搜档网
当前位置:搜档网 › 生物化学名词解释

生物化学名词解释

生物化学名词解释
生物化学名词解释

生物化学

1. 蛋白质折叠:蛋白质由所含氨基酸残基的亲水性、疏水性、带正电、带负电等特性通过残基间的相互作用而折叠成一个立体的三级结构。

2. 锌指结构:许多转录因子所共有的DNA 结合结构域,具有很强的保守性。它由4个氨基酸(4个Cys残基,或2个Cys残基和2和His 残基)和一个锌原子组成一个形似指状的三级结构。

3. 冈崎片段:复制叉上新合成的短的DNA 片段,即DNA 不连续合成的产物。细菌的冈崎片段约为1000~2000个核苷酸,真核细胞的约为100~200 个核苷酸。

4. 尿素循环:又称“鸟氨酸循环”。机体对氨的一种解毒方式。肝脏是鸟氨酸循环的重要器官。

包括三个阶段,①氨、二氧化碳和鸟氨酸缩合生成瓜氨酸;②瓜氨酸再与一分子氨结合脱去水,生成精氨酸;③精氨酸在肝脏精氨酸酶的催化下,水解生成尿素,并重新变为鸟氨酸。

5. 柠檬酸-丙酮酸穿梭系统:线粒体内产生的乙酰CoA ,与草酰乙酸缩合生成柠檬酸,穿过线

粒体内膜进入胞液,裂解后重新生成乙酰CoA ,产生的草酰乙酸转变为丙酮酸后重新进入线粒体。

6. 别构效应:一种分子可以通过分子内某一部分的结构改变,而导致激活部分活性改变的现象,即别构效应,也可称为变构效应。经常研究的例子是酶的别构效应,然而除了酶以外,如血红蛋白等也有别构效应。

7. 氧化磷酸化:指在代谢物脱氢氧化经呼吸链传递给氧生成水的过程中,既消耗了氧,消耗了无机磷酸,使ADP 磷酸化生成ATP 的过程,称为电子传递水平磷酸化,通常称之氧化磷酸化。常发生在线粒体内膜上。

8. 分子杂交:不同来源或不同种类生物分子间相互特异识别而发生的结合。如核酸(DNA、

RNA )之间、蛋白质分子之间、核酸与蛋白质分子之间、以及自组装单分子膜之间的特异性结合。

9. 结构域:也指功能域,在较大的蛋白质分子或亚基中,多肽链往往由两个或两个以上相对独立的三维实体,缔合而成三级结构,三维实体之间靠松散的肽链连接,这种相对独立的三维实体称为结构域。例如免疫球蛋白就含有12个结构域,每条重链上含有 4 个结构域,每条轻链上含有两个结构域。

10. Isoelectric Point :对某一种蛋白质而言,当在某一pH 时,其所带正负电荷恰好相等(净电荷为零),这一pH 值称为该蛋白质的等电点。蛋白质在等电点时的溶解度最小。

11. 透析:利用蛋白质不能通过半透膜的性质除去样品中小分子的非蛋白质物质。具体操作是将样品装在透析袋,放在无离子水中进行,在透析期间要更换无离子水,直到完成。

12. 蛋白质四级结构:具有三级结构的亚基借助非共价力彼此缔合成寡聚或多聚蛋白质

13. Chargaff's rules:① DNA 的腺嘌呤和胸腺嘧啶摩尔数相等,即A=T;②鸟嘌呤和胞嘧啶的摩尔数也相等,即G=C;③含6-氨基酸的碱基数等于含6-酮基的碱基数,即A+C=G+T;④嘌呤的总数等于嘧啶的总数,即A+G=C+T。

14. 退火(annealing):使热变性DNA 缓慢冷却,则可发生复性,此过程称为退火。

15. 限制酶图谱(restriction map ):核酸经限制性内切酶消化成片段,用电泳等方法分离,不同的核酸形成的各自独特的条带图谱。

16. 结合糖:糖类和其他类型生物分子以共价键结合而形成的化合物。包括糖蛋白、蛋白聚糖、肽聚糖、糖脂、脂多糖等,又称糖缀合物。

17. 酶的活性中心:指在一级结构上可能相距甚远,甚至位于不同肽链上的少数几个氨基酸残基或这些残基上的基团通过肽链的盘绕折叠而在三维结构上相互靠近,形成一个能与底物结合并催化其形成产物的位于酶蛋白表面的特化的空间区域。对需要辅酶的酶来说,辅酶分子或其上的某一部分结构常是活性中心的组成部分。

18. 三碳循环:又称卡尔文循环。是20世纪50年代卡尔文等人提出的高等植物及各种光合有机体中二氧化碳同化的循环过程。由核酮糖-1,5-双磷酸羧化酶/加氧酶催化核酮糖-1,5-双磷酸的羧化而形成甘油酸-3-磷酸的循环,产生的磷酸果糖可在叶绿体中产生淀粉。

19. 氨化作用:有机氮化物在微生物作用下释放出氨的过程。

20. 核心酶:大肠杆菌的RNA 聚合酶相对分子质量465 000,由五个亚基(α2ββ)' σ组成,还含有两个金属离子,它们与β'亚基相结合。没有σ亚基的酶(α2 ββ)' 叫核心酶。

21. 必需氨基酸:人和其他动物不具备合成蛋白质中全部氨基酸的途径,因此他们必须从食物中获得不能合成氨基酸。这些不能自己合成,必须从食物中获得的氨基酸称为必需氨基酸。人类和大鼠的必需氨基酸是相同的,共有10种即Phe、Val、Trp、Leu、Ile、Thr、Met、Lys、

His 、Arg (对幼小动物需要)。

22. 转化(作用):指细菌品系由于吸收了外源DNA (转化因子)而发生遗传性状的改变现

象。

23. 衰减作用:通过操纵子前导区内类似终止子的一段DNA 序列(衰减子)实现的细菌辅助

阻遏作用的一种精细调控。

24. 第二信使:是指由于胞外信使(也称第一信使)与质膜上受体的结合而产生或增加的靶细胞胞内物质,它们起着从质膜到胞内生化机构的信息传递者的作用。已知的第二信使有cAMP 、cGMP、

