搜档网
当前位置:搜档网 › 碳纤维复合材料生产项目可行性研究报告

碳纤维复合材料生产项目可行性研究报告

碳纤维复合材料生产项目可行性研究报告
碳纤维复合材料生产项目可行性研究报告

高性能碳纤维材料项目

目录

第一章研究背景 (4)

一、定义 (4)

二、行业形势 (4)

第二章研究内容 (5)

一、碳纤维性质 (5)

二、碳纤维的产品形式及制造工艺 (6)

三、产品种类 (6)

1. 聚丙烯腈基碳纤维 (6)

2、沥青基碳纤维 (7)

3 、粘胶基碳纤维 (8)

4 、活性碳纤维 (9)

5 、气相生长碳纤维 (10)

第三章研究方法 (10)

第四章测试研究数据来源 (11)

一、测试与标准 (11)

1、碳纤维的拉伸性能测试分单丝法和复丝法。 (11)

2、试样制备 (13)

3、测试: (14)

第五章市场研究 (16)

一、市场规模 (16)

二、竞争态势 (17)

1、国外碳纤维形势分析 (17)

2、国内生产厂家 (18)

三、行业投资的热点 (21)

四、行业项目投资的经济性 (22)

第六章建设周期与预算 (22)

一、建设周期 (22)

二、投入预算 (23)

第一章研究背景

一、定义

碳纤维是先进复合材料最常用的也是最重要的增强体。碳纤维是由不完全石墨结晶沿纤维轴向排列的一种多晶的新型无机非金属材料。化学组成中碳元素含量达95%以上。

碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得;按状态分为长丝、短纤维和短切纤维;按力学性能分为通用型和高性能型。通用型碳纤维强度为1000兆帕(MPa)模量为100GPa左右。高性能型碳纤维又分为高强型(强度2000MPa、模量250GPa)和高模型(模量300GPa以上)

大于4000MPa的又称为超高强型;

模型。碳纤维制造工艺分为有机先驱体纤维法和气相生长法。机先驱体纤维法制得的碳纤维是由有机纤维经高温固相反应转变而成。应用的有机纤维主要有聚丙烯(PAN)纤维、人造丝和沥青纤维等。将有机母体纤维(例如粘胶丝、聚丙烯腈或沥青)采用高温分解法在1000~3000度高温的惰性气体下制成的,其结果是除碳以外的所有元素都予以去除。

维称气相生长碳纤维。

二、行业形势

虽然当前世界经济发展面临重重危机,但碳纤维的需求仍在升温。除了传统的航空航天领域外,汽车、风力涡轮叶片及压力容器等

投资XX科技产业园碳纤维材料可行性研究报告

碳纤维新市场正在兴起。据相关部门预测,世界碳纤维需求每年将以大约13%的速度飞速增长,预期2012年聚丙烯腈(PAN)基碳纤维全

球需求量将达6万吨,到2018年需求量将达到10万吨。7大碳纤维

制造商——东丽、东邦、三菱丽阳、SGL、Hexcel、Cytec和Zoltek,已宣布计划在未来3~5年扩产78%,总投资额为87970万欧元(13

亿美元),短期看来碳纤维会供不应求。国际碳纤维市场发展迅速,需求量不断增长给我国碳纤维行业,提供了难得进一步发展的机遇。但我国碳纤维行业基础薄弱,产业发展需要技术、人才和资金的持续投入,而且其应用领域对产品品质的要求非常严格。客观地说生产企业应量力而行,整个行业也应发出明确的信息、引导企业正确投资,使我国碳纤维产业快速健康地发展。

投资XX科技产业园碳纤维材料可行性研究报告

第二章研究内容

一、碳纤维性质

碳纤维是一种力学性能优异的新材料,

墨化处理而得到的微晶石墨材料。碳纤维的微观结构类似人造石墨,

是乱层石墨结构。它的比重不到钢的1/4,碳纤维树脂复合材料抗拉

强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为230~430Gpa亦高于钢。因此CFRP的比强度即材料的强度与其密度

之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为

59Mpa/(g/cm3)左右,其比模量也比钢高。材料的比强度愈高,则构

件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示

了碳纤维在工程的广阔应用前景。

综观多种新兴的复合材料

陶瓷基复合材料)的优异性能,不少人预料,人类在材料应用上正从

钢铁时代进入到一个复合材料广泛应用的时代。

二、碳纤维的产品形式及制造工艺

碳纤维有四种产品形式:纤维,布料,预浸料坯,和切短纤维。

布料指的是由碳纤维制成的织品。预浸料坯是一种产品,是将碳纤维

按照一个方向一致排列,

状。切短纤维指的是短丝。按照不同的配比,这些产品和树脂一起应

用将形成碳纤维强化塑料(CFRP)。

将树脂附在纤维上可以制成压力容器和轧滚,

投资XX科技产业园碳纤维材料可行性研究报告

芯儿上,然后进行塑化或硬化处理。这种方法被称为“缠绕成型法” 将布料放入一个模型中,然后用树脂浸泡,这就是所说的“树脂转注成型法(RTM)”

加压和塑化成型而成的。将预浸料坯缠绕在一个芯儿上,然后将其加热和塑化,这就是所说的“薄片缠绕法”

高尔夫球棒和钓鱼杆。

三、产品种类

1. 聚丙烯腈基碳纤维

聚丙烯腈纤维制备碳纤维属于有机先驱体纤维法。即将有机纤维在200℃——400℃氧化介质(如空气、氧、臭氧、一氧化氮、二氧化氮、三氧化硫等)气氛中进行低温处理,纤维内部发生交联、化、氧化脱氢、脱水、脱二氧化硫以及热分解等复杂的化学反应,其变为热稳定型结构,

此阶段是形成纤维的稳定化过程,

℃——1500℃的惰性气氛(高纯氮)中进行高温处理,此时纤维内部产生交联、环化、缩聚、芳构化等一系列化学反应。排除其中非碳原子,

PAN纤维分子易于沿纤维轴向取向,碳化收率(1000~1500℃)为50~55%,

180℃附件存在塑性,便于纺丝后的改性处理和经受高温碳化处理,这些特点使其成为迄今发展高性能碳纤维最受人注目的先驱体。

体纤维的质量和性质是生产高性能碳纤维的前提。

投资XX 科技产业园碳纤维材料可行性研究报告

纯度、高强度、高取向度、细旦化、致密化、结晶度、原丝圆形截面

形状,变导系数等性能。有了制造PAN 基碳纤维的方法,也有了制

造技术,所以制造高性能PAN 基碳纤维原丝质量又成为一个技术焦

点。

聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过

程。原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、

上油、

高温碳化、表面处理、上浆烘干、收丝卷绕等工序。

2、沥青基碳纤维

沥青基碳纤维成为目前碳纤维领域中仅次于PAN 基的第二大原

料路线。沥青基碳纤维分为两大类:一类是通用级,由各向同性沥青

制造;另一类是高性能级,由各向异性中间相沥青制造纤维。

沥青基碳纤维的制造工艺流程如下:

石油渣油、煤沥青、煤液化油

精制或调制

各向同性沥青

熔融纺丝

各向同性沥青纤维

不溶化处理 氧化气氛(200~300℃) 各向同性不融化纤维 炭化 惰性气氛(800~1200℃)

各向同性碳纤维 (热调制)

各向异性沥青(中间相)

熔融纺丝

各向异性沥青纤维

不溶化处理氧化气氛(200~300℃)

各向异性不融化纤维

炭化 惰性气氛(1000~1400℃)

各向异性碳纤维

投资XX 科技产业园碳纤维材料可行性研究报告

石墨化惰性 气氛(2000~3000℃)

