搜档网
当前位置:搜档网 › 发酵工艺优化

发酵工艺优化

发酵工艺优化
发酵工艺优化

发酵工艺优化

从摇瓶试验到中试发酵罐试验的不同之处

1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑

2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。

3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。

4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。

5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。

6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。

7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。

8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。

9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。

10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等

发酵工艺中补料的作用

补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点:

(1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。

(2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。

(3)可以解除底物抑制,产物反馈抑制和分解阻遏。

(4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。

(5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。

连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。

目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统

至于装液量的问题,应该从以下几个方面考虑:

1、保持在你所需要的转速培养情况下(尤其是在后期,菌丝很多时,转速很高时),不能让发酵液把你的塞子湿掉,容易造成染菌。

2、装液量的体积在消毒过程中,不能因为沸腾把塞子湿掉,或者跑出三角瓶,装液量太多会出现这样的情况。很容易染菌。

3、根据你的菌种的情况和发酵液的粘度,需要的混匀程度等等方面也要考虑。

4、建议你做一个梯度试验(40-50-60-70-80等)就可以找到你所需要的装液量。

关于剩余空气的排除在灭菌完毕后(100度左右),立刻用盖子或者其他的用品把你的培养摇瓶盖好,有时候这么点空气根本对兼性厌氧发酵没有什么影响,如果你的菌种要求很严的话,最好用干冰加入已经灭菌的空摇瓶后,立刻用其他的样品培养基分装即可。当然也可以用氮气。最好是二氧化碳。

你可以再查查看是否有其他的方法,我说的也不完全。!!

消毒(灭菌)工艺的优化

1、消毒又叫灭菌,但是又很多的区别在里面(可以上网搜索资料参考,很多的),我们在公司一般把它称为消毒。消毒其实又很多的学问在里面,一个好的消毒工可以达到一年内千分之一的染菌率,非常的厉害!!

2、发酵液经过消毒会遭到很大的破坏,所以首先需要控制消毒前的PH,而后控制消毒时的温度和时间(非常重要,有时候对发酵指标又很大的影响),在VB12发酵中,消毒的质量可以直接影响发酵的水平,从消后的指标就几乎能得出放罐时的指标。所以必须控制消毒的温度和时间。

3、消毒的方式的不同对发酵影响也很大,公司一般分实消(间断消毒)和连消两种,连消的发酵液质量较好,但是对设备仪器要求恨严格。实消操作简单,但是控制也不容易,对发酵噎破坏较大,因为它的升降温时间很长。对设备破坏较大,(震动和蛇罐等)。

4、现在出现一种是螺旋板换热器连续消毒,很方便也很经济。它的原理和连消鞳相似,只是它靠板式换热,不和蒸汽直接接触,而且它的消毒蒸汽冷凝水可以回流到原培养基进口处加热培养基,可以节约成本。而且可以控制培养基的体积。但是对设备的要求很严格(为了保证无菌要求),很少的设备公司能够做好这样的设备。

5、发酵的补料消毒可以通过调节好PH的几种料一起进行消毒,节约成本,如果部分的发酵中对几种物料的利用安比例进行,而且这些物料不发生任何反映,这样消毒既可以调节浓度控制蒸发量,又可以节约能源,一举两得。

6、部分得补料可以加入某种不容物质,消毒后再分开。保证设备的干净和无菌等,例如油里面可以加入其他的易溶于水的物质等,消毒后分水时可以把它分开。

7、消毒在保证无菌的前体下,还要考虑经济、对培养基破坏情况、操作方便(节省维修时间人员等)、工艺改进等等。

剪切力的计算可以参考(发酵设备),一般的说剪切力一般以搅拌叶的线速度测量,如果没有摇瓶没有搅拌可以参考摇瓶中最大的线速度,

计算公式为:转速*3.14*摇瓶中最大的半径的平方。

不过我觉得影响你发酵可能是胞外次级代谢物或者其他的物质。摇瓶中的剪切力对菌种的影响很小,不过你的菌种我不是很熟悉,不过凭我的经验我觉得他不是主要的因素。

我考虑的可能是氧气对你的影响较大,可能你搅拌时破坏了菌种的生长环境,导致他的代谢途径改变,产生了其他的物质(可能是有害物质)导致了菌种的生长环境改变影响了它的代谢。