Ca2+以及从膜磷脂酰肌醇-4,5-二磷酸(PIP2)衍生而来的肌醇-1,4,5-三磷酸(IP3)和1,2-二酰基-sn -甘油(DAG)。

25. SD序列(Shine-Dalgarno sequence):原核生物起始密码子上游为核糖体结合位点,与核糖体小亚基16S rRNA 的3'端序列互补。

26. 构象:由于分子中单键自由旋转以及键角有一定的柔性,具有统一结构式和同一构型的分子在空间中可有多种形态,这些形态称为构象。

27. 蛋白质变性:蛋白质为生物大分子物质,有一定空间结构和生物学功能。在各种物理和化学因素

作用下蛋白质生物活性丧失,溶解度降低不对称性增高以及其他的物理化学常数发生改变,这种过程称为蛋白质变性。

28. 等电聚焦电泳:是一种高分辨率分析分离技术。它用于蛋白质的等电点测定。利用这种技术分离蛋白质混合物是在具有pH 梯度的介质(如聚丙烯酰胺凝胶)中进行的。在外电场作用下各种蛋白质将移向并聚焦(停留)在等于其等电点的pH 梯度处,形成一个很窄的区带。

29. 同源异构体:由来自一个基因的mRNA 前体因选择性剪接而产生多种mRNA ,并翻译出多种多肽链,这些多肽链即为同源异构体。

30. 解偶联剂:不抑制呼吸链的递氢或递电子过程,但能使氧化产生的能量不能用于ADP 的磷酸化的试剂称为解偶联剂。其机理是增大了线粒体内膜对H+的通透性,使H+的跨膜梯度消

除,从而使氧化过程释放的能量不能用于ATP 的合成反应。主要的解偶联剂有2,4-二硝基酚。

31. 反竞争性抑制作用:抑制剂不能与游离酶结合,但可与ES复合物结合并阻止产物生成,

使酶的催化活性降低,称酶的反竞争性抑制。

32. 肽键:由一个氨基酸的α-羧基与另一个氨基酸的α-氨基除去一分子水缩合而成的。

33. 别构效应:同第6 个。

34. 活化能:一般分子转变为活化分子所吸收的最小平均平动能,代表分子进行有效碰撞所需的起码的额外能量要求。

35. 质粒:是一种在细菌染色体以外的遗传因子,由环形双DNA 构成,根据染色体对质粒的复制控制程度严格与否,可将质粒分为松弛型控制质粒和严紧型控制的质粒,前者已选作基因工程的载体。质粒主要存在于原核工业生物细菌中,在真核生物酵母中也有。

36. 糖酵解:指葡萄糖或糖原在缺氧情况下(或氧气不足条件下),经过一系列反应分解为乳酸和少量ATP 的过程。

37. DNA半保留复制:DNA复制是以DNA 的两条链为模板,以dNTP为原料,在DNA聚合酶作用下按照碱基互补配对规律合成新的互补链,这样形成的两个子代DNA 分子与原来的DNA 分子完全相同,故称之为复制。又因子代DNA 分子的双链一条来自亲代,另一条是新合成的,故名半保留复制。

38. 操纵子:转录的功能单位。很多功能上相关的基因前后相连成串,由一个共同的控制区进行转录的控制,包括结构基因以及调节基因的整个DNA 序列。主要见于原核生物的转录调控,如乳糖操纵子、阿拉伯糖操纵子、组氨酸操纵子、色氨酸操纵子等。

39. 信号肽序列:每一需要运输的蛋白质都含有一段氨基酸序列,称为信号肽或导肽序列。

40. 无义突变:当氨基酸密码子变为终止密码子时,称为无义突变。

41. 光合作用:植物、藻类和某些细菌利用叶绿素,在光的照射下将水和二氧化碳转变为糖类,并释放氧的复杂过程。

42. ApoA :载脂蛋白A,是构成血浆脂蛋白的蛋白质组分之一,另外还有B、C、D、E类

等。基本功能是运载脂类物质及稳定脂蛋白的结构。

43. 糖异生作用:以乳酸、丙酮酸、丙酸、甘油和某些氨基酸等非糖物质作为前体合成葡萄糖的作用,它存在于所有的动、植物、真菌以及微生物。

44. Futile cycle :无效循环,又称底物循环。即一对相反方向的反应同时进行所形成的循环。如糖酵解中果糖-6-磷酸的磷酸化生成果糖-1,6-双磷酸,与果糖-1,6-双磷酸水解成果糖-6-磷酸连续进行。在代谢通路上是无效循环,可导致发热或可增强代谢信号的作用。

45. 异肽键:两个氨基酸通过侧链羧基或侧链氨基形成的肽键。

46. 联合脱氨基作用:由转氨酶催化的转氨基作用和L- 谷氨酸脱氢酶催化的谷氨酸氧化脱氨基

作用联合而成,即氨基酸的α-氨基通过转氨基作用转移到α-酮戊二酸上,生成相应的α-酮酸和谷氨酸,然后谷氨酸在L- 谷氨酸脱氢酶的催化下,脱氨基生成α-酮戊二酸同时释放出氨。

47. 可逆抑制剂:抑制剂与酶的结合是非共价的、可逆的,结合后可以用透析或超过滤等物理方法除去反应系统中的抑制剂,使酶活性恢复。

48. 多顺反子:即一条mRNA 链上有多个编码区,5'端、3'端和各编码区之间为非翻译区。

49. 酶原激活:某些酶先以无活性的酶原形式合成及分泌,然后在到达作用部位时由另外的物质作用,使其失去部分肽段从而形成或暴露活性中心形成有活性的酶分子的过程,如胃蛋白酶原是无活性的,它在胃液中经胃酸的作用或有活性的胃蛋白酶的作用变成有活性的胃蛋白酶分子。

50. K m:当酶反应速度为最大反应速度一半时的底物浓度称为米氏常数,这是每一个酶的特征参数。

51. 溶原途径:温和性噬菌体或称溶原性噬菌体感染细胞后,将其核酸整合到宿主的核DNA 上,并且可以随宿主DNA 的复制而进行同步复制,在一般情况下,不引起宿主细胞裂解。

52. 单链结合蛋白:稳定DNA 解开的单链,阻止复性和保护单链部分不被核酸酶降解。

53. 双关酶:有些酶能可逆地与膜结合,并以其膜结合型和可溶型的互变来影响酶的性质和调节酶活性。这类酶称为双关酶,以区别于膜上固有的组成酶。

54. 生物活性肽:是对生物机体的生命活动有益或是具有生理作用的肽类化合物。

55. 氨化作用:同第19个。

56. 螺旋酶( helicase):在DNA 复制过程中解开DNA 双链的酶。通过水解ATP 获得能量。

57. 端粒酶:是一种特殊的DNA 聚合酶,属反转录酶类,由RNA 和蛋白质构成,它以dNTP 为底物,以酶分子中的RNA 的一段序列为模板,延伸染色体的3'端,解决通常DNA 复制时引起的末端隐缩。