石墨化惰性气氛(2000~3000℃)

各向同性石墨纤维

通用级石墨纤维

3 、粘胶基碳纤维

各向异性石墨纤维

高性能石墨纤维

木材棉籽绒或甘蔗渣等天然纤维素与NaOH 和CS2反应生成纤

维素磺酸钠,提纯后采用一步或两步法制得粘胶,再经湿法纺丝成型

和后处理等工序而制成碳纤维。

从粘胶纤维开发成碳纤维有三个主要步骤:、

于400℃) b 、炭化过程(小于1500℃) c 、石墨化过程(大于2500

℃)

工艺流程如下:

粘胶丝

水洗 酸洗 干燥

炭化 表面处理

浸渍催化剂

干燥

干燥

上浆

预氧化

收丝

由粘胶纤维热解制得的碳纤维的得率通常在10~30%,

维制得的碳纤维,横截面形状大多不规则,一般呈树叶状。粘胶基碳

纤维主要用于耐烧蚀材料和隔热材料。

着其他碳纤维不可取代的地位,仍是重要的战略物资。

成都XX 新能源有限公司 编制9

投资XX科技产业园碳纤维材料可行性研究报告

粘胶基碳纤维产量不足世界碳纤维总产量的1%。它虽然不会有大的发展,但也不会被彻底淘汰出局。在碳纤维领域仍会占有一席之地。

4 、活性碳纤维

活性碳纤维是随着碳纤维工业发展而开发的新一代多孔吸附材料,也是传统吸附材料粉状活性炭的更新换代产品,我国有许多生产厂,如山西东绿活性碳纤维厂、山西省长治市郊区霍家工业总司活性碳纤维厂、鞍山市化学碳纤维公司、辽源化工新材料厂、秦皇岛山海关金龙环保材料厂、

限公司以及XX市活性碳纤维厂等。

生产活性特性及其制品的原料主要有粘胶丝、PAN基纤维、沥青纤维和酚醛纤维等。原料虽然不同,但生产工艺基本相似,需经前处理或稳定化、炭化和活化工序。生产原理完全不同于碳纤维。生产活性碳纤维的过程尽可能造孔,使其具有多孔结构,而生产碳纤维则不同,尽可能消除孔隙裂纹或孔洞。

5 、气相生长碳纤维

气相生长碳纤维(VGCF)和螺旋形碳纤维(CCF)属于功能型碳纤维。

气相生长碳纤维(VGCF)以低碳烃类为碳源,过渡金属铁、钴、镍等及其他们的合金、化合物等超细离子为催化剂,在氢气还原性气

投资XX科技产业园碳纤维材料可行性研究报告

氛中使其烃类热解(1100℃左右)成碳而制得纤维状产物。

螺旋形碳纤维(CCF)的生成过程中,催化剂是基础,助催化剂是必备条件,如果没有助催化剂的存在,则生成VGCF。催化剂是过渡金属等,助催化剂为S/P等,他们生成共晶体;助催化剂的存在可降低共晶体的熔点,有利于CCF的生成。

第三章研究方法

碳纤维可分别用聚丙烯腈纤维、沥青纤维、粘胶丝或酚醛纤维经碳化制得;按状态分为长丝、短纤维和短切纤维;按力学性能分为通用型和高性能型。通用型碳纤维强度为1000兆帕(MPa)

100GPa左右。高性能型碳纤维又分为高强型(强度2000MPa、模量250GPa)和高模型(模量300GPa以上)

超高强型;模量大于450GPa的称为超高模型。随着航天和航空工业的发展,还出现了高强高伸型碳纤维,其延伸率大于2%。用量最大的是聚丙烯腈PAN基碳纤维。

目前应用较普遍的碳纤维主要是聚丙烯腈碳纤维和沥青碳纤维。碳纤维的制造包括:纤维纺丝、热稳定化(预氧化)

等4个过程。其间伴随的化学变化包括:脱氢、环化、预氧化、氧化及脱氧等。

投资XX科技产业园碳纤维材料可行性研究报告

第四章测试研究数据来源

一、测试与标准

1、碳纤维的拉伸性能测试分单丝法和复丝法。

下面首先对于单丝法拉伸予以描述:

非常脆弱,剪切强度很低,稍有不慎就会断裂,因此在每次试验过程中,需要细心、耐心,不要对试样造成损伤。国际标准ISO11566《碳纤维单纤试样的测定》和日标JIS R7601《碳纤维试验方法》指出了采用纸框法固定试样,当然也不排除其他方法。中国的方法标准正在制定中,

曲阜师范大学的张小英、张斌在2007年《纺织标准与质量》发表了《碳纤维拉伸性能的测试方法》《纺织实验技术》

《实验十五碳纤维强伸性能测试》等文章。单纤维强伸性能试验要采用能测试碳纤维的高强高模纤维强力仪,如CRE型碳纤维强力机(LLY-06E型电子碳纤维强力仪外观如图所示)

(LLY-06E 型电子碳纤维强力仪)

投资XX科技产业园碳纤维材料可行性研究报告

2、试样制备

纸框法固定试样,剪取适当长度的该碳纤维试验样品,用钢针沿着纤维方向将其分离,使试验样品蓬松便于抽取。用取样盘来盛取试样,为保证测得结果的准确性,不能对碳纤维造成任何损伤。采用国外标准制作衬纸很麻烦,

的方法。0.1mm左右厚的打印纸做基片;

划出一个尺寸合适的框,复制满A4纸打印(图2是25mm隔距拉伸

尺寸。若50mm隔距拉伸时,裁切线的长度应增加一倍)

裁切线吻合后用刀片沿裁切线将实

线部分裁除,然后两端贴上5mm宽

的双面胶纸;抽取分离的单根碳纤维

试验样品,沿中心虚线放上,并用双

面胶纸固定。也可以用融化后的松

( 试样制备示意图) 香,将单根碳纤维“焊接”在纸框上,其“焊点”起到固定单根碳

纤维的作用(试验证明:采用“焊接”方式没有双面胶纸固定方式好用,而且夹持试样时要离开“焊点” ;再用8~10mm宽的纸条,

沿着裁切线宽度方向覆盖双面胶纸和试验样品端头,

离成固定在单个纸框上的待测试样。注意碳纤维的取样比较困难,尤其处理后的碳纤维,很细,也很难分辨是一根还是两根,根据实验中曲线对比进行判断如果记录下的曲线斜率明显大于其他试样的很

有可能是两根纤维,必要时可以用放大镜配合取样。

投资XX科技产业园碳纤维材料可行性研究报告

3、测试:

测试程序与仪器型号有关系。不同仪器型号其测试过程不同。

面分别用两种LLY-06E、LLY-06型单纤维强力仪的操作过程加以说明。

例如:25mm、50mm。

按试验要求设定试验拉伸速度(1~5)mm/min,本实验取:

2mm/min,如果采用松香固定试样时,上、下夹持器夹持试样时要离开“焊点”

被测试样的一端夹持在电子式碳纤维强力仪的上夹持器上,

另一端夹持在下夹持器上。采用恒定的拉伸速度拉伸试样,直至试样断裂。记录单次值的断裂强力和断裂伸长等技术指标,试验结束后仪器自动给出所有技术指标的统计值。和PC机联机可获得实时曲线,便于分析技术数据。

3.1、气动夹紧的拉伸试验(LLY-06E型)

将上述准备好的待测试样一端沿着裁切线宽度边缘,

夹紧,另一端沿着裁切线宽度边缘被下夹持器夹紧,并将夹紧的待测试样两侧剪断,按“拉伸”