还有一点是:你的培养基条件不是很适合菌种的生长,菌种在前期创造了自己生长条件,结果搅拌遭到破坏所以没有长好。

浅谈在发酵工艺优化中统计手段的重要性。

1. 协同效应与关键因素:优化发酵工艺实质是考察各个变量对优化目标的效应以获得各因素(变量)对目标值的影响关系,进而以此为基础确定最优操作条件。同其他学科一样,在发酵优化时如果能建立各因素对目标的数学表达函数是最为理想的。但由于发酵中微生物性质的复杂性(微生物内部的代谢机理,调控机制等)及发酵环境多样的传递特性(热,质量、动量),使得要建立一个准确的机理模型十分困难。因此目前常见的发酵模型多为黑箱模型,即拟合模型(虽然随着对微生物代谢途调控机制的了解及生化反应动力学的发展,不少成功的机理模型也被建立并用于发酵的优化和调控——可参见诸多生化反应动力学教程及研究文献)。同时,更简单的单因素试验或稍复杂的正交试验也在发酵工艺优化中得到普遍应用。虽然针对不同的优化要求,优化手段当然可以也应该尽量简单,但目前很多国内学术研究文献还频频采用正交试验的确让人感觉很惋惜,特别是对试验数据的统计处理不够重视,相关的检验欠缺。因为在发酵时,涉及微生物性质(种类、种龄、活力,接种量),生长条件(pH、温度),培养基组成,传递条件(溶氧量或转速、搅拌速度)等多个变量,所以不仅要考察每个因素的效应,还应考察是否存在不同因素的协同效应。一般而言,存在如此多的因素,协同效应在所难免。而要高效判别协同效应,统计手段就不可不重视。此外,要高效的进行优化时,也应该借助统计手段确定各个因素的效应大小,选择重要的因素进行重点考察,即抓住主要矛盾把好钢(精力)用在刀刃(关键因素)上。因此,在优化发酵工艺时,一定要有意识的应用统计手段,首先确定关键因素(包括产生重要协同效应的因素),而后再集中精力优化关键因素。值得一提的是,要事半功倍地实现优化目标,就应该时刻牢记要抓住主要矛盾。

2. 用统计手段建立数学模型:前点已提及要建立数学模型,但为什么要用统计手段建立数模了?我们都知道盲人摸象的故事,其实优化

发酵工艺也与此类似。试想,如果我们能准确地定量了解各个因素是如何影响发酵目标的,那要进行优化就是个简单地求最值的问题。之所以进行单因素试验或者正交试验,目的就是通过考察输入-输出关系建立变量-响应间的关系。我们如果仅仅通过考察几个孤立的点就想得到一个系统的全局的关系实在有盲人摸象的危险:获得一个局部的关系,得到一个局部的极值而非全局最值;或者获得失真的关系,得到连极值都不是的结果。而如果借助统计手段,我们可以有意识的选取一些有代表性的点,以获得全局的正确关系。比如,如果确定一个正方体的考察空间,那可以选择八个顶点+一个中心点,还可以补充考察六个面上的中心点。如此一来,不仅对全局做到了有效考察,而且最少只用9个点就可以达到目标,胜于无目的地考察正方体的其他点。

3. 如何事半功倍确定有效因素:如果有12个因素需要考察,那考虑到因素间的两两协同效应,则要另增加12×11=132个因素。如果采用单因素试验或正交试验,试验将非比寻常。如果借助适当的统计手段,则可大大减少试验次数。如Plackett-Burman(拼写可能有误)试验,n次试验可以考察n-1个因素,即进行12次试验可以考察11个因素。虽然PB有一定的缺陷,但一般而言的确是高效而又实用的。类似的非平衡或平衡块统计手段还有许多,我们可以根据需要选择合适的手段进行试验以达到目的。

4.应用统计优化的其他好处:在建立数学模型是,选择合适的方法也对优化过程和结果大有裨益。借助最陡爬坡试验、中心点试验,相应面方法,均匀设计等方法能让你准确、高效的完成试验。借助SAS,SPAA,Statistics等统计手段,你可以快速完成数据的分析、模型构建及假设检验。而且这些统计软件还特供了强大的绘图能力,你可以看到所建模型的三维图像,得到直观影响,轻松进行最优求解得到优化条件。另外,最优算法发展比较快,象基因算法,神经元网络算法也广为应用。

发酵工艺优化

前言:发酵工艺的优化在发酵行业起到很大的作用,尤其是在发酵生产中,它是提高发酵指标的一项非常,有用的技术手段.同时也是搞发酵行业的人的必备知识要求之一,借此我想通过和大家交流共同提高发酵方面的知识水平.

一、发酵工艺优化方法与思路:发酵工艺优化的方法有很多,它们之间不是孤立的,而是相互联系的。在一种发酵中,往往是多种优化方法的结合,其目的就是发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。

同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率,在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。

注意:大家可以从以下各个方面进行交流.尽量能够分类进行叙述,我总结了以下几累,也不是很全,当然从其他的方面进行交流也可以,但是希望你注明附加说明!

