搜档网
当前位置:搜档网 › 物理竞赛电学辅导试题

物理竞赛电学辅导试题

物理竞赛电学辅导试题
物理竞赛电学辅导试题

物理竞赛电学辅导

1.落在高压线上的鸟儿不会触电死亡,这是因为[ ]

A.鸟爪上的角质层是绝缘的。

B.鸟儿对电流的承受能力比较强。

C.鸟儿双脚落在同一条导线上,没有电流流过鸟的身体。

D.高压线有橡胶外皮。

2.家用电熨斗为适应不同衣料的熨烫,设计了调整温度的多挡开关。使用时转动旋钮即可使熨斗加热到所需的温度。图1是电熨斗的电路图。旋转多挡开关可以改变1、2、3、4之间的连接情况。现将开关置于温度最高挡,这时,1、2、3、4之间的连接是图2中的哪一幅?[ ]

3.电视机的玻璃荧光屏表面经常有许多灰尘,这主要是因为[ ] A.灰尘的自然堆积。

B.玻璃有较强的吸附灰尘的能力。

C.电视机工作时,屏表面温度较高而吸附灰尘。

D.电视机工作时,屏表面有静电而吸咐灰尘。

4.在图3的电路中,R为待测电阻,阻值约为5欧。给你的器材有:滑动变阻器(2安,0~10欧);电压表,有2个量程,分别为0~3伏、0~15

伏;电流表,有2个量程,分别为0~0.6安、0~3安;

电池组为新干电池3节串联。两只电表的量程可采用

以下4种选法,但为使测量时能较准确地读数,最后,

两只电表的量程应采用[ ]

A.0~0.6安和0~1.5伏。

B.0~3安和0~15伏。

C.0~0.6安和0~3伏。

D.0~3安和0~3伏。

5.电炉通电后,电炉丝热得发红,而跟电炉连接的铜导线却不那么热,这是因为[ ]

A.通过铜导线的电流小,所以它消耗的电能也较少。

B.电炉丝和铜导线消耗的电能相同,但铜导线散热快,所以就不那么热。

C.通过电炉丝的电流大,所以它消耗的电能较多。

D.铜导线电阻较小,所以它消耗的电能较少。

高中物理竞赛讲义全套(免费)

目录 中学生全国物理竞赛章程 (2) 全国中学生物理竞赛内容提要全国中学生物理竞赛内容提要 (5) 专题一力物体的平衡 (10) 专题二直线运动 (12) 专题三牛顿运动定律 (13) 专题四曲线运动 (16) 专题五万有引力定律 (18) 专题六动量 (19) 专题七机械能 (21) 专题八振动和波 (23) 专题九热、功和物态变化 (25) 专题十固体、液体和气体的性质 (27) 专题十一电场 (29) 专题十二恒定电流 (31) 专题十三磁场………………………………………………………………………… 33 专题十四电磁感应 (35) 专题十五几何光学 (37) 专题十六物理光学原子物理 (40)