器自动返回。重复测试过程,做完设定次数。仪器会在试验过程中自动打印试验记录。由于夹持器没有直接夹持试样,减少了试样断裂在钳口的概率。该测试适用于气动夹紧夹持器的仪器。

如需联机,应在开启电源前接好PC接口,开启电脑、启动程序,

投资XX科技产业园碳纤维材料可行性研究报告

根据要求设定数据,然后点击“实验”进入试验状态。

3.2、手动夹持器夹紧的直接拉伸试验(LLY-06型)

由于社会上手动夹持、通用的单纤维强力仪较多,有人曾经在上面做过大量试验。这一类单纤维强力仪的夹持器不适合衬纸固定试样,只有用传统方式夹持拉伸,实践证明:只要仪器技术达标,虽然未曾拉伸断试样的概率比较高,

将上夹持器取下平放在衬垫上,

器左前方;右手向右抽取一根碳纤维,左手推动夹持器(注:右手不动)

手旋紧夹持器。

左手把夹持器挂在传感器的吊钩上,这时

试样呈自然悬垂状态,右手轻轻将碳纤维导入

下夹持器内,左手将下夹持器旋紧;按“拉伸”

键下夹持器开始下行,试样断裂后下夹持器自

(碳纤维单丝拉伸曲线)

动返回。重复此过程以完成设定次数,仪器会在试验过程中自动打印试验记录。在实验中,如果试样经常断裂在钳口,可以考虑在钳口包覆一层衬垫。需要指出的是:属于不加预张力的拉伸,预张力夹会使试样未曾拉伸先断裂,致使夹持试样失败。

4、结论:从测得数据来看出了单根碳纤维的特性:断裂强力比较小,断裂伸长率很小,拉伸曲线呈线性,屈服点和断裂点几乎吻合,如图则是碳纤维单丝拉伸曲线。

投资XX科技产业园碳纤维材料可行性研究报告

第五章市场研究

一、市场规模

我国碳纤维现阶段绝大部分依赖进口。2004年全国碳纤维用量为4000吨,2005年用量在5000吨,年增长率在20%以上,到2009

年将达到7500吨/年,而国内现有生产设计能力为90吨/年,且由

于国内原丝质量、生产技术及设备等原因,实际年产量仅为40多吨,无论是质量和规模与国外相比差距都很大。

我国PAN基碳纤维的研究与开发始于20世纪60年代初,九五” 以来,

品领域的拓展,在生产规模及产品应用方面取得了一定的进步。一些高等院校,如北京化工大学、安徽大学、中山大学等也相继开展了CF研究。但就碳纤维行业来说,还存在着很多问题,如原丝品质低下,CF性能指标与国外差距大且不稳定,小型试验性生产及CF制

造成本高昂,技术上还不具备规模化生产水平等。

我国碳纤维的生产和使用尚处于起步阶段,国内碳纤维生产能

力仅占世界高性能碳纤维总产量的0.4%左右,国内用量的90%以上

靠进口。而PAN原丝质量一直是制约我国碳纤维工业规模化生产的瓶颈。另外,碳纤维长期以来被视为战略物资,发达国家一直对外实行封锁。因此,有关专家认为,强化基础研究是创新之本,是发展国内碳

纤维工业的根本出路。

投资XX科技产业园碳纤维材料可行性研究报告

二、竞争态势

1、国外碳纤维形势分析

世界碳纤维的主要生产商为日本的东丽、东邦人造丝、三菱人造丝三大集团和美国的卓尔泰克(ZOLTEK)

迪拉(ALDILI)和德车的SGL公司等。其中日本三大集团占世界生产能力的75%。

产品性能趋向于高性能化,T700S加快取代T300作通用级炭纤维;

产量增加较快,1996~2000增长48.1%;航天航空和体育用品用量增加稳定,民用工业用量增幅较大,已超过前两者,特别是随着大丝束炭纤维的大规模生产,价格的降低,民用工业需求增加迅猛。世界著名的碳纤维生产企业,它们都在积极扩展碳纤维生产,继续加强其在世界市场上的主导地位,

配套生产体制,

的经济增长点。

美国是碳纤维生产大国,

市场在美国。美国1996年碳纤维生产能力约为4500t,其中卓尔泰克(ZOLTEK)公司1997年在美国德克萨斯州的亚平伦城和匈亚利的布达佩斯附近建了5条碳纤维生产线,

t左右,一跃成为世界上生产碳纤维的最大集团之一。

目前,美国正在开发碳纤维复合材料的五大新市场,即清洁能源车辆、土木建筑工程、近海油田勘探和生产、风力发电机大型叶片、

投资XX科技产业园碳纤维材料可行性研究报告

高尔夫球杆和球拍。

力。随着碳纤维生产规模的扩大和生产成本的下降,在增强木材、

械和电器零部件、

扩大。

除日美之外,德国、英国和韩国也具有一定碳纤维复合材料生产能力。据预测,今后十年世界碳纤维及复合材料需求量将稳定高速增长。国外碳纤维及复合材料业已步入良性循环,而我国目前尚不具备国际竞争能力。

2、国内生产厂家

目前,

鼓舞。下面分别对各地区的开发情况作一简介。

(1)上海地区。最近上海石化公司召开了碳纤维原丝发展研讨会,该公司准备投资过亿元,

真正形成工业规模生产。

产业化发展计划,拟建立400t/a大丝束碳纤维生产线,总投资也超亿元(包括下游产品)。此外,上海市合纤所采用亚砜两步法研制和小批量生产PAN基原丝以及碳纤维;上海碳素厂也有小型碳化线及碳纤维下游产品。

(2)安徽地区。

aPAN原丝和TR 200t/a碳纤维生产线,总投资过亿元。PAN原丝采用亚砜一步法,技术由国外引进;产品以12K的T300级碳纤维

投资XX科技产业园碳纤维材料可行性研究报告

为主,并准备引进成熟的预浸料生产线。华皖集团(原蚌埠灯芯绒集团公司)二期建设规模将使碳纤维产量翻一番,达到400t/a。下游产品的开发也列入发展规划。

(3)浙江地区。中宝碳纤维责任有限公司在浙江嘉兴拟建400t/a 大丝束碳纤维生产线,技术和设备引进,投资数亿元,并配套300万m2预浸料。该项目国家已批准,

根据国内外市场动向及投资与回报等问题,暂缓建立碳纤维生产线,而集中力量开发预浸料等下游产品。同时,还成立了浙江省碳纤维工程技术研究开发中心,全面推进碳纤维事业。

(4)广西地区。桂林市化纤总厂拟建200t/a碳纤维生产线,产品为3—12K的小8-RD丝束碳纤维,投资也过亿元。

(5)山东地区。山东省已把碳纤维列入全省十大高技术产品开发工程首位项目。

有以下几个单位从事碳纤维及其制品的研究与生产,

碳纤维事业。

●山东天泰碳纤维有限责任公司。

400t/a生产线,碳纤维性能为T300级水平,产品以12K为主。计

划400t/a投产后,再翻一番到800t/a,投资超亿元。技术协作单位

是山东工业大学等。同时该公司积极开发和生产多种下游产品。

●青岛将建立50t/a左右的碳纤维生产线,青岛化工学院高分子工程材料研究所(恒晨公司)的介入,引起国内同行们的极大关注。

●山东威海光威渔具集团有限公司主要从事钓竿生产,

投资XX科技产业园碳纤维材料可行性研究报告

浸布的规格有30余种。根据发展趋势,有可能向上游即PAN基原丝和碳纤维发展。此外,山东省东营生产力促进中心也在考虑招商引资建立碳纤维生产线,认为石油等工业是碳纤维的潜在市场。