二. 好氧发酵

1. PH工艺的优化

2. 溶氧工艺的优化

3.原材料工艺的优化

4.消毒(灭菌)工艺的优化

5.菌种制备工艺的优化

6.小试到中试,中试到生产等扩大实验的工艺优化

7.成本工艺优化

8.种子罐工艺的优化

9.发酵罐工艺参数控制的优化

10.仪表控制的工艺优化

11.环境的工艺优化

12.染菌处理的工艺优化

13.紧急情况处理的工艺优化(停电\停水\停气\停汽等)

14.补料工艺的优化

15.倒种工艺的优化

16发酵设备的工艺优化

17.其他的工艺优化

三. 厌氧工艺的优化

四.固体发酵的工艺优化

五.其他

1. PH工艺的优化

A.配料中的PH 很重要,其中有配前PH,配后PH,消前PH,消后PH,接种前PH,工艺控制PH等,配前PH,配后PH,可以用来检测厡材料的质量,初步估计配料的情况,如果出了错误,有时候可以从PH中的变化看出来,能够减少错误的发生.

B.另外,每次有新的配方我们总是要用PH方法检测其中的每种厡材料是否会和其他的发生反应,可以互相两两混合,检测PH的变化,也可以用来作为配微量元素的检测.

C.消前PH可以用来减少消毒过程对培养基的破坏,因为培养基在消毒中会有PH的变化,在不同的PH条件下对培养基破坏也不一样,因此可以在消毒的时候选择合适的PH,消毒完后可以调节过来,这样一来可以对PH敏感的一些原材料减少破坏,这种方法在生产中已经取得了初步的成绩,提高了指标.

D.工艺控制的PH,在发酵的产抗期间,通过在不同的发酵时间调整不同的PH,可以减少杂质的产生,同时还可以缓解溶氧,比如在头孢发酵中,通过在后期调整PH可以减少DCPC的含量,给提取工序带来很大的好处,

E.补料罐通过PH的调节可以更好的通过流加物料而不影响发酵.(部分发酵在不同时期的PH有所不同,所以通过补料罐的调整可以对发酵指标有所提高)

F.发酵过程中的PH调节可以通过各种方法,不一定要添加氨水和氢氧化钠,可以添加玉米桨等其他的物料来进行调节.

G.控制放罐时的PH可以对后面的过滤有所影响,所以一定要控制好放罐前的PH

H.绘制种子瓶和种子罐以及发酵罐等整个发酵过程的PH生长曲线,可以用来参考控制工艺,检测无菌情况的发生.

六、A. 华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。他认为,必须高度重视细胞代谢流分布变化的有关现象,研究细胞代谢物质流与生物反应器物料流变化的相关性,高度重视细胞的生长变化,尽可能多地从生长变化中做出有实际价值的分析,进一步建立细胞生长变量与生物反应器的操作变量及环境变量三者之间的关系,以便有效控制细胞的代谢流,实现发酵过程的优化。

B. 补料分批发酵技术该技术可以有效地减少发酵过程中培养基黏度升高引起的传质效率降低、降解物的阻遏和底物的反馈抑制的现象,很好地控制代谢方向,延长产物合成期和增加代谢物的积累。所需营养物限量的补加,常用来控制营养缺陷型突变菌种,使代谢产物积累到最大。氨基酸发酵中采用这种补料分批技术最普遍,实现了准确的代谢调控。

C. 超声波的应用:超声波有很强的生物学效应。可应用于发酵过程的上、中、下游三个阶段。其在发酵工艺上的应用,可增加细胞膜的通透性和选择性,促进酶的变性或分泌,增强细胞代谢过程,从而缩短发酵时间,改善生物反应条件,高生物产品的质量和产量. 超声波的作用机制分为热作用、空化作用和机械传质作用。热作用是超声波在介质内传播过程中,能量不断被介质吸收而使介质的温度升高的一种现象,可用于杀菌或使酶失活。空化作用是超声波在介质中传播时,液体中分子的平均距离随着分子的振动而变化。当其超过保持液体作用的临界分子间距,就形成空化(空泡)。空泡内可产生瞬间高温高压并伴有强大的冲击波或射线流等,这足以改变细胞的壁膜结构,使细胞内外发生物质交换。机械传质作用是超声波在介质中传播时,可使介质质点进入振动状态,加速发酵液的质量传递,提高发酵过程的反应速度。超声波可广泛应用于生物发酵工程。不同频率和强度的超声波对发酵过程的作用是不同的,使用时应视具体的发酵工艺和使用条件进行选择。增加前体物的合成增加目的产物的前体物的合成或是直接添加前体物,均有利于目的产物的大量积累。如:在氨基酸的发酵中,通常在微生物的培养中加入前体,生产氨基酸;在花生四烯酸的发酵中,通过增加前体物或是加强糖代谢的途径,增加其前体物的合成,均有助于提高花生四烯酸的产量。去除代谢终产物改变细胞膜的通透性,把属于反馈控制因子的终产物迅速不断地排出细胞外,不使终产物积累到可引起反馈调节的浓度,即可以预防反馈控制。