58. 启动子:在DNA 分子上合成RNA的起始处,有一段特殊的富含AT 的保守序列称启动子。启动结构可分为三部分:① -35序列提供RNA 聚合酶全酶识别信号;② -10 序列是酶与DNA 紧密结合位点。③ RNA 合成的起始位点。

59. 亲和层析:利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其他分子的层析技术。

60. 辅酶和辅基:辅酶是指与酶蛋白相结合比较松弛的小分子有机物质,用透析的方法很容易与酶蛋

白相分开,如辅酶Ⅰ、辅酶Ⅱ。辅基是指以共价键和酶蛋白相结合的辅助因子,不能通过透析除去,需要经过一定的化学处理才能与酶蛋白分开,如细胞色素氧化酶中的铁卟啉,就属于辅基。

61. 乳酸循环:肌肉细胞内的乳酸扩散到血液并随着血流进入肝脏细胞,在肝细胞内通过葡糖异生途径转变为葡萄糖,又回到血液随血流供应肌肉和脑对葡萄糖的需要。又称可立氏循环 ( Cori cycle)。

62. 溶原途径:同第51个。63. 双关酶:同第53个。

64. 酶( enzyme):是由活细胞产生的,除少数是RNA 外,几乎都是对底物具有极高催化效能和高度专一性的蛋白质,又称其为生物催化剂。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。

65. 核酸沉降系数( sedimentation constant):也称为沉降常数,当核酸在离心场里所受到的净离心力(离心力减去浮力)与溶剂的摩擦力平衡时,单位离心场强度的沉降速度为定值,称为核酸的沉降系数。

66. 氧化磷酸化作用( oxidative phosphorylation ):电子沿着氧化电子传递链传递的过程中所伴随的将ADP 磷酸化为ATP 的作用,或者说是ATP 的生成与氧化电子传递链相偶联的磷酸化作用。

67. 氧化脱氨基作用( oxidative deamination ):氨基酸脱氨基的主要方式之一。氨基酸脱氨基有4 种主要方式,即氧化脱氨基、转氨基、联合脱氨基及非氧化脱氨基作用等。

68. 滞后链( lagging strand):DNA 复制时,两条链均作为模板,合成新链的方向均为

5' →3。' 因此,以5' →3' DNA链为模板合成的互补新链不能沿着5' →3方' 向连续合成,只能随着DNA 双链的打开,依次合成5' → 3方' 向的DNA 短片段(冈崎片段),再连成长的DNA 链,因该链合成较前导链滞后,故名滞后链,又称后随链、随从链。

69. 蛋白质变性( denaturation):在与细胞环境不同的条件下可以使蛋白质结构发生或大或小的变化,足以引起生物功能丢失的三维结构改变称为变性。

70. 呼吸电子传递链( respiratory electron-transport chain ):将NADH 和FADH 2 中的电子传递至氧的一系列氧化还原系统。

71. 半保留复制( semi-conservative replication ):同第37 个。

72. 竞争性抑制( competitive inhibition ):抑制剂与底物竞争与酶的同一活性中心结合,从而干扰了酶与底物的结合,使酶的催化活性降低,这种作用就称为竞争性抑制作用。

73. 逆转录( reverse transcription ):以RNA 为模板在逆转录酶的作用下合成DNA 的过程叫做逆转录。逆转录在病毒致癌过程中起着重要的作用;在基因工程中,可用于mRNA 为模板合成cDNA 的实验中。

74. 同源蛋白质:氨基酸序列具有明显的相似性,在不同生物体或同一机体内行使相同或相似功能的蛋白质。

75. 端粒酶:同第57个。76. 冈崎片段:同第3个。

77. 溶原途径:同第51个。78. 双关酶:同第53个。

79. 阻遏蛋白:是一类在转录水平对基因表达产生负调控作用的蛋白质。

80. 蛋白伴侣:是分子伴侣中的一个亚类,直接帮助新生肽链和解折叠的蛋白质肽链折叠成具 有生物功能构象的蛋白质。

81. 糖的异生作用:同第 43 个。

82. 反馈调节:在一个系统中,系统本身的工作效果,反过来又作为信息调节该系统的工作, 这种调节方式叫做反馈调节。

83. 细胞因子:由活化的免疫细胞和某些基质细胞分泌的、介导和调节免疫、炎症反应的小分 子多肽,是除免疫球蛋白和补体外的另一类非特异性免疫效应物质。

84. 氧化磷酸化:同第 66个。 85. 端粒酶:同第 57个。

86. 启动子:同第 58个 88. 亲和层析:同第 59 个 89. 辅酶和辅基:同第 60个

91. 转录激活:结合特异的 DNA 序列,激活结合区附近的基因转录

92. 单链结合蛋白:同第 52 个

93. 受体:细胞膜或细胞内能识别外来信号(配体),并与之结合,将其转换成细胞内部信 号,从而诱发、改变或调节细胞生理活动的物质。

94. 酶原激活:同第 49个。 95. 氧化磷酸化:同第 66个。

96. 主动运送:细胞膜的物质运送方式之一。指一类须提供能量(包括

ATP 、质子动势或 “离 子泵 ”等)并通过细胞膜上特异性载体蛋白构象的变化,而使膜外环境中低浓度的溶质运入膜 内的一

种运送方式。

97. 超二级结构:由若干相邻的二级结构元件组合在一起,彼此相互作用,形成种类不多、有 规则、稳定的二级结构组合或二级结构串,称为超二级结构、折叠花式或折叠单位等。现在已 知的超二级结构有 3 种基本组合形式: αα、βα、βββ。87. 别构效应:同第 6 个

90. 等电点:同第 10 个

98. 结构域:同第9 个99. 蛋白质等电点:同第10 个

100. 外显子与内含子:在DNA 分子中或mRNA 分子中既能被转录又能被翻译的核苷酸序列叫做外显子。许多真核生物的基因是不连续的,这些不连续基因中的插入序列称内含子。当基因转录为RNA 后,内含子仍在RNA 序列中存在,经加工后可除去。

101. 转录调节因子:直接结合或间接作用于相应的顺式元件(如转录增强子或抑制子等),产生增强或抑制基因启动子转录活性的作用。

102. 光合磷酸化:植物叶绿体的类囊体膜或光合细菌的载色体由光驱动的ATP 合成称为光合磷酸化作用。

103. 增色效应:指DNA 变性后对260nm 紫外光的光吸收度增加的现象。

104. 酶的化学修饰:酶的化学修饰是指利用化学手段将某些化学物质或基团结合到酶分子上,或将酶分子的某部分删除或置换,改变酶的理化性质,最终达到改变酶的催化性质的目的。