(6)北京化工大学与吉化公司树脂厂,将依靠自己的技术建立500t/a原丝和200t/a碳纤维生产线。放弃硝酸法,采用亚砜一步法

技术路线生产原丝。目前,正在进行中试实验。

(7)兰化集团化纤厂已有100t/a原丝生产线和预氧化生产装置,

划配套碳化装置生产碳纤维。原丝采用NaSCN一步法。该单位的晴纶生产线是我国从国外首次引进的,有丰富的生产经验和技术积累。

(8)吉林碳素厂是我国小丝束碳纤维生产基地,已向用户提供50余吨小丝束碳纤维,为国家作出了积极贡献。目前,该厂正在建立新的小丝束碳纤维生产线,扩大产量,以满足市场需求。

(9)中科院山西煤化所研制碳纤维已有30多年历史。70年代中期,建成我国第一条纤维中试生产线;在90年代末期,又建成我国第一条吨级粘胶基碳纤维生产线。

共建碳材料联合实验室,研制高性能PAN基碳纤维,并准备在扬州建立产业化基地。此外,山西榆次化纤厂是我国唯一用亚砜一步法生产PAN基原丝达数十年的单位,目前仍在生产。

三、行业投资的热点

碳纤维的生产工艺短、成本构成比较简单,根据实地调研、碳纤维相关行业资料及工艺参数,可以大体测算出碳纤维原丝、碳纤

投资XX科技产业园碳纤维材料可行性研究报告

维的生产成本。

根据目前丙烯腈1.3万元/吨的销售价格,我们可以大体测算出

碳纤维原丝及碳纤维的生产成本,

别为4.4万元/吨、18万元/吨。

目前军工级碳纤维(3-6K)的售价为200万元/吨(这一点可以

从吉林东方神舟碳纤维(*ST吉碳(000928)持股100%)年产10吨碳纤维,05年实现销售收入2295万元进一步得到验证)

维(12K)的售价为55万元/吨,而碳纤维的生产成本为18万元/吨,如以民用碳纤维为例,其毛利为37万元/吨,即便加上3万吨的营业

费用和33%的所得税率,民用碳纤维的净利润也用25万元/吨,如果考虑军品售价200万元/吨和33%的所得税减免,则其吨碳纤维的净

利将会达到170万元/吨。由于巨额利润的驱使,将会导至碳纤维的

快速增长。且碳纤维产业是由原丝(PAN)生产再到预浸料再到具体的终端产家这么一个产业链。每一级的深加工都有高幅度的增值。

四、行业项目投资的经济性

据美国市场调研公司Lucintel统计,2008年碳纤维的产值为15亿美元,其中体育用品和休闲设备约占整个碳纤维市场的18%~20%,其余则主要用于航空航天、商业以及工业等领域。

Lucintel公司表示,全球碳纤维市值在2004~2008年的5年中一直以两位数的速度增长,

体育用品和休闲设备在2007到2014年间的年均增长率将保持在3%左

碳纤维及复合材料的种类、制备和应用

碳纤维及复合材料的种类、制备及应用 杨晨材研0906 (北京化工大学材料学院,100029) 摘要:本文主要陈述总结了复合材料及其碳纤维的种类、制备及应用方面的相关知识。 关键词:碳纤维;复合材料;种类;制备;应用 1.复合材料 复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。具有比强度高,比模量高,剪切强度和剪切模量高,高温性能高,耐热性高等特性广泛应用于各个领域。 1.1种类 复合材料按其性能高低可分为常用复合材料和先进复合材料;根据其用途可分为结构复合材料和功能复合材料;按照复合方式可分为宏观复合材料和微观复合材料。根据不同增强体形式可分为纤维复合材料、颗粒复合材料、片材复合材料和叠层复合材料。还有,可以根据基体材料的不同细分为:聚合物基复合材料、金属基复合材料和无机非金属基复合材料。本文主要以基体材料的细分方式介绍复合材料的制备及其应用。 其生产流程见图1.1。 图1.1 复合材料制品的生产流程图 1.2聚合物基复合材料 聚合物基复合材料是聚合物或俗称树脂作为基体与粒状、片状、纤维状填充组分作为增强体的复合材料。按基体的不同还可以分成热固性树脂基、热塑性树脂基和橡胶基。

1.2.1制备 其主要制备方法有:预浸料、手糊成型工艺、喷射成型、袋压成型、模压成型、纤维缠绕成型、拉挤成型、熔融流动成型、增强反应注射成型和树脂传递模塑。 1.2.2应用 聚合物基复合材料在建筑、化学、交通运输、机械电器、电子工业及医疗、国防、航天航空及火箭等领域都有广泛应用。如手糊成型制得的广播卫星抛物面天线、太阳能电池帆板;纤维缠绕成型可制得雷达罩、火箭发动机壳、压力容器;模压成型制得的整体浴室和汽车保险杠等等。 1.3金属基复合材料 金属基复合材料是以金属、合金和金属间化合物为基体,以无机纤维和金属间化合物等为增强体,通过浸渗、固结工艺制成的复合材料。根据其基体的种类可细分为轻金属基、高熔点金属基和金属间化合物基。 1.3.1制备 金属基复合材料的主要制备工艺方法有:固相法、液相法和原位复合法。固相法主要有粉末冶金、固态热压法、热等静压法;液态法主要有真空压力浸渍法、挤压铸造法;原位复合法主要包括共晶合金定向凝固、直接金属氧化物法、反应生成法。 1.3.2应用 金属基复合材料主要可应用于航天、航空、汽车、医疗、体育用品等领域。如航天飞机中段主机身的B/Al关键桁架、臂状支柱;齿轮;高尔夫球杆击球头及各种支架等等。 1.4无机非金属基复合材料 无机非金属复合材料主要有陶瓷基复合材料、水泥基复合材料和碳基复合材料。 1.4.1陶瓷基复合材料 陶瓷基复合材料是以陶瓷材料为基体,并以陶瓷、碳纤维和难熔金属的纤维、晶须、晶片和颗粒为增强体,通过适当的复合工艺所构成的复合材料。主要可细分为高温陶瓷基复合材料、玻璃基复合材料和玻璃陶瓷基复合材料。 其制备工艺主要有:粉末冶金法(颗粒)、浆体法(液体法)、热压烧结法、液态浸渍法、直接氧化法、溶胶-凝胶法、化学气相浸渍法(CVI)、先驱体转化和反应熔融浸渗(RMI)等。 陶瓷基复合材料可应用于切削工具方面及航空航天领域的研究。如刀具、滑动构件、发动机制件、能源构件等。法国已将长纤维增强炭化硅复合材料应用于制造高速列车的制动件,显示出优异的摩擦磨损特性,取得满意的使用效果。

碳纤维及其复合材料产业现状及发展趋势

国内外碳纤维及其复合材料产业现状及发展趋势 自上世纪60年代碳纤维首次商业化以来,产业规模不断扩大,产品品质不断提高,2014年全球碳纤维产能(365天连续生产12K/24K 碳纤维丝束计算)已达到12.6万吨。尽管碳纤维与传统的玻璃纤维在价格上仍不能相比,但高性能碳纤维以其高比强度、高模量、可设计、防腐蚀和抗疲劳等突出特点,具有玻璃纤维所不能比拟的优势,已成为发展先进武器装备的关键材料,并在航空航天、国防军工、风能产业、土木工程、体育休闲等领域得到了广泛应用。 当前,国际复合材料产业呈现蓬勃发展态势,据估计,未来5年,先进复合材料将以每年5%的增速发展,而随着民用航空、汽车工业等领域的快速发展,全球高性能碳纤维需求量的年增幅可达10%,亚太地区将会有更高的增长率,即碳纤维及其复合材料产业将面临前所未有的发展空间和机遇。 因此,在目前碳纤维产业快速发展的关键时期,我们更应该认清国际碳纤维产业的发展形势、对照国外先进企业找差距找问题,通过理性思考寻求解决途径,适时把握发展机遇,落实行动、注重实效,努力推进国内碳纤维及其复合材料产业的健康快速发展。 1、国外碳纤维产业现状及发展趋势 1)产业方面 根据前躯体原料的不同,碳纤维可分为聚丙烯腈(PAN)基、沥青基和粘胶基碳纤维等。由于粘胶基碳纤维在制备过程中会释放出毒