七、、发酵工程的优化不是很全,、其主要是在两个方面进行优化:营养条件与环境条件的优化.目前做发酵优化没有什么前途,发不了高水平的文章,应该说发酵工程优化是Technology,而不是science.其主要着眼点在于实现发酵过程的高产量\高产率\高生产强度的相对统一.从以下几个方面实现优化技术:

1 基于微生物反应原理的培养环境优化技术;

2 基于微生物代谢特性的分阶段培养技术

3 基于反应动力学和人工智能的优化和控制技术

4 基于代谢通量分析的过程优化技术

5 基于系统观点的生物反应系统优化技术

6 基于胁迫条件下微生物生理应答特性的发酵过程优化技术

八、发酵工程包括不少内容,工艺的优化也有很多值得研究的地方。但是很多的理论是和生产实践相脱节的,也可以说对某些生产项目而言是没必要做过多的研究的(比如绝大多数的基因工程菌),说白了,就是看菌种好坏。

另外,个人认为,发酵工艺条件的优化,还是要结合具体的代谢产物和微生物来针对性研究。希望从理论和整体的角度做研究,对优化而言是没有效率的。

这里只是从实用性角度来说的,我并不怀疑发酵工艺的价值。

发酵工程优化是Technology,而不是science。但是有些事情可能不是你想象的那样,毕竟现在国内的公司和厂家主要以Technology为主,学校和科研单位以基础理论为主,现在的大体情况是科研和实际的生产应用有些脱钩,搞科研的大部分对搞生产的知识和应用有所缺陷,相反搞生产的觉得搞科研用处不大,尤其是现在的国内大的公司很少有出钱搞科研(基础理论研究)的,他们宁愿把大部分的钱用于工艺上的改进,而不愿意投资搞新产品的开发。其他方面我不是很清楚,但是在生物制药方面中国的新产品开发和应用成功的现在几乎占不到国外的千分之一。根据调查(刚刚进行的在北京进行的国际首届生物高级经济论坛报告)指出,现在中国的公司和科研脱钩严重,搞科研的只关心发高水平文章,不关心应用,更不关心生产。他们并不了解公司真正需要什么技术,现在公司和科研单位(包括学校)真正联手搞发展的很少,走形式的很多。像国外大的公司自己出钱搞科研开发的几乎没有,因为大部分的公司宁愿花钱去买现成的工艺和技术。

九、至于公司和学校等科研单位合作很难的原因有很多,什么保密、付款、应用等等,我们关心的是我们毕业早晚要参加工作,如果搞理论和科研也好,但是大部分的人员是要参加公司工作的,所以多了解这方面的知识,尤其是理论和实践结合的知识对我们很有用处。因为我们公司近几年招徕的新学生(包括研究生和博士)对公司的生产和科研很不适应,他们往往只是从事某方面的工作,而且基础的东西占有很大的比例。为了更好的毕业后融入工作人员的大家庭,出于这个目的,所以我才开这个交流,希望对将要毕业从事工作的人有所帮助,也对刚刚参加工作的人有所启示。大家共同学习,提高,当然在更多的方面进行交流更好,我们可以学习更多的知识。

我再根据自己的经验谈谈:不足之处,敬请大家给与补充改正!

十、溶氧工艺的优化

A.影响溶氧的条件有:温度、通气量、发酵液性质、物料的性质、补料的情况、压力、搅拌的形式、设备的各种参数、菌丝本身的情况、染菌等等

b. 控制好的溶氧要从各个方面分析入手,比如说,在不同的周期要调整各种影响溶氧的条件顺序就不一样,前期可以调整通气量,罐压然后温度,经搅拌等对生产指标影响不大,但是在发酵后期则要注意:如果你的军种和产物的生产对温度敏感的话,则需要最后调整温度,如果对压力或者二氧化碳敏感的话则最后再调整压力。其他的情况一样。也可以通过顺序调整来节省成本。

c. 搅拌的形式很多,我们试过很多的形式,根据设备的不同选型有所不同,但是必须要根据你的发酵液的性质和电机的功率等进行选择。这方面在发酵设备这本书上有详细的描述。注意一点是:搅拌的选择要注意它的接口和缝隙,避免染菌。

d. 空气分布器可以根据设备的情况进行设计,保证它和物料的混合度达到最大当然最好。不过一定要考虑它对染菌的影响。以及对其进行清洗的方便和消毒的方便,不易杜塞等。

e. 通过补料可以缓解溶氧,尤其是你的部料成分对发酵后其有很大影响的时候,通过合适的补料时间和补料量的控制可达到提高发酵指标的效果。具体问题具体分析了!

f. 通气量的控制可以根据菌丝的ph 的变化和溶氧计的测量进行控制,同时可以根据补料量的多少进行控制,这些均可以作为调整溶氧的参考依据。

十一、做发酵优化一定要有针对性,在你做一个新品种时,一定要忘记你原来品种的所有特性,把注意力集中到你所从事的具体微生物的培养上来!就象人才培养一样要因才施教,要有感情的去对待它,微生物也是生物,在某方面同人一样,这是我做发酵几年的体会,对于发酵是TECHNOLOGY还是SCIENCE,以及前途如何均不重要,重要的是要把自己所做的事情做好,做精,做细,就能实现TECHNOLOGY与SCIENCE之间的转化,它们表象不同,本质一样!