105. DNA 克隆:将目的DNA 分子导入细胞需与质粒、病毒、噬菌体等载体结合,进入宿主细胞后宿主细胞即合成许多相同的拷贝,这个过程称为DNA 克隆。

106. 蛋白磷酸激酶:通过磷酸肌醇被募集到质膜而被激活的一种蛋白丝氨酸/苏氨酸激酶。

107. 共生固氮:两种生物相互依存生活在一起时,由固氮微生物进行固氮作用。

108. 信号肽:同第39 个。

109. 糖胺聚糖:曾称黏多糖、氨基多糖或酸性多糖。糖胺聚糖是一类由重复的二糖单位构成的杂多糖,其通式为[己糖醛酸→己糖胺]n,n随种类而异,一般在20到60之间。

110. 转录调节因子:同第101 个。

111. DNA 的变性与复性:指核酸双螺旋碱基对的氢键断裂,双链转变成单链,从而使核酸的天然构象和性质发生改变。变性的DNA 在适当条件下,可使两条分开的链重新缔合,恢复双螺旋结构,这个过程称为复性。

112. 多核糖体:在细胞内通常有5~6 个乃至更多的核糖连接在同一条mRNA 分子上进行蛋白质合成,这种聚合物称为多核糖体。通过此种方式使mRNA 保持高效、高速的转译水平。

113. 级联反应:通过多次的逐级放大使较弱的输入信号转变为极强的输出信号,导致各种生理响应的过程。一般包括磷酸化和去磷酸化反应。

114. 盐析:高浓度盐例如饱和或半饱和时,有些蛋白质将从水溶液中沉淀出来,这种现象称为盐析。

115. 鸟氨酸循环:同第4个。

116. 底物水平磷酸化与电子传递体系磷酸化:某些底物(如1,3-二磷酸甘油酸)分子中含有高能磷酸键,可转移至ADP 生成ATP ,这一过程称为底物水平磷酸化。这种磷酸化与电子传递链无关。

生物化学名词解释集锦

生物化学名词解释集锦 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essential amino acid) 3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(protein secondary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( van der Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis) 24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds) 3.不对称比率(dissymmetry ratio) 4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect) 10.减色效应(hypo chromic effect) 11.噬菌体(phage) 12.发夹结构(hairpin structure) 13.DNA 的熔解温度(melting temperature T m) 14.分子杂交(molecular hybridization) 15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(K m 值) 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1. 生物氧化(biological oxidation) 2. 呼吸链(respiratory chain) 3. 氧化磷酸化(oxidative phosphorylation) 4. 磷氧比P/O(P/O) 5. 底物水平磷酸化(substrate level phosphorylation) 6. 能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle) 4.发酵(fermentation) 5.变构调节(allosteric regulation) 6.糖酵解途径(glycolytic pathway) 7.糖的有氧氧化(aerobic oxidation) 8.肝糖原分解(glycogenolysis) 9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme) 11.糖核苷酸(sugar-nucleotide) 第六章脂类代谢

生化名词解释

生物化学名词解释 生物化学:生物化学是用化学的原理和方法,从分子水平来研究生物体的化学组成,及其在体内的代谢转变规律从而阐明生命现象本质的一门科学。 糖类化合物:多羟基醛或多羟基酮或其衍生物。 差向异构体:仅一个手性碳原子构型不同的非对映异构体。 旋光异构体:由于不对称分子中原子或原子团在空间的不同排布对平面偏振光的偏振面发生不同影响所产生的异构体。 αβ异头物:异头碳的羟基与最末的羟甲基是反式的异构体称α-异头物,具有相同取向的称β-异头物。 单糖:简单的多羟基醛或酮的化合物。 成脎反应:单糖的醛基或酮基与苯肼作用生成糖脎。 寡糖:由少数几个单糖通过糖苷键连接起来的缩醛衍生物。 多糖:由10个以上单糖单位构成的糖类物质。 血糖:是血液中的糖份,绝大多数为葡萄糖。 糖原:动物体内的储存多糖,相当于植物体内的淀粉。 脂质:脂肪酸与醇脱水反应形成的酯及其衍生物。 反式脂肪酸:不饱和的有机羧酸存在顺式和反式。 皂化值:完全皂化1g油脂所需KOH的毫克数。 碘值:100g油脂卤化时所能吸收的碘的克数,表示油脂的不饱和程度。 抗氧化剂:具有还原性、能抑制靶分子自动氧化的物质。 兼性离子:同时带有正电荷和负电荷的离子。 等电点:蛋白质或两性电解质(如氨基酸)所带净电荷为零时溶液的pH。 层析:基于不同物质在流动相和固定相之间的分配系数不同而将混合组分分离的技术。 蒽酮反应:蒽酮可以与游离的已糖或多糖中的已糖基、戊糖基及已糖醛酸起反应,反应后溶液呈蓝绿色,在620nm处有最大吸收。 谷胱甘肽:由L-谷氨酸、L-半胱氨酸和甘氨酸组成的三肽。 简单蛋白:仅由氨基酸组成。 结(缀)合蛋白:由简单蛋白与其它非蛋白成分结合而成。 蛋白质一级结构:以肽键连接而成的肽链中氨基酸的排列顺序。 蛋白质二级结构:肽链主链骨架原子的相对空间位置。 蛋白质超二级结构:若干相邻的二级结构单元按照一定规律有规则地组合在一起,彼此相互作用,形成在空间构象上可彼此区别的二级结构组合单位。 结构域:二级、超二级结构基础上形成的介于超二级结构和三级结构之间的局部折叠区,是一个特定区域。 Edman降解:从多肽链游离的N末端测定氨基酸残基的序列的过程。 氢键:氢原子与两个电负性强的原子相结合而形成的弱键。 α-螺旋:多肽链的主链原子沿一中心轴盘绕所形成的有规律的螺旋构象。 β-折叠:由两、多条几乎完全伸展的肽链平行排列,通过链间的氢键交联而形成。肽链主链

(完整版)生物化学名词解释大全

第一章蛋白质 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI 表示。 4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。 5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的 近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子 结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则 的、在空间上能辨认的二级结构组合体。 16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏 水侧链避开水相而相互聚集而形成的作用力。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当 两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解 度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并 恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所 带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作