性物质二硫化碳,且工艺流程长、生产成本高、整体性能不高,因此目前,国际碳纤维产业领域,前两种碳纤维获得了更大规模的生产和应用。其中,PAN基碳纤维又占据绝对优势,国际市场占有率超过90%。PAN基碳纤维的九大生产商包括:日本东丽、东邦、三菱丽阳、美国赫氏(Hexcel)、氰特(Cytec)、卓尔泰克(Zoltek,已被东丽收购)、台塑、土耳其阿克萨(AKSA)和德国西格里(SGL)。沥青基碳纤维的生产和应用居其次,主要生产企业三家,分别是Cytec、三菱塑料和日本碳素纤维。 PAN基碳纤维分为小丝束(1-24K)和大丝束(36K及以上)两类。全球小丝束碳纤维市场主要被日本东丽、东邦、三菱丽阳三家公司所垄断,而来自中国、土耳其和韩国的企业,正不断扩充小丝束的全球产能,同时也降低了三家日本公司的市场份额。 大丝束碳纤维生产商主要有Zoltek、SGL和三菱丽阳三家。另外,中国国企蓝星集团英国分公司拥有大丝束碳纤维原丝的供应能力,Cytec于2014年与德国腈纶企业合作开展低成本大丝束碳纤维的研制开发。预计在未来10年中,其它制造商也会陆续加入大丝束碳纤维生产领域。 为满足高速发展的航空航天与汽车市场对碳纤维的需要,几乎所有的碳纤维巨头都宣布了扩产计划。例如,日本东丽拥有以日本本土为核心的日美法韩4个生产基地,目前已形成11000~12000吨/年的T700S和4500吨/年的T800碳纤维生产能力,并宣布PAN基碳纤维的总产能于2015年达到27100吨,2020年扩大至50000吨。另外,Hexcel

碳纤维制备工艺简介资料

碳纤维制备工艺简介资料. 碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。

一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。

虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC 沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

热固性复合材料与热塑性复合材料

热固性复合材料与热塑性复合材料 1热固性树脂基复合材料 热固性树脂基复合材料是应用十分广泛的复合型材料,这种材料是经过复合而成,在多高科技产品中都得到了广泛的应用与研究,例如在大型客运机的应用中,其不仅减轻了重量,并且还优化了飞机的性能,减轻了飞机在飞行过程中的阻碍,热固性树脂具有非常优异的开发潜能,其应用领域也会在其改性后得到更大的发展。 典型的热固性树脂复合材料分为以下几种: (1)酚醛树脂复合材料:随着对阻燃材料的强烈需求,美国西化学公司,道化学公司等一系列大型化学公司都先后研制成功了新一代的酚醛树脂复合材料。其具有优异的阻燃、低发烟、低毒雾性能和更加优异的热机械物理性能。在制备这种具有阻燃效果的材料上,研究人员重新设计思路,在加入不饱和键等其他基团条件下,提高了反应速度,减少了挥发组分。使酚醛树脂复合材料在其应用领域得到大力发展。 (2)环氧树脂复合材料:由于环氧树脂本身的弱点,研究人员对其进行了两面的改性研究,一面是改善湿热性能提高其使用温度;另一面则是提高韧性,进而提高复合材料的损伤容限。含有环氧树脂所制备的复

合材料己经大力应用到机翼、机身等大型主承力构件上。 (3)双马来酞亚胺树脂复合材料:在双马来酞亚胺树脂复合材料中,由于双马来酞亚胺树脂具有流动性和可模塑性,良好的耐高温、耐辐射、耐湿热、吸湿率低和热膨胀系数小等优异性能,所以这种树脂则会广泛运用在绝缘材料、航空航天结构材料、耐磨材料等各个领域中。(4)聚酰亚胺复合材料:聚酰亚胺复合材料具有高比强度,比模量以及优异的热氧化稳定性。其在航空发动机上得到了广泛应用,主要可明显减轻发动机重量,提高发动机推重比。所以在航天航空领域得到了大力的发展和运用。 2热塑性树脂基复合材料 热塑性树脂基复合材料:其自身中的基体是热塑性树脂,该类复合材料是由热塑性树脂基体、增强相以及一些助剂组成。在热塑性复合材料中最典型和最常见的热塑性树脂有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚酯树脂、聚碳酸树脂、聚甲醛树脂、聚醚酮类、热塑性聚酰亚胺、聚苯硫醚、聚飒等。 而热塑性树脂复合材料具有很多的特点,以下概述了一些热塑性树脂复合材料的特点。

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。 在这款最新一代的大型飞机上,复合材料的使用比例有望 ..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测,预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2 月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品;汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

碳纤维材料的性能

碳纤维材料的性能及应用 摘要:介绍了碳纤维及其增强复合材料,详细介绍了碳纤维复合材料的分类和特性,着重阐述了碳纤维及其复合材料在高新技术领域和能源、体育器材等民 用领域的应用,并对未来碳纤维复合材料的发展趋势进行了分析。 关键词:碳纤维性能应用 0引言 碳纤维复合材料具有轻质、高强度、高刚度、优良的减振性、耐疲劳和耐腐蚀等优异性能。以高性能碳纤维复合材料为典型代表的先进复合材料作为结构、功能或结构/功能一体化材料,不仅在国防战略武器建设中具有不可替代性,在绿色能源建设、节约能源技术发展和促进能源多样化过程中也将发挥极其重要的作用。若将先进碳纤维复合材料在国防领域的应用水平和规模视作国家安全的重要保证,则碳纤维复合材料在交通运输、风力发电、石油开采、电力输送等领域的应用将与有效减少温室气体排放、解决全球气候变暖等环境问题密切相关。随着对碳纤维复合材料认识的不断深化,以及制造技术水平的不断提升,碳纤维复合材料在相关领域的应用研究与装备不断取得进展,借鉴国际先进的碳纤维复合材料应用经验,牵引高性能碳纤维及其复合材料的国产化步伐,对于改变经济结构、节能减排具有重要的战略意义。 1碳纤维材料 1.1何为碳纤维材料 碳纤维是一种含碳量在9 2% 以上的新型高性能纤维材料, 具有重量轻、高强度、高模量、耐高温、耐磨、耐腐蚀、抗疲劳、导电、导热和远红外辐射等多种优异性能, 不仅是21 世纪新材料领域的高科技产品, 更是国家重要的战略性基础材料, 政治、经济和军事意义十分重大。碳纤维分为聚丙烯睛基、沥青基和粘胶基 3种, 其中90 % 为聚丙烯睛基碳纤维。聚丙烯睛基碳纤维的生产过程主要包括原丝生产和原丝碳化两部分。用碳纤维与树脂、金属、陶瓷、玻璃等基体制成的复合材料, 广泛应用于航空航天领域体育休闲领域以及汽车制造、新型建材、