无论工作和试验都是一样的,需要你尽心尽力去认真的对待,只有踏踏实实认认真真的努力去把试验和工作做好,做精,做细,我觉得任何

人都会有很多的收获的。我做了好几年的生物制药工作,深感到做好一件工作并不是一件容易的事情,在发酵工艺改进这方面的工作也做了很多,有一点身有感触,就是其实我们做微生物试验不妨把自己的位置和微生物换个角度考虑,就会得到很多的启事。

举个例子来说吧!曾经有位博导说过,我们自己在培养微生物,用微生物进行试验,但是我们总是把他们当作微生物看待,当自己试验品,我们不妨换个角度,如果我们和微生物一样的话,即我们在微生物角度那么我们应该怎样进行试验呢!我们所用的大多数高产菌株几乎大部分是缺陷型菌株,也就是说是病态菌株,所以我们如果能够向对待病人一样对待他,知道他需要什么,病症在那里,如何维持我们所需要的状态等,就会理所当然的得到他的配合,也就是能够更多的得到我们所需要的产物。

从中我得到了很多的启事,当然我们不是微生物,但是我们可以从其他的角度去考虑问题,或许能够得到意想不到的效果!!呵呵!

十二、从摇瓶试验到中试发酵罐试验的不同之处

1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑

2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。

3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。

4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。

5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。

6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。

7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。

8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。

9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。

10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等。

十三、补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点:

(1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。

(2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。

(3)可以解除底物抑制,产物反馈抑制和分解阻遏。

(4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。

(5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。

十四、连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。

目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统

十五、消毒(灭菌)工艺的优化

1、消毒又叫灭菌,但是又很多的区别在里面(可以上网搜索资料参考,很多的),我们在公司一般把它称为消毒。消毒其实又很多的学问在里面,一个好的消毒工可以达到一年内千分之一的染菌率,非常的厉害!!

2、发酵液经过消毒会遭到很大的破坏,所以首先需要控制消毒前的PH,而后控制消毒时的温度和时间(非常重要,有时候对发酵指标又很大的影响),在VB12发酵中,消毒的质量可以直接影响发酵的水平,从消后的指标就几乎能得出放罐时的指标。所以必须控制消毒的温度和时间。

3、消毒的方式的不同对发酵影响也很大,公司一般分实消(间断消毒)和连消两种,连消的发酵液质量较好,但是对设备仪器要求恨严格。实消操作简单,但是控制也不容易,对发酵噎破坏较大,因为它的升降温时间很长。对设备破坏较大,(震动和蛇罐等)。

4、现在出现一种是螺旋板换热器连续消毒,很方便也很经济。它的原理和连消鞳相似,只是它靠板式换热,不和蒸汽直接接触,而且它

的消毒蒸汽冷凝水可以回流到原培养基进口处加热培养基,可以节约成本。而且可以控制培养基的体积。但是对设备的要求很严格(为了保证无菌要求),很少的设备公司能够做好这样的设备。

5、发酵的补料消毒可以通过调节好PH的几种料一起进行消毒,节约成本,如果部分的发酵中对几种物料的利用安比例进行,而且这些物料不发生任何反映,这样消毒既可以调节浓度控制蒸发量,又可以节约能源,一举两得。

6、部分得补料可以加入某种不容物质,消毒后再分开。保证设备的干净和无菌等,例如油里面可以加入其他的易溶于水的物质等,消毒后分水时可以把它分开。

7、消毒在保证无菌的前体下,还要考虑经济、对培养基破坏情况、操作方便(节省维修时间人员等)、工艺改进等等。

十六、剪切力的计算可以参考(发酵设备),一般的说剪切力一般以搅拌叶的线速度测量,如果没有摇瓶没有搅拌可以参考摇瓶中最大的线速度,

计算公式为:转速*3.14*摇瓶中最大的半径的平方。

不过我觉得影响你发酵可能是胞外次级代谢物或者其他的物质。摇瓶中的剪切力对菌种的影响很小,不过你的菌种我不是很熟悉,不过凭我的经验我觉得他不是主要的因素。

我考虑的可能是氧气对你的影响较大,可能你搅拌时破坏了菌种的生长环境,导致他的代谢途径改变,产生了其他的物质(可能是有害物质)导致了菌种的生长环境改变影响了它的代谢。