生化生物化学名词解释(1)重点知识总结

第一章 蛋白质的结构与功能 等电点(isoelectric point, pI)在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势及程度相等,成为兼性离子,呈电中性。此时溶液的pH值称为该氨基酸的等电点。 蛋白质的一级结构(pri mary structure): 蛋白质分子中,从N-端至C-端的氨基酸残基的排列顺序。 蛋白质的二级结构(se condary structure): 蛋白质的二级结构是指多肽链中主链骨架原子的局部空间排布,不涉及氨基酸侧链的构象。 肽单元: 参与肽键的6个原子—— Cα1、C、H、O、N、Cα2 处于同一平面,称为肽单元α-helix:以α-碳原子为转折点,以肽键平面为单位,盘曲成右手螺旋状的结构。 螺旋上升一圈含3.6个氨基酸残基,螺距0.54nm 氨基酸的侧链伸向螺旋的外侧。 螺旋的稳定是靠氢键。氢键方向与长轴平行。 β-折叠:蛋白质肽链主链的肽平面折叠呈锯齿状 结构特点:锯齿状;顺向平行、反向平行 稳定化学键:氢键 蛋白质的三级结构(tert iary structure) : 蛋白质的三级结构是指在各种二级结构的基础上再进一步盘曲或折迭。也就是整条肽链所有原子在三维空间的排布位置。 结构域(domain) : 分子量大的蛋白质三级结构常可分割成一个和数个球状或纤维状的区域,折叠得较为紧密,各有独特的空间构象,并承担不同的生物学功能。 分子伴侣 (chaperon): 帮助形成正确的高级结构 使错误聚集的肽段解聚 帮助形成二硫键 蛋白质的四级结构(quar ternary structure):蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用 亚基(subunit):二条或二条以上具有独立三级结构的多肽链组成的蛋白质。其中,每条具有独立三级结构的多肽链 模体一个蛋白质分子中几个具有二级结构的肽段,在空间位置上相互接近,形成特殊的空间构象,称为“模体”(motif) 蛋白质的变性: 天然蛋白质在某些物理或化学因素作用下,其特定的空间结构被破坏,而导致理化性质改变和生物学活性的丧失,称为蛋白质的变性作用 (denaturation)。 蛋白质的复性当变性程度较轻时,如去除变性因素,有的蛋白质仍能恢复或部分恢复其原来的构象及功能 盐析(salt precipitation)是将硫酸铵、硫酸钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质沉淀。 电泳蛋白质在高于或低于其pI的溶液中为带电的颗粒,在电场中能向正极或负极移动。这种通过蛋白质在电场中泳动而达到分离各种蛋白质的技术, 称为电泳(elctrophoresis) 第二章 核酸的结构与功能 脱氧核糖核酸(deoxyribonucleic acid, DNA):主要存在于细胞核内,是遗传信息的储存和携带者,是遗传的物质基础。 核糖核酸(ribonucleic acid, RNA): 主要分布在细胞质中,参与遗传信息表达的各过程。DNA和RNA的一级结构:核苷酸的排列顺序,即碱基的排列顺序。

(完整版)食品生物化学名词解释和简答题答案

四、名词解释 1.两性离子(dipolarion) 2.米氏常数(Km值) 3.生物氧化(biological oxidation) 4.糖异生(glycogenolysis) 5.必需脂肪酸(essential fatty acid) 五、问答 1.简述蛋白质变性作用的机制。 2.DNA分子二级结构有哪些特点? 5.简述tRNA在蛋白质的生物合成中是如何起作用的? 四、名词解释 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.米氏常数(Km值):用Km值表示,是酶的一个重要参数。Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。 3.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。 4.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。 5.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。 五、问答 1. 答: 维持蛋白质空间构象稳定的作用力是次级键,此外,二硫键也起一定的作用。当某些因素破坏了这些作用力时,蛋白质的空间构象即遭到破坏,引起变性。 2.答: 按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行。两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系。维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小。

生物化学名词解释

生物化学:在分子水平研究生命体的化学本质及其生命活动过程中化学变化规律 自由能:自发过程中能用于作功的能量。 两性离子:在同一氨基酸分子中既有氨基正离子又有羧基负离子。 必需氨基酸:机体内不能合成,必需从外界摄取的氨基酸. 等电点:氨基酸氨基和羧基的解离度相等,氨基酸分子所带净电荷为零时溶液的pH值。 蛋白质的一级结构:蛋白质多肽链中氨基酸的排列顺序。 蛋白质的二级结构:多肽链沿着肽链主链规则或周期性折叠。 结构域:蛋白质多肽链在超二级结构基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 超二级结构:蛋白质分子中相邻的二级结构构象单元组合在一起成的有规则的在空间能辨认的二级结构组合体。 蛋白质的三级结构:在二级结构的基础上进一步以不规则的方式卷曲折叠形成的空间结构。 蛋白质的四级结构:由两条或两条以上的多肽链组成,多肽链之间以次级建相互作用形成的特定空间结构。 蛋白质的变性:在某些理化因素的作用下,维持蛋白质空间结构的次级键被破坏,空间结构发生改变而一级结构不变,使生物学活性丧失。 蛋白质的复性:变性了的蛋白质在一定条件下可以重建其天然构象,恢复生物学活性。 蛋白质的沉淀作用:蛋白质分子表面水膜被破坏,电荷被中和,蛋白质溶解度降低而沉淀。电泳:蛋白质分子在电场中泳动的现象。 沉降系数:一种蛋白质分子在单位离心力场里的沉降速度为恒定值,被称为沉降系数。 核酸的一级结构:四种核苷酸沿多核苷酸链的排列顺序。核酸的变性:高温、酸、碱等破坏核酸的氢键,使有规律的双螺旋变成无规律的“线团”。 核酸的复性:变性DNA经退火重新恢复双螺旋结构。 增色效应:变性核酸紫外吸收值增加。 减色效应:复性核酸紫外吸收值恢复原有水平。 Tm值:核酸热变性的温度,即紫外吸收值增加达最大增加量一半时的温度。

生物化学名词解释

生物化学名解解释 1、肽单元(peptide unit):参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Cα是两个肽平面的连接点,两个肽平面可经Cα的单键进行旋转,N—Cα、Cα—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6、酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考) 7、酶的活性中心 (active center of enzymes):酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。参与酶活性中心的必需基团有结合底物,使底物与酶形成一定构象复合物的结合基团和影响底物中某些化学键稳定性,催化底物发生化学反应并将其转化为产物的催化基团。活性中心外还有维持酶活性中心应有的空间构象的必需基团。 8、酶的变构调节 (allosteric regulation of enzymes):一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称酶的变构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。 9、酶的共价修饰(covalent modification of enzymes):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。 13、糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖

生化名词解释总结

第二章氨基酸 1、构型(configuration)一个有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构型的改变往往使分子的光学活性发生变化。 2、构象(conformation)指一个分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 3、旋光异构:两个异构化合物具有相同的理化性质,但因其异构现象而使偏振光的旋转方向不同的现象。 4、等电点(pI,isoelectric point)使分子处于兼性分子状态,在电场中不迁移(分子的净电荷为零)的pH值。 第三章蛋白质的结构 1、肽(peptides)两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 2、肽键(peptide bond)一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。 3、肽平面:肽链主链上的肽键因具有双键性质,不能自由旋转,使连接在肽键上的6个原子共处的同一平面。 4、蛋白质一级结构:蛋白质一级结构(primary structure) 指蛋白质中共价连接的氨基酸残基的排列顺序。 5、蛋白质二级结构:蛋白质二级结构:肽链中的主链借助氢键,有规则的卷曲折叠成沿一维方向具有周期性结构的构象。 6、超二级结构:若干相邻的二级结构单元(螺旋、折叠、转角)组合在一起,彼此相互作用,形成有规则在空间上能辨认的二级结构组合体、充当三级结构的构件,称为超二级结构(super-secondary structure),折叠花式(folding motif)或折叠单位(folding unit) 7、结构域:在较大的球状蛋白质分子中,多肽链往往形成几个紧密的相对独立的球状实体,彼此分开,以松散的肽链相连,此球状实体就是结构域 8、蛋白质三级结构:指一条多肽链在二级结构或者超二级结构甚至结构域的基础上,进一步盘绕,折叠,依靠共价键的维系固定所形成的特定空间结构成为蛋白质的三级结构。9、蛋白质的四级结构:对蛋白质分子的二、三级结构而言,只涉及一条多肽链卷曲而成的蛋白质。在体内有许多蛋白质分子含有二条或多条肽链,每一条多肽链都有其完整的三级结构,称为蛋白质的亚基,亚基与亚基之间呈特定的三维空间排布,并以非共价键相连接。这种蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,为四级结构。由一条肽链形成的蛋白质没有四级结构。 10、蛋白质三维结构 11、氢键:氢原子与电负性的原子X共价结合时,共用的电子对强烈地偏向X的一边,使氢原子带有部分正电荷,能再与另一个电负性高而半径较小的原子Y结合,形成的X—H┅Y 型的键。 12、疏水作用力:分子中存在非极性基团(例如烃基)时,和水分子(广义地说和任何极性分子或分子中的极性基团)间存在相互排斥的作用,这种排斥作用称为疏水力。 13、Sanger测序 14、Edman降解测序:从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。

生物化学 名词解释问答题整理

名词解释 【肽键】 一个氨基酸的α-羧基与另一氨基酸的α-氨基发生缩合反应脱水成肽时形成的酰胺键。 【等电点(pI)】 蛋白质或两性电解质(如氨基酸)所带净电荷为零时溶液的pH, 此时蛋白质或两性电解质解离成阴/阳离子的趋势和程度相等,呈电中性,在电场中的迁移率为零。符号为pI。 【融解温度(Tm)】又称解链温度, DNA变性是在一个相当窄的温度范围内完成的,在这一范围内,紫外光吸收值到达最大值的50%时的温度称为DNA的融解温度。(最大值是完全变性,最大值的50%则是双螺旋结构失去一半)融解温度依DNA种类而定,核苷酸链越长,GC含量越高则越增高。 【增色效应】 由于DNA变性引起的光吸收增加称为增色效应,也就是变性后,DNA溶液的紫外吸收作用增强的效应。 【必需基团】 酶分子整体构象中对于酶发挥活性所必需的基团。(教材) 酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。 【活性中心】 或称“活性部位”,是指必需基团(上述)在空间结构上彼此靠近,组成具有特定空间结构的,能与底物发生特异性结合并将底物转化为产物的区域。 【米氏常数(Km)】 在酶促反应中,某一给定底物的动力学常数(由反应中每一步反应的速度常数所合成的)。根据米氏方程,其值是当酶促反应速度达到最大反应速度一半时的底物浓度。符号Km 。 【糖异生】 生物体将多种非糖物质(如氨基酸、丙酮酸、甘油)转变成糖(如葡萄糖,糖原)的过程,对维持血糖水平有重要意义。在哺乳动物中,肝与肾是糖异生的主要器官。 【糖酵解】 是指在氧气不足的条件下,葡萄糖或糖原分解为乳酸并产生少量能量的过程(生成少量ATP) 【酮体】

生化名词解释

第一部分: 糖酵解(glycolysis,EMP):是将葡萄糖降解为丙酮酸并伴随着ATP生成的一系列反应,是生物体内普遍存在的葡萄糖降解的途径。该途径也称作Embden-Meyethof途径。 柠檬酸循环(citric acid cycle,tricarboxylic acid cycle,TCA cycle):也叫三羧酸循环,又叫做TCA循环,是由于该循环的第一个产物是柠檬酸,它含有三个羧基,故此得名。乙酰辅酶A与草酰乙酸缩合成六碳三羧酸即柠檬酸,经过一系列代谢反应,乙酰基被彻底氧化,草酰乙酸得以再生的过程称为三羧酸循环。 生物氧化(biological oxidation):糖类、脂肪、蛋白质等有机物质在细胞中进行氧化分解生成CO2和H2O并释放出能量的过程称为生物氧化,其实质是需氧细胞在呼吸代谢过程中所进行的一系列氧化还原反应过程,所以又称为细胞氧化或细胞呼吸。 质子梯度(gradients of protons):化学渗透学说认为,电子传递释放的自由能驱动H+从线粒体基质跨过内膜进入到膜间隙,从而形成跨线粒体内膜的H+电化学梯度即质子梯度。这个梯度的电化学势驱动ATP合成。 Fe -S蛋白:(简写为Fe-S)是一种与电子传递有关的蛋白质,它与NADH Q还原酶的其它蛋白质组分结合成复合物形式存在。它主要以(2Fe-2S) 或(4Fe-4S) 形式存在。(2Fe-2S)含有两个活泼的无机硫和两个铁原子。铁硫蛋白通过Fe3+ Fe2+ 变化起传递电子的作用。 细胞色素(cytochrome):是一类含有血红素辅基的电子传递蛋白质的总称。因为有红颜色,又广泛存在于生物细胞中,故称为细胞色素。血红素的主要成份为铁卟啉。根据吸收光谱分成a、b、c三类,呼吸链中含5种(b、c、c1、a和a3)。 Q循环:是指在线粒体内膜中电子传递链上QH2分别传递一个电子到细胞色素中,即共使2个细胞色素得到电子,从而被氧化。 电子传递链(eclctron transfer chain):线粒体基质是呼吸底物氧化的场所,底物在这里氧化所产生的NADH和FADH2将质子和电子转移到内膜的载体上,经过一系列氢载体和电子载体的传递,最后传递给O2生成H2O。这种由载体组成的电子传递系统称电子传递链, 因为其功能和呼吸作用直接相关,亦称为呼吸链。 氧化磷酸化(oxidative phosphorylation):代谢物在生物氧化过程中释放出的自由能用于合成ATP(即ADP+Pi→A TP),这种氧化放能和A TP生成(磷酸化)相偶联的过程称氧化磷酸化。(NADH或FADH2将电子传递给O2的过程与ADP的磷酸化相偶联,使电子传递过程中释放出的能量用于ATP的生成。氧化磷酸化的过程需要氧气作为最终的电子受体,它是需氧生物合成ATP的主要途径。) 底物水平磷酸化(substrate level phosphorylation):代谢物通过氧化形成的高能磷酸化合物直接将磷酸基团转移给ADP,使之磷酸化生成ATP。有氧呼吸中有三个的高能磷酸化合物——1,3-BPG, PEP及琥珀酰辅酶A。 磷氧比(P/O):是指一对电子通过呼吸链传递到氧所产生ATP的分子数。 电子传递抑制剂:凡是能够阻断电子传递链中某部位电子传递的物质称为电子传递抑制剂,常见的有鱼藤酮、抗霉素A、氰化物、叠氮化物、CO、H2S等。利用电子传递抑制剂是研究电子传递顺序的重要方法。 解偶联剂(uncoupler)是指那些不阻断呼吸链的电子传递,但能抑制ADP通过磷酸化作用转化为ATP的化合物。它们也被称为氧化磷酸化解偶联剂。最早发现的一个解偶联剂是2, 4-二硝基苯酚(2, 4-dinitrophenol, DNP)。 氧化磷酸化抑制剂(inhibitors):直接作用于ATP合酶复合体,从而抑制ATP的合成。 离子载体抑制剂(ionophore):是指那些能与某种离子结合,并作为这些离子的载体携带离子穿过线粒体内膜的脂双层进入线粒体的化合物。