中学生全国物理竞赛章程 第一章总则 第一条全国中学生物理竞赛(对外可以称中国物理奥林匹克,英文名为Chinese Physic Olympiad,缩写为CPhO)是在中国科协领导下,由中国物理学会主办,各省、自治区、直辖市自愿参加的群众性的课外学科竞赛活动,这项活动得到国家教育委员会基础教育司的正式批准。竞赛的目的是促使中学生提高学习物理的主动性和兴趣,改进学习方法,增强学习能力;帮助学校开展多样化的物理课外活动,活跃学习空气;发现具有突出才能的青少年,以便更好地对他们进行培养。第二条全国中学生物理竞赛要贯彻“教育要面向现代化、面向世界、面向未来”的精神,竞赛内容的深度和广度可以比中学物理教学大纲和教材有所提高和扩展。 第三条参加全国中学生物理竞赛者主要是在物理学习方面比较优秀的学生,竞赛应坚持学生自愿参加的原则.竞赛活动主要应在课余时间进行,不要搞层层选拔,不要影响学校正常的教学秩序。 第四条学生参加竞赛主要依靠学生平时的课内外学习和个人努力,学校和教师不要为了准备参加竞赛而临时突击,不要组织“集训队”或搞“题海战术”,以免影响学生的正常学习和身体健康。学生在物理竞赛中的成绩只反映学生个人在这次活动中所表现出来的水平,不应当以此来衡量和评价学校的工作和教师的教学水平。 第二章组织领导 第五条全国中学生物理竞赛由中国物理学会全国中学生物理竞赛委员会(以下简称全国竞赛委员会)统一领导。全国竞赛委员会由主任1人、副主任和委员若干人组成。主任和副主任由中国物理学会常务理事会委任。委员的产生办法如下: 1.参加竞赛的省、自治区、直辖市各推选委员1人; 2.承办本届和下届决赛的省。自治区、直辖市各推选委员3人。 3.由中国物理学会根据需要聘请若干人任特邀委员。 在全国竞赛委员会全体会议闭会期间由主任和副主任组成常务委员会,行使全国竞赛委员会职权。 第六条在全国竞赛委员会领导下,设立命题小组、组织委员会和竞赛办公室等工作机构。命题小组成员由全国竞赛委员会聘请专家和高等院校教师担任。组

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

高中物理竞赛讲义-质点运动的基本概念-运动的合成和分解

质点运动的基本概念 运动的合成和分解 一、图像法 例1、蚂蚁离开巢沿直线爬行,它的速度与到蚁巢中心的距离成反此,当蚂蚁爬到距巢中心L 1=1m 的A 点处时,速度是v 1 =2cm /s ,试问:蚂蚁从A 点爬到距巢中心L 2=2m 的B 点所需的时间为多少? 例2、已知一质点做变加速运动,初速度为v 0,其加速度随位移线性减小的关系及加速过程中加速过程中加速度与位移之间的关系满足条件a=a 0-ks ,式中a 为任意位置处的加速度,求当位移为s 0是瞬时速度。 二、矢量运算 1、矢量加法(矢量合成) (1)平行四边形法则 已知两个矢量F 1和F 2的大小和夹角,求合矢量F 合的大小和方向。 2212122cos F F F F F θ=++ 212sin tan cos F F F θαθ =+ (2)三角形法则和多边形法则(接龙法则) (3)矢量式的脚标的接龙法则 例如,人在车厢内走动,人相对于地的速度等于人相对于车的速度加上车相对于地的速度。 =+v v v r r r 车车人地人地

(4)矢量减法 将减法变为加法然后再利用接龙法则。 例3:(1)无风的下雨天,小明坐在匀速行驶的车上,发现雨滴沿斜线下落,且与竖直方向成30 夹角,若车速为10m/s,则雨滴下落的速度为多大? (2)小明坐在以10m/s向东匀速行驶的车上,发现雨滴是竖直下落的,若雨滴对地速度为20m/s,则雨滴实际上是如何下落的? 三、运动的合成和分解 实例1:平抛运动 实例2:滚动的车轮边缘上一个点的运动 1、运动合成和分解其实就是位移、速度、加速度的合成和分解 2、合运动的效果和若干个分运动的总效果相同(等效性) 3、实际观察到的运动是合运动,分运动是人们为了方便研究而假想出来的。 四、运动分解的方法 1、按效果分解 2、正交分解:建立直角坐标系,将运动(位移、速度、加速度)分解在坐标轴方向。 例4、如图所示,在离水面高度为h的岸边,有人用绳子拉船靠 岸,若人拉绳的速率恒为v0,试求船在离岸边s距离处时的速度。