还有一点是:你的培养基条件不是很适合菌种的生长,菌种在前期创造了自己生长条件,结果搅拌遭到破坏所以没有长好。

十七、浅谈在发酵工艺优化中统计手段的重要性。

1. 协同效应与关键因素:优化发酵工艺实质是考察各个变量对优化目标的效应以获得各因素(变量)对目标值的影响关系,进而以此为基础确定最优操作条件。同其他学科一样,在发酵优化时如果能建立各因素对目标的数学表达函数是最为理想的。但由于发酵中微生物性质的复杂性(微生物内部的代谢机理,调控机制等)及发酵环境多样的传递特性(热,质量、动量),使得要建立一个准确的机理模型十分困难。因此目前常见的发酵模型多为黑箱模型,即拟合模型(虽然随着对微生物代谢途调控机制的了解及生化反应动力学的发展,不少成功的机理模型也被建立并用于发酵的优化和调控——可参见诸多生化反应动力学教程及研究文献)。同时,更简单的单因素试验或稍复杂的正交试验也在发酵工艺优化中得到普遍应用。虽然针对不同的优化要求,优化手段当然可以也应该尽量简单,但目前很多国内学术研究文献还频频采用正交试验的确让人感觉很惋惜,特别是对试验数据的统计处理不够重视,相关的检验欠缺。因为在发酵时,涉及微生物性质(种类、种龄、活力,接种量),生长条件(pH、温度),培养基组成,传递条件(溶氧量或转速、搅拌速度)等多个变量,所以不仅要考察每个因素的效应,还应考察是否存在不同因素的协同效应。一般而言,存在如此多的因素,协同效应在所难免。而要高效判别协同效应,统计手段就不可不重视。此外,要高效的进行优化时,也应该借助统计手段确定各个因素的效应大小,选择重要的因素进行重点考察,即抓住主要矛盾把好钢(精力)用在刀刃(关键因素)上。因此,在优化发酵工艺时,一定要有意识的应用统计手段,首先确定关键因素(包括产生重要协同效应的因素),而后再集中精力优化关键因素。值得一提的是,要事半功倍地实现优化目标,就应该时刻牢记要抓住主要矛盾。

2. 用统计手段建立数学模型:前点已提及要建立数学模型,但为什么要用统计手段建立数模了?我们都知道盲人摸象的故事,其实优化发酵工艺也与此类似。试想,如果我们能准确地定量了解各个因素是如何影响发酵目标的,那要进行优化就是个简单地求最值的问题。之所以进行单因素试验或者正交试验,目的就是通过考察输入-输出关系建立变量-响应间的关系。我们如果仅仅通过考察几个孤立的点就想得到一个系统的全局的关系实在有盲人摸象的危险:获得一个局部的关系,得到一个局部的极值而非全局最值;或者获得失真的关系,得到连极值都不是的结果。而如果借助统计手段,我们可以有意识的选取一些有代表性的点,以获得全局的正确关系。比如,如果确定一个正方体的考察空间,那可以选择八个顶点+一个中心点,还可以补充考察六个面上的中心点。如此一来,不仅对全局做到了有效考察,而且最少只用9个点就可以达到目标,胜于无目的地考察正方体的其他点。

3. 如何事半功倍确定有效因素:如果有12个因素需要考察,那考虑到因素间的两两协同效应,则要另增加12×11=132个因素。如果采用单因素试验或正交试验,试验将非比寻常。如果借助适当的统计手段,则可大大减少试验次数。如Plackett-Burman(拼写可能有误)试验,n次试验可以考察n-1个因素,即进行12次试验可以考察11个因素。虽然PB有一定的缺陷,但一般而言的确是高效而又实用的。类似的非平衡或平衡块统计手段还有许多,我们可以根据需要选择合适的手段进行试验以达到目的。

4.应用统计优化的其他好处:在建立数学模型是,选择合适的方法也对优化过程和结果大有裨益。借助最陡爬坡试验、中心点试验,相应面方法,均匀设计等方法能让你准确、高效的完成试验。借助SAS,SPAA,Statistics等统计手段,你可以快速完成数据的分析、模型构建及假设检验。而且这些统计软件还特供了强大的绘图能力,你可以看到所建模型的三维图像,得到直观影响,轻松进行最优求解得到优化条件。另外,最优算法发展比较快,象基因算法,神经元网络算法也广为