生物化学名词解释完全版

第一章 1,氨基酸(amino acid):就是含有一个碱性氨基与一个酸性羧基的有机化合物,氨基一般连在α-碳上。 2,必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 3,非必需氨基酸(nonessential amino acid):指人(或其它脊椎动物)自己能由简单的前体合成 不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH值。 5,茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。 8,蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相与固定相 (可以就是气体或液体)之间的分配比例将混合成分分开的技术。 10,离子交换层析(ion-exchange column)使用带有固定的带电基团的聚合树脂或凝胶层析柱 11,透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其她分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE只就是按照分子的大小,而不就是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pI)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳与SDS-PAGE的组合,即先进行等电聚胶电泳(按照pI)分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图就是二维分布的蛋白质图。 19,Edman降解(Edman degradation):从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein):来自不同种类生物的序列与功能类似的蛋白质,例如血红蛋白。 第二章 1,构形(configuration):有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂与重新形成就是不会改变的。构形的改变往往使分子的光学活性发生变化。 2,构象(conformation):指一个分子中,不改变共价键结构,仅单键周围的原子放置所产生的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂与重新形成。构象改变不会改变分子的光学活性。 3,肽单位(peptide unit):又称为肽基(peptide group),就是肽键主链上的重复结构。就是由参于肽链形成的氮原子,碳原子与它们的4个取代成分:羰基氧原子,酰氨氢原子与两个相邻α-碳原子组成的一个平面单位。 4,蛋白质二级结构(protein在蛋白质分子中的局布区域内氨基酸残基的有规则的排列。常见的有二级结构有α-螺旋与β-折叠。二级结构就是通过骨架上的羰基与酰胺基团之间形成的氢键维持的。5,蛋白质三级结构(protein tertiary structure): 蛋白质分子处于它的天然折叠状态的三维构象。三级结构就是在二级结构的基础上进一步盘绕,折叠形成的。三级结构主要就是靠氨基酸侧链之间的疏水相互作用,氢键,范德华力与盐键维持的。 6,蛋白质四级结构(protein quaternary structure):多亚基蛋白质的三维结构。实际上就是具有三级结构多肽(亚基)以适当方式聚合所呈现的三维结构。 7,α-螺旋(α-heliv):蛋白质中常见的二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都就是右手螺旋结构,螺旋就是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基与多肽链C端方向的第4个残基(第4+n个)的酰胺氮形成氢键。在古典的右手α-螺旋结构中,螺距为0、54nm,每一圈含有3、6个氨基酸残基,每个残基沿着螺旋的长轴上升0、15nm、 8, β-折叠(β-sheet): 蛋白质中常见的二级结构,就是由伸展的多肽链组成的。折叠片的构象就是通过一个肽键的羰基氧与位于同一个肽链的另一个酰氨氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以就是平行排列(由N到C方向)或者就是反平行排列(肽链反向排列)。 9,β-转角(β-turn):也就是多肽链中常见的二级结构,就是连接蛋白质分子中的二级结构(α-螺旋与β-折叠),使肽链走向改变的一种非重复多肽区,一般含有2~16个氨基酸残基。含有5个以上的氨基酸残基的转角又常称为环(loop)。常见的转角含有4个氨基酸残基有两种类型:转角I的特点就是:第一个氨基酸残基羰基氧与第四个残基的酰氨氮之间形成氢键;转角Ⅱ的第三个残基往往就是甘氨酸。这两种转角中的第二个残侉大都就是脯氨酸。 10,超二级结构(super-secondary structure):也称为基元(motif)、在蛋白质中,特别就是球蛋白中,经常可以瞧到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成有规则的,在空间上能辨认的二级结构组合体。 11,结构域(domain):在蛋白质的三级结构内的独立折叠单元。结构

生物化学名词解释

名词解释 1. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。2.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 3.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 4.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 5.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。 6.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 7.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。 8.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。9.层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。 10. 碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G.C(或C.G)和A.T(或T.A)之间进行,这种碱基配对的规律就称为碱基配对规律。 11. 反密码子:在tRNA 链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA 链上的密码子。反密码子与密码子的方向相反。 12. 顺反子:基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。 13. 核酸的变性、复性:当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA 链可以完全重新结合成和原来一样的双股螺旋。这个DNA 螺旋的重组过程称为“复性”。14. 退火:当将双股链呈分散状态的DNA 溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。 15. 增色效应:当DNA 从双螺旋结构变为单链的无规则卷曲状态时,它在260nm 处的吸收

