的作用。 磁场的方向:物理学中把小磁针静止时北极所指的方向规定为该点磁场的方向。 磁感线:在磁场中画一些有方向的曲线,方便形象的描述磁场,这样的曲线叫做磁感线。对磁感线的认识: ①磁感线是假想的曲线,本身并不存在; ②磁感线切线方向就是磁场方向,就是小磁针静止时N极指向; ③在磁体外部,磁感线都是从磁体的N极出发,回到S极。在磁体内部正好相反。④磁感线的疏密可以反应磁场的强弱,磁性越强的地方,磁感线越密; 3、地磁场: 地磁场:地球本身是一个巨大的磁体,在地球周围的空间存在着磁场,叫做地磁场。 指南针:小磁针指南的叫南极(S),指北的叫北极(N),小磁针能够指南北是因为受到了地磁场的作用。地磁场的北极在地理南极附近;地磁场的南极在地理北极附近。 地磁偏角:地理的两极和地磁的两极并不重合,磁针所指的南北方向与地理的南北极方向稍有偏离(地磁偏角),世界上最早记述这一现象的人是我国宋代的学者沈括。(《梦溪笔谈》)

动量专题-碰撞、爆炸及反冲

要点一碰撞 1.如图所示,在光滑水平面上有直径相同的a、b两球,在同一直线上运动.选定向右为正方向,两球的动量分别为 p a=6 kg·m/s、p b=-4 kg·m/s.当 两球相碰之后,两球的动量可能是( ) A.p a=-6 kg·m/s、p b=4 kg·m/s B.p a=-6 kg·m/s、p b=8 kg·m/s C.p a=-4 kg·m/s、p b=6 kg·m/s D.p a=2 kg·m/s、p b=0 要点二爆炸与反冲 2.抛出的手雷在最高点时的水平速度为10 m/s,这时突然炸成两块,其中大块质量300 g仍按原方向飞行,其速度测 得为50 m/s,另一小块质量为200 g,求它的速度的大小和方向. 题型1 反冲问题 【例1】如图所示(俯视图),一玩具车携带若干质量为m1的弹丸,车和弹丸的总质量为m2,在半径为R的水平光滑固定轨道上以速率v0做匀速圆周运动.若小车每运动一周便沿运动方向相对地面以恒定速度u发射一枚弹丸.求: (1)至少发射多少颗弹丸后小车开始反向运动? (2)小车反向运动前发射相邻两枚弹丸的时间间隔的表达式. 题型2 碰撞问题 【例2】某兴趣小组设计了一种实验装置,用来研究碰撞问题,其模型如图所示.用完全相同的 轻绳将N个大小相同、质量不等的小球并列悬挂于一水平面,球间有微小间隔,从左到右, 球的编号依次为1、2、3……N,球的质量依次递减,每球质量与其相邻左球质量之比为k(k <1).将1号球向左拉起,然后由静止释放,使其与2号球碰撞,2号球再与3号球碰撞……所 有碰撞皆为无机械能损失的正碰.(不计空气阻力,忽略绳的伸长,g取10 m/s2) (1)设与n+1号球碰撞前,n号球的速度为v n,求n+1号球碰撞后的速度. (2)若N=5,在1号球向左拉高h的情况下,要使5号球碰撞后升高16h(16h小于绳长),问k值为多少? 题型3 碰撞模型 【例3】如图甲所示,A球和木块B用细线相连,A球置于平台上的P点,木块B置于斜面底端的Q点上,均处于静止,细线呈松驰状态.一颗水平射来的子弹击入A球中没有穿出,在极短时间内细线被绷紧,A球继续向右紧贴平台运动,然后滑入半径R的半圆形槽中,当A球沿槽壁滑至槽的最低点C时,木块B沿斜面向上的位移大小为L,如