酱油的发酵工艺

酱油的发酵工艺 摘要:该文介绍了酱油发酵的主要工艺及相关设备 关键词:酱油发酵工艺发酵设备 酱油发酵的方法很多,根据发酵加水量的不同,可以分为稀醪发酵、固态发酵及固稀发酵;根据加盐量的不同,可以分为有盐发酵、低盐发酵和无盐发酵;根据发酵时加温情况不同,又可以分为自然发酵和保温速酿发酵。目前普遍采用的方法为固态低盐发酵法,由于采用该工艺酿造的酱油质量稳定,风味较好,操作管理简便,发酵周期较短,已为国内大、中、小型酿造厂广泛采用。 1、食盐水的配制。 食盐加水溶解后,用波美计测定其浓度,并根据当时温度调整到规定浓度。通常都以20℃时的波美度表示食盐水浓度,因此,有必要将实际测得的波美度换算成20℃时的波美度。计算公式如下:当温度高于20℃时:B—A+0.05(£一20)当温度低于20℃时:B—A~o.05(20一£)式中B——标准温度时食盐水的波美度A——测得食盐水的波美度t——食盐水的实际温度/℃ 盐水的浓度对发酵影响很大;盐水浓度过高,对酶的抑制增强,发酵周期被延长,同时也使酱醅发酵中必要的耐盐性乳酸菌和酵母的生长受到抑制,结果影响到酱油的风味。盐水的浓度低,对酶的抑制减弱,蛋白质和淀粉的水解率高,但是对杂菌的抑制作用也减弱,结果生酸菌和腐败菌容易生长造成发酵不能顺利进行。一般用于固态低盐发酵法制醅的盐水浓度为13波美度左右(氯化钠含量13.5%),而有盐发酵法制醪的盐水浓度则高达20波美度(氯化钠含量24.6%)。 2、制醅入池。 成曲用制醅机粉碎成2I'NI'N左右的颗粒,要求粉碎均匀,有利于水分迅速均匀地渗入曲内。粉碎的成曲与55℃左右12~13波美度的盐水按一定比例拌和,酱醅的起始发酵温度为42~44℃,此温度是蛋白酶的最适作用温度。铺在池底10cm厚的酱醅应略干、疏松、不黏,当铺到10cm以上后,可逐渐增加盐水用量,让成曲充分吸收盐水。在固态低盐发酵中,拌盐水量的多少对成品质量和原料利用率影响很大。因为微生物的繁殖和酶的催化反应都要在有水存在下才能完成,另外,由于水的比热容较大,因此品温不会因发酵产热而有很大变化。当拌水量过小时,因不能充分将成曲浸透,曲中的酶不能充分发挥作用,所以氨基酸生成量较低,结果酱醅缺乏鲜味。另外,拌水量小,品温易升高,淀粉酶活力旺盛,生成的五碳糖量多,它与氨基酸发生褐变反应生成的色素增多,使酱醅呈黑褐色,并有焦煳味。氨基酸和糖类的消耗不仅降低了原料的利用率,而且在这种发酵条件下容易产生醛类和酚类化合物,对有益菌有抑制作用,不利于后发酵时风味成分的形成。当拌水量过大时,酱醅发黏造成淋油困难,酱醅中色素生成不足。如果拌水量适当,不仅曲中酶被充分溶出,酶解效果好,而且在发酵过程中升温缓慢,容易保持适当温度,这样酱醅色泽好,呈鲜艳的红棕色,味鲜美。在固态低盐发酵中,酱醅的含水量以52%~55%为宜,食盐含量为6%~7%,但由于制曲原料上的差别或成曲质量不同等原因,对拌水量可作适当增减。另外,酱醅的pH6.5~6.8为宜,这样有利于蛋白酶、谷氨酰胺酶发挥作用。如果曲的酸度过大,可用适量碱调整。 (3)发酵管理。 固态低盐发酵,可分为前期水解阶段和后期发酵阶段。前期主要是曲料中的蛋白质和淀粉在酶的作用下被水解。因此,前期应把品温控制在蛋白酶作用的最适温度42~45℃,一般需要10d左右,才能基本完成水解。曲料入池后的第2天,开始进行浇淋,每天1~2次,以后可减少浇淋次数至3~4d1次。浇淋,是用泵把渗流在假底下的酱汁抽取回浇于酱醅表