热塑性树脂复合材料应用

摘要:热塑性复合材料因具有韧性、耐蚀性和抗疲劳性高,成形工艺简单、周期短,材料利用率高,预浸料存放环境与时间无限制等优异性能而得到快速发展,并逐渐进入航空制造领域。尤其是近年来,在欧盟以及空客、福克航宇等航空制造企业的强力推动下,热塑性复合材料在民机上频频崭露头角,在一些部件上成为热固性复合材料的有力竞争对手。热塑性复合材料如果想继续扩大在民机上的应用,必须进入机体主承力构件,然而,热塑性应用于主承力构件还三个挑战,即原材料成本高,铺放工艺缓慢,以及预浸料粘性问题。 关键词:热塑性复合材料碳纤维机体内饰主承力结构 热塑性复合材料是以玻璃纤维、碳纤维、芳烃纤维及其它材料增强各种热塑性树脂所形成的复合材料,因具有韧性、耐蚀性和抗疲劳性高,成形工艺简单、周期短,材料利用率高,预浸料存放环境与时间无限制等优异性能而得到快速发展,并逐渐进入航空制造领域。尤其是近年来,在欧盟以及空客、福克航宇等航空制造企业的强力推动下,热塑性复合材料在民机上频频崭露头角,在一些部件上成为热固性复合材料的有力竞争对手。 1 热塑性复合材料的民机应用潜质 以聚苯硫醚(PPS),聚醚酰亚胺(PEI),聚醚醚酮(PEEK)和聚醚酮酮(PEKK)为基体的先进增强热塑性复合材料(TPC),具备高刚度、低加工成本和重新加工能力,拥有良好的阻燃、低烟和无毒(FST)性能,固化周期可以以分钟记,且其成形过程是天生的非热压罐工艺。这些固有属性使其成为轻质、低成本航空结构的理想材料。为西科斯基公司直升机提供大型热塑性复合材料地板的纤维锻造公司提供了如下一组数据:热塑性复合材料比钢轻60%,硬度是其6倍;比铝轻30%;比热固性复合材料强韧2倍;比注射模塑塑料硬5倍;在生产中比板材少60%碎屑。 上述性能特点和数据对比表明,热塑性复合材料是一种天生的航空结构材料,并且在民机应用上拥有巨大的潜质,甚至可能在未来为航空复合材料制造带来一场热塑性革命。 2 热塑性复合材料在民机上的典型应用 目前,热塑性复合材料(TPC)在民机上的应用主要体现在机体结构件和内饰件上,这其中,碳纤维增强PPS的TPC占大多数。 2.1 机体结构件 机体结构件中,TPC主要应用在地板、前缘、控制面和尾翼零件上,这些零件都是外形比较简单的次承力构件。空客A380客机、空客A350客机、湾流G650公务机和阿古斯塔·韦斯特兰AW169直升机都是热塑性机体结构件的应用大户。 空客A380客机上最重要的热塑性复合材料结构件是玻璃纤维/PPS材料的机翼固定前缘。每个机翼有8个固定前缘构件,其中热塑性材料占到了整个用料的三分之二。在固定前缘蒙皮的纤维铺放中,制造商福克航空结构公司选择了先进的超声点焊作为铺放设备的加热系统。

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

碳纤维复合材料柔性连续抽油杆生产工艺

碳纤维复合材料柔性连续抽油杆生产工艺 ?拉挤成型于1951年首次在美国注册专利,60年代发展很慢,70-80年代进入快速发展阶段。我国起步则较晚,直到90年代随着拉挤专用树脂技术的引进生产才进入快速发展时期。目前,引进及国产拉挤生产线已超过200条。我国发展拉挤与欧美形式相似:先开发形状简单的棒材,然后随着化工防腐、电力、采矿等行业的发展与需求,开发了型材制品,目前这些技术已经比较成熟。 拉挤工艺是一种连续生产复合材料型材的方法,它是将纱架上的无捻玻璃纤维粗纱和其他连续增强材料、聚脂表面毡等进行树脂浸渍,然后通过保持一定截面形状的成型模具,并使其在模内固化成型后连续出模,由此形成拉挤制品的一种自动化生产工艺。 利用拉挤工艺生产的产品其拉伸强度高于普通钢材。表面的富树脂层又使其具有良好的防腐性,故在具有腐蚀性的环境的工程中是取代钢材的最佳产品,广泛应用于交通运输、电工、电气、电气绝缘、化工、矿山、海洋、船艇、腐蚀性环境及生活、民用各个领域。 拉挤成型工艺形式很多,分类方法也很多。如间歇式和连续式,立式和卧式,湿法和干法,履带式牵引和夹持式牵引,模内固化和模内凝胶模外固化,加热方式有电加热、红外加热、高频加热、微波加热或组合式加热等。 拉挤成型典型工艺流程为: 玻璃纤维粗纱排布——浸胶——预成型——挤压模塑及固化——牵引——切割——制品

注射拉挤成型工艺流程图 拉挤成型设备组成 1、增强材料传送系统:如纱架、毡铺展装置、纱孔等。 2、树脂浸渍:直槽浸渍法最常用,在整个浸渍过程中,纤维和毡排列应十 分整齐。 3、预成型:浸渍过的增强材料穿过预成型装置,以连续方式谨慎地传递, 以便确保它们的相对位置,逐渐接近制品的最终形状,并挤出多余的树脂,然后再进入模具,进行成型固化。 4、模具:模具是在系统确定的条件下进行设计的。根据树脂固化放热曲线 及物料与模具的摩擦性能,将模具分成三个不同的加热区,其温度由树脂系统的性能确定。模具是拉挤成型工艺中最关键的部分,典型模具的长度

碳纤维复合材料的制备及其发展

化工材料及应用 碳纤维复合材料的制备及其发展 1

目录 1摘要: (3) 2引言 (3) 2.1产品简介 (3) 2.2生产方法 (3) 2.2.1手糊成型工艺 (3) 2.2.2 喷射成型工艺 (3) 2.2.3注射成型 (4) 2.2.4 纤维缠绕成型 (4) 2.2.5拉挤成型 (4) 3结论 (4) 4参考文献 (4) 2

碳纤维复合材料的制备及其发展 1摘要:碳纤维是一种含碳量在95%以上的高强度、高模量、力学性能优异的新材料,它的重量不到钢的1/4,但强度却可以远高于钢铁,并且具有耐腐蚀、高模量的特性、无蠕变、非氧化环境下耐超高温、耐疲劳性好等优异性能。将碳纤维作为增强材料和树脂基体复合而成的树脂基复合材料是目前最具应用前景的一种复合材料,在各行各业有着广泛的应用。 关键词:碳纤维;制备;复合材料 2引言 碳纤维(简称CF)是一种含碳量在95%以上的新型纤维材料,不仅具有碳材料的固有本征特性,又兼具纺织纤维的柔软可加工性,是新一代增强纤维。碳纤维与树脂、金属、陶瓷等基体复合,制成的结构材料简称碳纤维复合材料。它以碳或石墨化的树脂作为基体,以碳纤维或碳纤维织物为增强体。作为高性能纤维的一种,该材料已在军事及民用工业的各个领域取得广泛应用,被认为是高科技领域中新型工业材料的典型代表,为世人所瞩目[1]。 2.1产品简介 复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法组成的具有新性能的材料,复合材料中的各种材料在性能上取长补短,使复合材料的综合性能比单一材料更为优异。碳纤维作为增强材料和树脂基体复合而成的树脂基复合材料是目前最具应用前景的一种结构复合材料,近年来获得了较快发展,在航空航天、机械、电子、化工等领域得到了广泛的应用[2]。 2.2生产方法 碳纤维增强复合材料有多种制备方法,近年来,人们一直在改进不同种类的碳纤维复合材料的性能和加工方法,力求为这种性能优良的材料寻找到最佳的加工方法。目前主要成型方法有以下几种。 2.2.1手糊成型工艺 手糊成型工艺是复合材料最早的一种成型方法、也是一种最简单的方法。它的最大特点是以手工操作为主,不受产品尺寸和形状限制,适宜尺寸大、批量小、形状复杂产品的生产;设备简单、投资费用少;可以满足多种产品的设计要求。这种方法不足之处在于生产效率低下;劳动强度大;环境不友好;产品稳定性不高。 2.2.2 喷射成型工艺[3] 3