初二物理竞赛试题电学部分练习题

初二物理竞赛试题电学部分练习题

物理应用知识竞赛试题 一、单选题(共33分,每小题3分) 题 号 1 2 3 4 5 6 7 8 9 10 11 答案A D C A D A B D B B 没 有 11 题 1.有二只灯泡,分别标有“220V15W”和“220V100W”的字样。如将它们串联接在电压为380伏的动力电源上,则 A.15W的灯泡烧坏,100W的灯泡完好B.100W的灯泡烧坏,15W的灯泡完好C.二只灯泡均被烧坏D.二只灯泡均完好 2.在电学实验中遇到断路时,常常用伏特表来检测。某同学连接如图所示的电 路,电键闭合后,电灯不亮,安

培表无指示。这时用伏特表测得a、b两点间和b、c两点间的电压均为零,而a、d 间和b、d间的电压均不为零,这说明 A.电源接线柱接触不良 B.电键的触片或接线柱接触不良 C.安培表接线柱接触不良 D.灯泡灯丝断了或灯座接触不良 3.李军在检修一只1000瓦的电炉时,发现电炉丝断了一小截,他用一段较细一些但由同种材料制成的电炉丝将残缺部分补接至原长,这样再接入原电路中使用时,其实际发热功率将 A.大于1000瓦B.等于1000瓦C.小于1000瓦 D.无法判断 4.小明做实验时把甲乙两只灯泡串联后通过开关接在电源上。闭合开关后, 甲灯发光,乙灯不发光,乙灯 不发光的原因是 A.它的电阻大小C.流过乙灯的电

流比甲灯小 B.它的电阻太大D.乙灯灯丝断了5.图2中四个灯泡的连接方式是 A.四灯串联 B.四灯并联 C.L 2、L 3 、L 4 并联,再与L 1 串联 D.L 1 、 L 2、L 3 并联,再与L 4 串联 6.标有“220V,40W”和“220V,60W”的两只 灯泡L 1、L 2 、串联在电路中时,两灯泡均发 光,实际消耗的功率分别为W 1和W 2 ,则: A.W 1>W 2 B.W 1 =W 2 C.W 1

高中物理竞赛讲义-惠斯通电桥和补偿电路

惠斯通电桥和补偿电路 一、测量电阻的方法: 1、欧姆表直接测量 缺点:精度不高 2、伏安法测出电流电压进而算出电阻 缺点:真实电表的内阻会引起系统误差(内接法、外接法) 二、惠斯通电桥 1、惠斯通电桥电路图: 其中R 1、R 2为定值电阻,R 3为可变电阻,R x 为待测电阻,G 为灵敏电流计。 2、测量方法: (1)调节可变电阻R 3 ,使得电 桥上的灵敏电流计示数为0 (2)由电桥平衡可得: 3、惠斯通电桥测电阻的优点: (1)精度高。精度主要取决于电阻阻值的精度和灵敏电流计的精度。 (2)灵敏电流计所在的电桥上没有电流,因此避免了电表内阻的影响。 (3)电源电动势和内阻对测量也没有影响。 例1、如图所示的电桥电路中,电池组电动势ε1=20V ,R 1=240 Ω,R 2=20Ω,R 4=20Ω,电池ε2=2V ,问可变电阻R 3应调到多 大时电流表中电流为0? 例2、将200个电阻连成如图所示的电路,图中各P 点是各支路中连接两个电阻的导线上的点.所有导线 的电阻都可忽略.现将一个电动势为E 、内阻为r 0的 电源接到任意两个P 点处.然后将一个没接电源的P 点处切断,发现流过电源的电流与没切断前一样,则 这200个电阻R 1、R 2…R 100,r 1、r 2…r 100应有怎样的关 系?此时AB 和CD 导线之间的电压为多少? 231 x R R R R

例3、有七个外形完全一样的电阻,已知其中六个的阻值相同,另一个的阻值不同。请按照下面提供的器材和操作限制,将那个阻值不同的电阻找出,并指出它的阻值是偏大还是偏小,同时要求画出所用电路图,并对每步判断的根据予以论证。 提供的器材有:①电池。②一个仅能用来判断电流方向的电流表(量程足够),它的零刻度在刻度盘的中央,而且已知当指针向右偏时电流是由哪个接线柱流入电流表的。③导线若干。 操作限制:全部过程中电流表的使用不得超过三次。