生物化学名词解释完整版

生物化学名词解释完全版 第一章 1,氨基酸(amino acid ):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在 a -碳上。 2, 必需氨基酸(esse ntial ami no acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需 要从食物中获得的氨基酸。 3,非必需氨基酸(non esse ntial ami no acid):指人(或其它脊椎动物)自己能由简单的前体合成不需要从食物中获得的氨基酸。 4,等电点(pI,isoelectric point ):使分子处于兼性分子状态,在电场中不迁移(分子的静电荷为零)的pH 值。 5,茚三酮反应(ninhydrin reaction ):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 6,肽键(peptide bond):一个氨基酸的羧基与另一个的氨基的氨基缩合,除去一分子水形成的酰氨键。 7,肽(peptide):两个或两个以上氨基通过肽键共价连接形成的聚合物。8,蛋白质一级结构(primary structure )指蛋白质中共价连接的氨基酸残基的排列顺序。 9,层析(chromatography):按照在移动相和固定相(可以是气体或液体)之间的分配比例将混合成分分 开的技术。 10,离子交换层析(ion-exchange column )使用带有固定的带电基团的聚合树脂或凝胶层析柱 11, 透析(dialysis):通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。 12,凝胶过滤层析(gel filtration chromatography ):也叫做分子排阻层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 13,亲合层析(affinity chromatograph):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 14,高压液相层析(HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 15,凝胶电泳(gel electrophoresis ):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 16,SDS-聚丙烯酰氨凝胶电泳(SDS-PAGE):在去污剂十二烷基硫酸钠存在下的聚丙烯酰氨凝胶电泳。SDS-PAGE 只是按照分子的大小,而不是根据分子所带的电荷大小分离的。 17,等电聚胶电泳(IFE):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰氨凝胶制造一个pH梯度,电泳时,每种蛋白质迁移到它的等电点(pl)处,即梯度足的某一pH时,就不再带有净的正或负电荷了。 18,双向电泳(two-dimensional electrophorese):等电聚胶电泳和SDS-PAGE的组合,即先进行等电聚胶 电泳(按照pI)分离,然后再进行SDS-PAGE (按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 19,Edman 降解(Edman degradation ):从多肽链游离的N 末端测定氨基酸残基的序列的过程。N 末端氨基酸残基被苯异硫氰酸酯修饰,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 20,同源蛋白质(homologous protein ):来自不同种类生物的序列和功能类似的蛋白质,例如血红蛋白。

生化名词解释

静态生化名词 一.糖化学部分 1.Monosaccharides[单糖]:含有一个游离醛基或酮基以及含有多余2个羟基的糖。最简单的醛糖是甘油醛(糖),最简单的酮糖是二羟(基)丙酮(糖)。 2.Configuration& conformation(糖的构型和构象)-前者指在立体异构体中取代原子或基团在空间的取向。两种构型间的转变需要共价键的断裂和重组。如D-葡萄糖和L-葡萄糖。后者指取代原子或基团当单键旋转时可能形成的不同立体结构。这种空间位置的改变不涉及共价键的断裂。也见蛋白质和多肽章. 3.Mutarotation(糖的变旋现象):单糖的异头物在水溶液中互相转化的过程。或者指一个吡喃糖、呋喃糖或糖苷伴随着它们的α-和β-异构形式的平衡而发生的比旋度变化。 4.异头物(anomers):仅在氧化数最高的碳原子(异头碳)具有不同构型的糖分子的两种异构体。 5.异头碳(anomeric carbon):一个环化单糖的氧化数最高的碳原子。异头碳具有一个羰基的化学反应性。 6.成苷反应、糖(苷)基和糖苷键:活泼半缩醛/半缩酮羟基与含羟基的化合物(如醇、酚等)生成的缩醛/缩酮, 称为成苷反应。其产物称为配糖物,简称为“苷”,全名为某糖某苷。糖(苷)基与配基之间连接的键称为糖苷键(Glycosidic bond)。 7.Glycosidic bond(糖苷键)-一个糖半缩醛羟基与另一个分子(例如醇、糖、嘌呤或嘧啶)的羟基、胺基或巯基之 间缩合形成的缩醛或缩酮键。在糖蛋白中常见的糖苷键有O-糖苷键和N-糖苷键。 8.Epimerization(差向异构化):在一个含多个手性中心的分子中,只有一个手性中心构型发生转化的现象。如D- 葡萄糖和D-甘露糖就是。 9.糖酸:单糖的醛基被氧化为COOH的产物。 10.糖醛酸:单糖的伯醇基氧化为COOH的产物。 11.糖二酸:单糖的醛基和伯醇基都被氧化COOH的产物。 12.转化糖:由于水解前后旋光度发生改变(由右旋变为左旋),所以蔗糖的水解产物叫做转化糖,转化糖具有还原糖 的一切性质。 13.糖的氧化作用:糖在氧化剂作用下,糖的醛基或羟基被氧化为酸的反应。 14.糖的还原反应:加氢后糖的醛基被还原为羟基的反应。 15.还原性糖:羰基碳(异头碳)没有参与形成糖苷键,因此可被氧化充当还原剂的糖。或者说含有半缩醛羟基的单 糖和寡糖,能使三价铁还原为二价铁或能与3,5-二硝基水杨酸发生颜色反应。 16.麦芽糖:指2分子葡萄糖通过α-1,4糖苷键连接的双糖,系统名为α-Glc-(1→4)- β- Glc,俗名为Maltose,属于还 原性糖。 17.乳糖:指1分子葡萄糖和1分子半乳糖通过1,4糖苷键连接的双糖,系统名为β-Gal- (1→4) -α- Glc,俗名为Lactose, 属于还原性糖。 18.蔗糖:指1分子葡萄糖和1分子果糖通过1,2糖苷键连接的双糖,系统名为α-Glc-(1 →2)-β-Fru or β-Fru-(2?1)- α-Glc,,属于非还原性糖。 19.Homopolysaccharides[同聚多糖]:多糖经酸水解或酶水解后,只有一种单糖成分。如淀粉,糖原和纤维素等。 20.Heteropolysaccharides(杂聚多糖)-由不同单糖组成的多糖. 21.Cellulose(纤维素):是构成植物细胞壁等组织的主要结构成分。是由许多葡萄糖结构单位以β-1,4-glycosidic bond 互相连接而成的。 22.Glycogen(糖原,动物淀粉):是含有分支的α-(1→4)糖苷键连接在一起的葡萄糖的同聚物,支链在分支点处 通过α-(1→6)糖苷键与主链相连。当在分子量、分支程度等方面与植物淀粉有所不同。 23.Lipopolysaccharide(脂多糖,LPS):革兰氏阴性菌的细胞壁特有的脂和糖的复合物. 24.Capsular polysaccharide(荚膜多糖):由几百个重复单位(1~6个单糖残基)组成。细菌能组装出数百种完全不 同的线形和分支形荚膜多糖结构。结构中常含有罕见的单糖和非糖取代基,如乙酸酯、磷酸酯和丙酮酸缩酮。

相关主题