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

碳纤维制备工艺简介资料

碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。 一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。 虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

中航高科南通民用复合材料生产线建成投产将降低高性能碳纤维复合材料成本

塑一料一工一业 2019年一 一 我国年产4000万t废塑料目前仅有34家规范企业 1月3日?按照?废塑料综合利用行 业规范条件?二 ?轮胎翻新行业准入条 件?二?废轮胎综合利用行业准入条件?及相关公告管理办法的要求?工信部公示了第二批符合废塑料二废矿物油二建 筑垃圾二废旧轮胎综合利用行业规范条件的企业名单? ?废塑料综合利用行业规范条件?规 定了三大类企业准入门槛?这些门槛的设置能有效地清除一些不合规范的企业?每年有3月31日和9月30日两次申请机会? ?规范条件?具有白名单性质?而不是强制?通过评审的企业可以称得上是行业模范?规范化企业在税收二科研二产业发展方面容易得到政策倾斜?例如?现在大气治理越来越严格?雾霾严重的情况下会采取错峰生产二乃至停产等措施?但对规范化企业有可能不受此类措施的约束? 企业准入门槛高 1.PET再生瓶片类新建企业:年废塑料处理能力不低于30000t?已建企业则不低于20000t? 2.废塑料破碎二清洗二分选类新建企业:年废塑料处理能力不低于30000t?已建企业不低于20000t? 3.塑料再生造粒类新建企业:年废 塑料处理能力不低于5000t?已建企业不低于3000t? 资源综合利用及能耗1.塑料再生加工相关生产环节的综合电耗低于500kW h/t废塑料? 2.PET再生瓶片类企业与废塑料破 碎二清洗二分选类企业的综合新水消耗低于1 5t/t废塑料?塑料再生造粒类企业的综合新水消耗低于0 2t/t废塑料? 工艺与装备 1.PET再生瓶片类企业?应实现自 动进料二自动包装与加工过程的自动控制? 2.废塑料破碎二清洗二分选类企业?应采用自动化处理设备和设施? 3.塑料再生造粒类企业?应具有与 加工利用能力相适应的预处理设备和造粒设备? 目前的规范化企业并不多?按照这个标准?提高废塑料行业的整体水平?树立标杆?获得后续政策支持?但实际上?该政策只利于龙头企业投资这一领域?小作坊模式将会在环保整治浪潮中被淘汰? 我国每年产生的塑料废弃物接近 4000万t?再生利用量超过2000万t?从 事废塑料回收和加工利用企业数以万计?遍布全国各地?然而仅有34家废塑料综合利用规范企业?难道其余的企业都是不规范的?难道其余的废塑料企业就是传说中的小二散二乱二污的废塑料作坊吗? 答案:当然不是!这个行业一定有几百家甚至更多的规范企业! 这些企业不同于四处污染的废塑料小作坊?不是环保督查的重点对象?多数企业进行环保技术二设备升级改造?部分企业根据原料情况阶段性生产?产量约为20%~50%产能?探索自建国内回收体系?加大原料来源?探索新型集成型园区建设?全球投资力度加大?寻找新的海外加工基地?如东南亚二东欧二东非二部分发达国家和地区等? 中航高科南通民用复合材料生产线建成投产一将降低高性能碳纤维 复合材料成本 1月11日?中航高科与航空工业复 材共同建设的南通民用复合材料生产线建成投产?继南通大尺寸蜂窝生产线之后?该生产线的建成投产促进了航空工业复材民用复合材料产业发展二推动公司在成为国内领先的民用复合材料供应商的道路上又迈出了坚实一步? 中航高科民用复合材料生产线建成投产?将显著降低高性能碳纤维复合材料成本?大幅提升复合材料构件的制造效率?为实现高效成型碳纤维复合材料大规模应用创造了条件?为把中航高科打造成具有国际竞争力的航空新材料和高端智能装备制造企业做出了新贡献? 深材科技推出纳米改性聚氨酯 环氧树脂系新产品 深材科技公司推出甲基四氢苯酐二 甲基六氢苯酐专用(高玻璃化转变温度Tg二高机械性能二高导热系数)纳米改性聚氨酯环氧树脂系? 甲基四氢苯酐二甲基六氢苯酐是常用的酸酐固化剂?主要与双酚A型环氧树脂配合使用?二者生成的固化物具有高Tg二高机械性能二高导热系数等优点?但最大的缺点是太脆?限制了其在很多领域的应用?导致一些企业只能以牺牲产品品质为代价?来应对市场的需求?为进一步改善部分性能?一些企业会在环氧树脂里添加不同增韧剂?虽然韧性得到了提高?但Tg值却有不同程度下降二机械性能相应减弱二导热系数也不太理想? 深材团队从2016年开始深入研究甲基四氢苯酐二甲基六氢苯酐与环氧树脂完全固化后太脆这一最大缺点?经过两年多时间数千次研发测试?于2018年10月成功推出行业领先产品:纳米改性聚氨酯环氧树脂系(SC ̄1288N二SC ̄1288P二SC ̄1288CF)?该产品与甲基四氢苯酐二甲基六氢苯酐配合使用生成的固化物具备高Tg二高机械性能二高导热系数的特点?问世以来已有多家企业批量购买? 测试综合力学性能均有不同程度提高? 茂名石化:全密度装置提前完成 全年产量任务 截至2018年12月25日?茂名石化化工分部全密度装置累计生产聚乙烯产品14 5万t?提前6天完成全年目标产量?为做好装置的安全稳定生产?车间强化生产管理?加强专业检查与考核力度?各专业组每天下现场?查DCS操作记录?发现问题及时处理?强化 三大纪律 管理和操作培训?提高员工责任意识及操作技能?杜绝 一伸手 操作带来的生产波动?强化设备巡检维护?做好 计划性 维修?确保设备运行达到最佳状态? 面对日益激烈的市场竞争环境?全密度车间在做好通用料生产的同时?坚持以客户需求为导向?贴近市场?积极开发生产适销对路的新产品?先后开发了柔性CPE薄膜料PE ̄LF234PB二人造草线型聚乙烯树脂PE ̄LT272等5个牌号的新产品?其中人造草线型聚乙烯树脂更是填补了国内空白? 841