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

高中物理竞赛初级讲义 电学基尔霍夫定律、等效电源、电流叠加定理

电磁学第7讲基尔霍夫定律、等效电源、 电流叠加定理 一、基尔霍夫定律 1、节点电流规律: 2、回路电压规律: 【例1】如图所示电路中,已知ε1=32V,ε2=24V,R1=5Ω,R2=6Ω,R3=54Ω,求各支路的电流。 【例2】如图所示,已知电源电动势为ε=1V,内阻不计。电阻R1=1Ω,R2=2Ω,R3=3Ω,R4=4Ω,R5=5Ω。求通过R1,R2,R3的电流强度。 二、等效电源 1、等效电压源 (1)恒压源与电压源 不论外电阻R如何,物理竞赛线上1对1辅导答疑 Q。q: 3429866816总是提供不变电压的理想电源为恒压源。 (2)等效电压源定理(戴维宁定理) 2、等效电流源 (1)恒流源与电流源 不论外电阻R如何,总是提供不变电流的理想电源为恒流源。 (2)等效电流源定理(诺尔顿定理) 3、电压源与电流源的转化 实际的电源既可看作电压源,又可看作电流源。 电流源与电压源等效的条件: 【例3】求解以下问题: R r ε a b R 网络 有源 R r ε a b I r R

(1)求参数分别为(ε1、r1)和(ε2、r2)的两个电源串联使用时的等效电压源和等效电流源; (2)求参数分别为(ε1、r1)和(ε2、r2)的两个电源并联使用时的等效电压源和等效电流源; 【例4】如图所示,已知电源电动势为ε=1V,内阻不计。电阻R1=1Ω,R2=2Ω,R3=3Ω,R4=4Ω,R5=5Ω。求通过R1,R2,R3的电流强度(用等效电源求解)。 【例5】如图所示的电路中,ε1=3.0V、r1=0.5Ω,ε2=1.0V、r2=1.0Ω,R1=10.0Ω,R2=5.0Ω,R3=4.5Ω,R4=19.0Ω。 (1)试用等效电压源定理物理竞赛线上1对1辅导答疑 Q。q:3429866816计算从电源(ε2、r2)正极流出的电流I2; (2)试用等效电流源定理计算流过R1的电流I1。 三、电流叠加定理 【例6】如图所示的电路中,ε1=3.0V、r1=0.5Ω,ε2=1.0V、r2=1.0Ω,R1=10.0Ω,R2=5.0Ω,R3=4.5Ω,R4=19.0Ω。试用电流叠加原理求解 (1)从电源(ε2、r2)正极流出的电流I2; (2)流过R1的电流I1。

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高一物理竞赛讲义第2讲教师版

第2讲相对运动和 匀变速运动 温馨寄语 变速运动的研究是高中物理课本的开始,也是我们训练童鞋们高中物理竞赛能力,必不可少的一步。这个地方的难点主要在于,对于加速度概念的理解,和对匀变速直线运动诸多公式的熟练运用。 告诉大家个诀窍:就是自己推公式。这是记住公式,并且能够灵活运用的不二法门。 另一方面,童鞋们也会着重的接触物理竞赛运动学的精髓之一:相对运动 知识点睛 一:运动的合成分解: 由于位移、速度、加速度与力一样都是矢量。是分别描述物体运动的位置变化运动的快慢及物体运动速度变化的快慢的。由于一个运动可以看成是由分运动组成的,那么已知分运动的情况,就可知道合运动的情况。 例如轮船渡河,如果知道船在静水中的速度的大小和方向,以及河水流动的速度的大小和方向,应用平行四边法则,就可求出轮船合运动的速度v(大小方向)。这种已知分运动求合运动叫做运动的合成。 相反,已知合运动的情况,应用平行为四边法则,也可以求出分运动和情况。 例如飞机以一定的速度在一定时间内斜向上飞行一段位移,方向与水平夹角为30 ,我们很容易求出飞机在水平方向和竖直方向的位移:这种已知合运动求分运动叫运动的分解。合运动分运动是等时的,独立的这一点必须牢记。