高中物理磁现象和磁场知识点总结

第三章第1节磁现象和磁场 一、磁现象 磁性、磁体、磁极:能吸引铁质物体的性质叫磁性。具有磁性的物体叫磁体,磁体中磁性最强的区域叫磁极。 二、磁极间的相互作用规律:同名磁极相互排斥,异名磁极相互吸引.(与电荷类比) 三、磁场 1.磁体的周围有磁场 2.奥斯特实验的启示: ——电流能够产生磁场, 运动电荷周围空间有磁场 导线南北放置 3.安培的研究:磁体能产生磁场,磁场对磁体有力的作用;电流能产生磁场,那么磁场对电流也应该有力的作用。 磁场的基本性质 ①磁场对处于场中的磁体有力的作用。 ②磁场对处于场中的电流有力的作用。 第三章第3节几种常见的磁场 一、磁场的方向 物理学规定: 在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是该点的磁场方向。 二、图示磁场 1.磁感线——在磁场中假想出的一系列曲线 ①磁感线上任意点的切线方向与该点的磁场方向一致; (小磁针静止时N极所指的方向)

②磁感线的疏密程度表示磁场的强弱。 2.常见磁场的磁感线 永久性磁体的磁场:条形,蹄形 直线电流的磁场 剖面图(注意“”和“×”的意思) 箭头从纸里到纸外看到的是点 从纸外到纸里看到的是叉 环形电流的磁场(安培定则:让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线中心轴线上磁感线的方向。) 螺线管电流的磁场(安培定则:用右手握住螺旋管,让弯曲的四指所指的方向跟电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向。) 常见的图示: 磁感线的特点: 1、磁感线的疏密表示磁场的强弱 2、磁感线上的切线方向为该点的磁场方向 3、在磁体外部,磁感线从N极指向S极;在磁体内部,磁感线从S极指向N极 4、磁感线是闭合的曲线(与电场线不同) 5、任意两条磁感线一定不相交 6、常见磁感线是立体空间分布的 7、磁场在客观存在的,磁感线是人为画出的,实际不存在。 四、安培分子环流假说 1.分子电流假说 任何物质的分子中都存在环形电流——分子电流,分子电流使每个分子都成为一个微小的磁体。 2.安培分子环流假说对一些磁现象的解释: 未被磁化的铁棒,磁化后的铁棒 永磁体之所以具有磁性,是因为它内部的环形分子电流本来就排列整齐. 永磁体受到高温或猛烈的敲击会失去磁性,这是因为在激烈的热运动或机械振动的影响下,分子电流的取向又变得杂乱无章了。 3.磁现象的电本质

动量守恒定律典型例题报告.doc

班级: 学号: 姓名: 动量守恒定律习题课 一、动量守恒定律知识点 1.动量守恒定律的条件⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) ,即p 1 +p 2=p 1+p 2, (2)Δp 1 +Δp 2=0,Δp 1= -Δp 2 。 3.应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象。 (2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。 (3)确定过程的始、末状态,写出初动量和末动量表达式。 注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。 (4)建立动量守恒方程求解。 二、碰撞 1.弹性碰撞 特点:系统动量守恒,机械能守恒。 设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则 由动量守恒定律可得:221101v m v m v m +=① 碰撞前后能量守恒、动能不变:2 22 212111210 121 v m v m v m +=② 联立①②得:01 2 12 1v v m m m m +-= 0222 11v v m m m += (注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论] ①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <m 2时,v 1>0,v 2>0(同向运动) ④当m l 0(反向运动) ⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动) 2.非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能,两物体仍能分离。 特点:动量守恒,能量不守恒。 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′ 机械能/动能的损失:2 2 22 1111 12112211222222()()k k k E E E m v m v m v m v ''?=-=+-+ 3.完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大。 特点:动量守恒,能量不守恒。 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v 动能损失:22 2 2 111 1112212222()()k k k E E E m v m v m m v ?=-=+-+ 解决碰撞问题须同时遵守的三个原则: ①系统动量守恒原则 ②能量不增加的原则 ③物理情景可行性原则:(例如:追赶碰撞: 碰撞前: 碰撞后:在前面运动的物体的速度一定不小于在后面运动的物体的速度) 【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s,p 乙= 7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则两球质量m 甲与m 乙的关系可能是( ) A .m 甲=m 乙 B.m 乙=2m 甲 C.m 乙=4m 甲 D.m 乙=6m 甲 解析:由碰撞中动量守恒可求得pA ′=2 kg ·m/s 要使A 追上 B , 则必有:vA >vB , 即 mB >1.4mA ① 碰后pA ′、pB ′均大于零,表示同向运动,则应有:vB ′≥vA ′ 被追追赶V ?V

相关主题