碳纤维复合材料

碳纤维复合材料 碳纤维增强复合材料(Carbon Fibre-reinforced Polymer, 简称CFRP)是以碳纤维或碳纤维织物为增强体,以树脂、陶瓷、金属、水泥、碳质或橡胶等为基体所形成的复合材料,简称碳纤维复合材料。 碳复合材料的特性主要表现在力学性能、热物理性能和热烧蚀性能三个方面。 (1)密度低(1.7g/cm3左右)在承受高温的结构中,它是最轻的材料;高温的强度好,在2200oC时可保留室温强度;有较高的断裂韧性,抗疲劳性和抗蠕变性;而且拉伸强度和弹性模量高于一般的碳素材料,纤维取向明显影响材料的强度,在受力时其应力-应变曲线呈现"假塑性效应"即在施加载荷初期呈线性关系,后来变成双线性关系,卸载后再加载,曲线仍为线性并可达到原来的载荷水平。 (2)热膨胀系数小,比热容高,能储存大量的热能,导热率低,抗热冲击和热摩擦的性能优异。 (3)耐热烧蚀的性能好,热烧蚀性能是在热流作用下,由于热化学和机械过程中引起的固体材料表面损失的现象,通过表层材料的烧蚀带走大量的热量,可阻止热流入材料内部, C-C材料是一种升华-辐射型材料。 复合原理它以碳纤维或碳纤维织物为增强体,以碳或石墨化的树脂作为基体。 复合以后的这种材料在高温下的强度好,高温形态稳定,升华温度高,烧蚀凹陷性,平行于增强方向具有高强度和高刚性,能抗裂纹传播,可减震,抗辐射。 碳纤维增强尼龙的特色 碳纤维具有质轻、拉伸强度高、耐磨损、耐腐蚀、抗蠕变、导电、传热等特色,与玻璃纤维比较,模量高3?5倍,因而是一种取得高刚性和高强度尼龙资料的优秀增强资料。碳纤维复合资料可分为长(接连)纤维增强和短纤维增强两大类。纤维长度可从300~400m 到几个毫米不等。曩昔10年中,大家在改善不一样品种的碳纤维复合资料加工办法和功能方面投入了许多的研讨。从预浸树脂到模塑法加工,从短纤维掺混塑料注射加工到层压成型,在碳纤维复合资料及制品制造方面积累了许多成功的经历。当前普遍认为,长(接连)纤维有高强、高韧方面的优越性,短切纤维有加工性好的特色。因而,长碳纤维复合资料在加工上完善成型技术、短碳纤维复合资料进一步进步力学功能是碳纤维复合资料开展的方向。 依据碳纤维长度、外表处理方式及用量的不一样,还能够制备归纳功能优秀、导电功能各异的导电资料,如抗静电资料、电磁屏蔽资料、面状发热体资料、电极资料等。碳纤维增

热塑性碳纤维复合材料成型工艺研究

热塑性碳纤维复合材料成型工艺研究 碳纤维质量比金属轻,但是强度却高于钢铁,并且耐腐蚀,在非氧化环境下耐超高温,膨胀系数小且 具有各向异性,但是传统使用碳纤维除了用作隔热保温材料之外,一般是不会单独使用的,多是会作为增 强材料加入到金属、瓷器、树脂等材料中作为复合材料使用。碳纤维复合材料具有碳材料的固有本性特征,同时又兼具纺织纤维的柔软可加工性,是一种力学性能优异的新一代增强纤维,可用作人工韧带、飞机结 构材料、火箭外壳、工业等等领域,市场需求巨大。 热塑性碳纤维复合材料是铝镁合金、钢铁等金属的理想替代材料,但是在基于国外技术封锁等原因,热塑性碳纤维复合材料在国内的发展时间并不是很长,国内的热塑性碳纤维复合材料发展缓慢。苏州挪恩 复合材料有限公司专注碳纤维相关技术的研究,在热塑性碳纤维增强PEEK复合材料、热塑性碳纤维增强PPS复合材料、热塑性碳纤维增强PEI复合材料、热塑性碳纤维增强PC复合材料方面苦心孤诣,与日本美国等知名企业的合作,也让挪恩拥有了成熟的产品生产经验。 现在国内的热塑性碳纤维复合材料成型工艺主要是由热固性树脂基复合材料和金属成型技术移植而来。按照设备的不同可以分为纤维缠绕成型、真空袋成型、模压成型、热压罐成型、双膜成型等等方法,其中 纤维成型缠绕型、真空袋成型、模压成型、双膜成型是目前用的较多的热塑性碳纤维复合材料成型方法。 1、纤维缠绕成型 纤维缠绕成型工艺是指浸过树脂的连续纤维按照一定的规律缠绕在芯模上,继而经过固化、脱模而得 的碳纤维复合材料制品。根据纤维缠绕成型时树脂基体的物理化学状态不同,也可分为干法缠绕、半干法 缠绕和湿法缠绕三种。干法缠绕工艺最大的特点是生产效率比较高,制作环境卫生环境好,但是相应的干 法缠绕设备较贵,投资较大;半干法缠绕是利用纤维浸胶后至缠绕芯模的途中,多加了一套烘干设备,省 却了预浸胶的工序;湿法缠绕则是将纤维浸胶后直接缠绕在芯模上,在成本方面比干法缠绕可以降低约35%,纤维排列平行度也会更好,但是操作环境差、树脂浪费也是湿法缠绕的明显缺点。 2、真空袋成型 真空袋成型是将预浸料铺放在模具中,利用真空袋和密封胶将真空袋抽至真空状态,将模具加热,预 浸料即可在高温和大气压的作用下成型。 3、模压成型 将预浸料裁剪至合适的大小铺设在模具中升温加热,等温度升至可成型温度后,再在压机台面上加压,待温度降温后就可脱模取出。此时需要注意压机表面必须拥有较高的平行度和平整度,否则很容易导致产 品发生翘曲。 4、双膜成型 双膜成型是将裁剪后的预浸料放置于两层可变形的金属膜或树脂膜之间,在膜的四周做好密封,成型 的过程中需要将温度调至成型温度并施加一定的成型压力,最后冷却定型,需要注意的是,在双膜成型的 过程中需要处于密封环境中进行。

碳纤维复合材料LY模板演示教学

复合材料基础 姓名:梁雨 专业:化学 学号:2014122

碳纤维复合材料 碳纤维是由碳元素组成的一种高性能增强纤维。不仅强度高,密度小,并且具有低热膨胀、高导热、耐磨、耐高位等优异性能,是一种很有发展前景的高性 能纤。这些优异的性能使得人们对它的重视到了一个很高的高度。那么接下来我就来介绍一下有关碳纤维复合材料在各方面的的一些知识。 一、碳纤维复合材料发展史 碳纤维复合材料的发展史应包含碳纤维的发展史何其复合材料应用史。碳纤维是碳材料的一种新形式。我们已经知道碳材料结构由四种类型,一是无定形碳、而是石墨、三是金刚石、四是白碳。碳纤维含碳99%以上,主要是石墨和无定形碳,纤维形状是一种新的应用形式。1880年人类制造了第一批电灯泡,那是电 灯泡的灯丝就是当时人类研制的第一批碳纤维,直到1901年发明钨丝后才不用它做灯丝了。到1950年美国空军材料研究所由于军工的需求,加紧对碳纤维研究,1959年由联合碳化合物公司实现了高强碳纤维的生产工艺。与此同时,1962年日本旭炭公司在远藤教授研究的基础上实现以聚丙腈纤维为原料,经过预氧化(不熔化)、1300℃以上高温炭化而得到有实用价值的通用碳纤维的工业生产线。1970年以后东丽公司、东邦公司相继参加聚丙烯腈基碳纤维的生产开发,形成2吨╱年的规模。1978年产量达1000t。20世纪80年代后期批量生产的M30、M60、T1000等石墨化程度更高的碳纤维。随后碳纤维在全世界需求量随年逐增 中国碳纤维的发展 我国从1968年开始研究碳纤维,很快研究出碳纤维1#,相当于T200的水平,1976年建成中试线,那是与日本东丽公司的差距为5年。后来碳纤维2#的研究久攻不下。差距已拉大20多年,无竞争可言。同时由于发达国家对我国几 十年的技术封锁,至今没能实现大规模工业化生产,工业及民用领域的需求长时 间依赖进口,严重影响了我国高技术的发展,尤其制约了航天及国防军工事业的 发展,与我国经济社会发展的进程极不相称。所以,研究生产高性能、高质量的 碳纤维,以满足军工和民用产品的需求,扭转大量口的局面,是当前我国碳纤维工业发展的迫切任务。

相关主题