以上两例说明研究比较复杂的运动时,常常把这个运动看作是两个或几个比较简单的运动组成的,这就使问题变得容易研究。在上例轮船在静水中是匀速行驶的,河水是匀速流动的,则轮船的两个分运动的速度矢量都是恒定的。轮船的合运动的速度矢量也是恒定的。所以合运动是匀速直线的。一般说来,两个直线运动的合成运动,并不一定都是直线的。在上述轮船渡河的例子中如果轮船在划行方向是加速的行驶,在河水流动方向是匀速行驶,那么轮船的合运动就不是直线运动而是曲线运动了。由此可知研究运动的合成和分解也是为了更好地研究曲线运动作准备。掌握运动的独立性原理,合运动与分运动等时性原理也是解决曲线运动的关键。 运动合成、分解的法则: 运动的合成和分解是指位移的合成与分解及速度、加速度的合成与分解。 因为位移、速度和加速度都是矢量,所以运动的合成(矢量相加)和分解(矢量相减)都遵循平行四边形法则。关于这一点通过实验是完全可以验证的,通过对实际运动观察也能得到证实。 如图所示,若OA矢量代表人在船上行走的位移(速度或加速度)OB矢量代表船在水中行进的位移(速度或加速度),则矢量OC的大小和方向就代表人对水(合运动)的位移(速度或加速度)。 几点说明: ⑴掌握运动的合成和分解的目的在于为我们提供了一个研究复杂运动的简单方法。 ⑵物体只有同时参加了几个分运动时,合成才有意义,如果不是同时发生的分运动,则合成也就失去了意义。 ⑶当把一个客观存在的运动进行分解时,其目的是在于研究这个运动在某个方向的表现。 ⑷处理合成、分解的方法主要有作图法和计算法。计算法中有余弦定理计算、正弦定理计算、勾股定理计算及运用三角函数等。

物理竞赛电学讲义 2

静电场 一、电场强度 1、实验定律 a 、库仑定律:[内容]条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴与⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k 进行修正(如果介质分布就是均匀与“充分宽广”的,一般认为k′= k /εr )。只有条件⑶,它才就是静电学的基本前提与出发点(但这一点又就是常常被忽视与被不恰当地“综合应用”的)。 b 、电荷守恒定律 c 、叠加原理 2、电场强度 a、电场强度的定义(使用高斯定理) 电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线就是抽象而直观地描述电场有效工具(电场线的基本属性)。 b 、不同电场中场强的计算:决定电场强弱的因素有两个,场源(带电量与带电体的形状)与空间位置。这可以从不同电场的场强决定式瞧出—— ⑴点电荷:E = k 2r Q 结合点电荷的场强与叠加原理,我们可以求出任何电场的场强 ⑵均匀带电环,垂直环面轴线上的某点P:E = 2322)R r (kQr +,其 中r 与R的意义见图。 ⑶均匀带电球壳 内部:E 内 = 0 外部:E外 = k 2r Q ,其中r 指考察点到球心的距离 如果球壳就是有厚度的的(内径R1 、外径R 2),在壳体中(R 1

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

物理竞赛电学讲义

静电场 一、电场强度 1、实验定律 a 、库仑定律:[内容]条件:⑴点电荷,⑵真空,⑶点电荷静止或相对静止。事实上,条件⑴和⑵均不能视为对库仑定律的限制,因为叠加原理可以将点电荷之间的静电力应用到一般带电体,非真空介质可以通过介电常数将k 进行修正(如果介质分布是均匀和“充分宽广”的,一般认为k′= k /εr )。只有条件⑶,它才是静电学的基本前提和出发点(但这一点又是常常被忽视和被不恰当地“综合应用”的)。 b 、电荷守恒定律 c 、叠加原理 2、电场强度 a 、电场强度的定义(使用高斯定理) 电场的概念;试探电荷(检验电荷);定义意味着一种适用于任何电场的对电场的检测手段;电场线是抽象而直观地描述电场有效工具(电场线的基本属性)。 b 、不同电场中场强的计算:决定电场强弱的因素有两个,场源(带电量和带电体的形状)和空间位置。这可以从不同电场的场强决定式看出—— ⑴点电荷:E = k 2 r Q 结合点电荷的场强和叠加原理,我们可以求出任何电场的场强 ⑵均匀带电环,垂直环面轴线上的某点P :E = 2 322) R r (kQr +,其 中r 和R 的意义见图。 ⑶均匀带电球壳 内部:E 内 = 0 外部:E 外 = k 2 r Q ,其中r 指考察点到球心的距离 如果球壳是有厚度的的(内径R 1 、外径R 2),在壳体中(R 1<r <R 2): E = 23 1 3r R r k 34-πρ ,其中ρ为电荷体密度。这个式子的物理意义可 以参照万有引力定律当中(条件部分)的“剥皮法则”理解〔)R r (3 433-πρ即为图中虚线以内部分的总电量〕。 ⑷无限长均匀带电直线(电荷线密度为λ):E = r k 2λ ⑸无限大均匀带电平面(电荷面密度为σ):E = 2πk σ 二、电势 1、电势:把一电荷从P 点移到参考点P 0时电场力所做的功W 与该电荷电量q 的比值,即U = q W 参考点即电势为零的点,通常取无穷远或大地为参考点。和场强一样,电势是属于场本身的物理量。W 则为电荷的电势能。 2、典型电场的电势 a 、点电荷 以无穷远为参考点,U = k r Q b 、均匀带电球壳 以无穷远为参考点,U 外 = k r Q ,U 内 = k R Q 3、电势的叠加:由于电势的是标量,所以电势的叠加服从代数加法。很显然,有了点电荷

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

初中物理竞赛辅导电学部分

初中物理竞赛电学部分辅导 例题1:某人设计了下图所示电路,电路中变阻器的总阻值与电阻R的阻值相同,电源电压恒定,当他将滑片P从a端滑到b端的过程中,所看到的现象是() A.安培表的示数逐渐变大 B.安培表的示数逐渐变小 C.安培表的示数先减小,然后增大到原值 D.安培表的示数先增大,然后减小到原值 例题2:可充电电池的额定电压约为1.3伏特。当电流从正极流入、从负极流出时即可充电。充电电流在20毫安—40毫安范围内比较适合。现有一个额定输出电压为36伏特,额定输出电流为0.5安培的电源,还有电阻值为100欧姆、510欧姆、1000欧姆、2200欧姆和6800欧姆的几个电阻器供选用。请选择适当的电阻,构成简单的充电电路,可以分别给一节或两节电池充电,不必更换所用电阻器。 1.画出电路图(画出两节充电电池) 2.如果通往充电电池的两条导线短路,电阻器消耗的电功率是多少? 例题3:图1为一种电磁炉的原理示意图,它是利用高频电流在电磁炉内部线圈中产生磁场,磁化铁磁性材料制成的烹饪锅,在锅体形成无烽小的涡流(感应电流)而产生焦耳热。同时被磁化的铁磁材料分子因摩擦,碰撞而发热。从而使锅体自身发热达到加热食物的目的。 (1)使用电磁炉加热食物时,不产生明火,无烟尘,无废气,清洁、高效、节 能。请写出电磁炉在使用中可能涉及到的物理知识(只写名称不写内容,不少 于10个可得满分) (2)在使用电磁炉时,炉和锅之间的热是由______传递给_____的。电磁炉加热食物的过程中消耗______能转化为_____能;若用该电磁炉1次蒸熟5个馒头需用时间25min,那么1次只蒸熟1个同样大小的馒头大约需要_____min。(3)某款电磁炉性能参数如下表所示: 型号额定电压额定功率功率调节范围温度调节范围热效率 SC-16 200V 50Hz 1600W 450W---1600W 70O C---240O C 大于90% 根据上表数据,若电磁炉在功率调节和温度调节的范围内,加热温度随功率调节的变化图象是一直线,电磁炉工作电压正常,在1个标准大气压下,烧开一锅质量为3kg,温度为22O C的水最多需要多少时间(不计锅吸热及热散失) 例题4:用电流表和电压表测电流和电压时,通常并不考虑仪表本身电阻对待测电路的影响,而将其视为“理想仪表”即认为电流表的内阻为零,电压表的内电阻为无限大。实际上,电流表和电压表都有一定的电阻值,因而我们可以把电流表看成一个能显示通过自身电流大小的其阻值很小的电阻;可以把电压表看成一个能显示自身两端电压

高中物理竞赛讲义-电介质

电介质 一、电介质(绝缘体) 在外电场的作用下不易传导电流的物体叫绝缘体又叫电介质 1、电介质的分类 无外电场时,正负电荷等效中心不重合,叫做有极分子 无外电场时,正负电荷等效中心重合,叫做无极分子 2、电介质的极化 对于有极分子,无外电场时,由于分子的热运动,分子的取向是杂乱无章的。 施加电场后,分子受到电场力作用排列变得规则。在分子热运动和外电场的共同作用下,分子排列比较规则。 这种极化叫做有极分子的取向极化。 对于无极分子,无外电场时,分子内的正负电荷中心是重合的。 施加电场后,分子内的正负电荷受到电场力作用,各自的等效中心发生偏离。 这种极化叫做无极分子的位移极化。 对于有极分子,也会发生位移极化,只不过位移极化的效果远小于取向极化 3、电介质极化的效果 等效为电介质表面出现极化电荷(也叫束缚电荷),内部仍然为电中性。 表面的极化电荷会在电介质内产生与原电场方向相反的附加电场。 外加电场越强,附加电场也越强。 类比静电平衡中的导体0。注意,电介质内部合场强不为0 思考:附加电场的大小是否会超过外电场? 答案:不会。一般来说,物理反馈会减弱原来的变化,但不会出现反效果。 例如:勒沙特列原理(化学平衡的移动)、楞次定律(电磁感应) 例1:解释:带电体能吸引轻小物体

二、带电介质的平行板电容器 1、带电介质对电容的影响 假设电容器带电量Q 一定,电介质极化产生极化电荷,由于极化电荷会在电容内部产生附加电场E ’,会使得极板间电场E 0减小为合电场E= E 0 - E ’ ,从而使电势差U 减小,电容C 增加。(若无特殊说明,默认为恒电量问题) 假设电容器两板电势差U 一定,电介质极化产生极化电荷,由于极化电荷的感应效果,会使得极板上带电量Q 0增加为Q ,电容C 增加。 可见电介质极化使电容增大,增大的多少与极化的强弱有关。 2、介电常数 介电常数ε反映了电介质极化的能力,也就反映了电容变化的程度。 真空的介电常数01 4k επ= (利用这个恒等式可以将很多电学公式用ε0表示) 空气的介电常数114'4k k εππ=≈ 经常用相对介电常数εr 来表示: 某物质的相对介电常数等于自身的介电常数与真空的比值(大于1)。 r εεε= 例如:真空中的库仑定律可写为:121222014kq q q q F r r πε== 介质中的库仑定律可写为:1212122220'1144r r F k q q q q q q F r r r πεπεεε= ===真空 3、带电介质的平行板电容器 电容的表达式:004r r r S S S C C kd d d εεεεεπ==== 无电介质时的电场强度:0Q E Cd = 充满电介质时的电场强度:0r r E Q E Cd εε== 附加电场强度:01'(1)r Q E E E Cd ε=-=- 例2、如图所示,在面积为S 的平板电容器中充满了固态的电介质.将 电容器充电Q 后,断开电源,把固态电介质与下端的导体平板固定,然 后用外力将上端导体板缓慢向上移动d 的距离,设上端导体平板的质量 可忽略,试计算外力所做的功W .

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

最新高中物理竞赛讲义(完整版)

最新高中物理竞赛讲义 (完整版) 目录 最新高中物理竞赛讲义(完整版) (1) 第0 部分绪言 (5) 一、高中物理奥赛概况 (5)

二、知识体系 (6) 第一部分力&物体的平衡 (7) 第一讲力的处理 (7) 第二讲物体的平衡 ............................. 1...0.. 第三讲习题课 ................................. 1..1... 第四讲摩擦角及其它........................... 1...7..第二部分牛顿运动定律 ............................ 2..2.. 第一讲牛顿三定律 ............................. 2...2.. 第二讲牛顿定律的应用 ......................... 2..3.. 第二讲配套例题选讲........................... 3...7..第三部分运动学 ................................. 3...7... 第一讲基本知识介绍 .......................... 3..7.. 第二讲运动的合成与分解、相对运动 ............. 4..0 第四部分曲线运动万有引力 ....................... 4...4. 第一讲基本知识介绍........................... 4...4.. 第二讲重要模型与专题 ......................... 4..7.. 第三讲典型例题解析............................. 5...9..第五部分动量和能量 ............................... 5...9.. 第一讲基本知识介绍............................. 5...9.. 第二讲重要模型与专题.......................... 6..3.. 第三讲典型例题解析............................. 8...3..第六部分振动和波 ................................. 8..3...

高中物理竞赛讲义——微积分初步

高中物理竞赛讲义——微积分初步 一:引入 【例】问均匀带电的立方体角上一点的电势是中心的几 倍。 分析: ①根据对称性,可知立方体的八个角点电势相等;将原立 方体等分为八个等大的小立方体,原立方体的中心正位于个小立方体角点位置;而根据电势叠加原理,其电势即为八个小立方体角点位置的电势之和,即U 1=8U 2 ; ②立方体角点的电势与什么有关呢?电荷密度ρ;二立方体的边长a ;三立方体的形状; 根据点电荷的电势公式U=K Q r 及量纲知识,可猜想边长为a 的立方体角点电势为 U=CKQ a =Ck ρa 2 ;其中C 为常数,只与形状(立方体)及位置(角点)有关,Q 是总电量,ρ是电荷密度;其中Q=ρa 3 ③ 大立方体的角点电势:U 0= Ck ρa 2 ;小立方体的角点电势:U 2= Ck ρ(a 2 )2=CK ρa 2 4 大立方体的中心点电势:U 1=8U 2=2 Ck ρa 2 ;即U 0=12 U 1 【小结】我们发现,对于一个物理问题,其所求的物理量总是与其他已知物理量相关联,或者用数学语言来说,所求的物理量就是其他物理量(或者说是变量)的函数。如果我们能够把这个函数关系写出来,或者将其函数图像画出来,那么定量或定性地理解物理量的变化情况,帮助我们解决物理问题。 二:导数 ㈠ 物理量的变化率 我们经常对物理量函数关系的图像处理,比如v-t 图像,求其斜率可 以得出加速度a ,求其面积可以得出位移s ,而斜率和面积是几何意义上 的微积分。我们知道,过v-t 图像中某个点作出切线,其斜率即a= △v △t . 下面我们从代数上考察物理量的变化率: 【例】若某质点做直线运动,其位移与时间的函数关系为上s=3t+2t 2,试求其t 时刻的速度的表达式。(所有物理量都用国际制单位,以下同)

相关主题