微生物发酵工艺优化研究进展

龙源期刊网 https://www.sodocs.net/doc/1a4111327.html, 微生物发酵工艺优化研究进展 作者:张锐 来源:《海外文摘·学术》2017年第03期 摘要:近些年,在有关技术领域中微生物的发酵技术已得到了非常广泛的应用,特别在医药行业内应用此种技术十分普遍。微生物科技发展非常快,因此,人们也有不断深入的研究微生物的发酵工艺。为此,本文对影响微生物发酵的培养条件和培养基进行了分析,又对优化微生物发酵工艺的办法进行了讨论研究,为微生物工程的发展提供参考价值。 关键词:发酵工艺;微生物;培养条件;工艺优化;培养基 中图分类号:TQ920.6 文献标识码:A 文章编号:1003-2177(2017)03-0058-02 1 微生物发酵受培养基的影响 微生物在进行生长、代谢时,培养基能供给微生物发酵所需要的能量与营养物质,对合成发酵产物的效率和产品的质量保障来讲有着重要意义。在进行微生物发酵时,因其发酵条件与菌种的差异和不同的发酵阶段,需要培养基的成分也不同。一般情况下,微生物生长需要的营养要素有生长因子,碳源,无机盐和氮源四类。 1.1 选择氮源与碳源作发酵的培养基 氮源为微生物提供含氮的有机物与蛋白质,并且,还是合成含氮产物的参与者。氮源主要是有机氮源与无机氮源两种,如豆粉,氨盐,蛋白胨与硝酸盐等。碳源能够为微生物提供能量来源,形成产物和构建细胞。碳源的形式有油脂,多糖,单糖,天然复合物,双糖等,如豆油,葡萄糖,淀粉与蔗糖等。选择发酵的培养基中要有均衡的碳源与氮源比,确保其菌体能够正常生长,而且还有利于合成产物的速率。 1.2 无机盐对发酵培养基的影响 微生物的生长和生成的代谢产物都与无机盐有关重要关系。微生物在进行生长代谢时,构成的辅酶中有磷的参与,它是构成微生物生长,代谢的重要因素。有些菌种的发酵产物中包含磷酸根,因此在进行培养基发酵时,添加很多的磷酸盐,这利于产物快速合成。在微生物发酵中钙离子对细胞的生理状况起到了调节作用,例如,使细胞膜的通透性降低,维持细胞状态等。很多酶都用镁来作催化剂。微生物生长所需微量元素有很多,如,钴,铁,锌,锰等。经研究证明,枯草芽孢杆菌的生长中需要锰离子的参与,在发酵培养基中添加适量的氯化锰,可以提升枯草芽孢杆菌生成的发酵物中抑菌物质的活性。 2 微生物发酵受培养条件的影响

06发酵罐验证方案-0

目录 1 概述及基本情况 (2) 2 目的 (2) 3 范围 (2) 4 职责 (2) 4.1 验证小组 (2) 4.2 设备部 (3) 4.3 质量保证部 (3) 4.4 生产技术部 (3) 5 验证实施 (3) 5.1 预确认 (3) 5.2 安装确认 (4) 5.3 运行确认 (6) 5.4 性能确认 (6) 5.5 再验证与验证周期 (7) 6 漏项与偏差 (7) 7 验证的结论 (7) 8 验证最终分析与评价 (7) 9 附表 (7)

1 概述 该设备为,可用于制药、食品、化工行业的发酵工艺操作。 基本情况如下: 设备编号: 名称: 型号: 生产厂家: 出厂日期: 供货厂家: 到货日期: 使用部门: 工作间: 设备负责人: 维修服务: 2 目的 确定设备的技术指标、型号和设计规范要求。 对设备安装过程进行检查,安装后进行试运行,以证明设备能够达到设计要求及规定的技术指标。 在确认设备能够达到设计要求或规定的技术指标的前提下,进行模拟生产,证明其能够满足生产操作需要,而且符合工艺要求。 3 范围 本规程适用于发酵罐的验证管理。本方案包括预确认(DQ)、安装确认(IQ)、运行确认(OQ)、性能确认(PQ)。 4 职责 4.1 验证小组 4.1.1 负责验证方案的审批。 4.1.2 负责验证的协调工作,以保证本验证方案规定项目的顺利实施。

4.1.3 负责验证数据及结果的审核。 4.1.4 负责验证报告的审批。 4.1.5 负责发放验证证书。 4.2 设备部 4.2.1 负责验证方案的起草、设计及实施。 4.2.2 负责提供本设备的详细资料及相关SOP。4.2.3 负责提供设备的计量器具校验的详细情况。 4.3质量保证部 4.3.1 负责验证方案相关的检验及结果分析报告。 4.3.2 负责数据的选择与评价。 4.4 生产技术部 协助以上部门进行本设备的验证 5 验证实施 5.1 预确认:根据发酵罐的要求,进行设备选型。 5.2 安装确认

谷氨酸生产工艺

生物工程专业综合实训 (2016 年 11 月

谷氨酸生产工艺 摘要: 谷氨酸做为一种人体所必须的氨基酸,在生命的生理活动周期中具有很大的作用。不仅参与各种蛋白质的合成,组成人体结构,还做为味精可以给我们带来味蕾上的享受。现代生产谷氨酸的工艺主要是利用微生物发酵提取而来。不同的发酵方法和不同的发酵条件会造成产量的很大不同。本次谷氨酸的生产工艺,主要是掌握发酵方法和发酵条件的控制,还有各种仪器的使用方法。通过测得的数据来观察菌种的生长变化,同时谷氨酸发酵工艺各个工段的原理和使用方法。关键词:谷氨酸;发酵;工艺;等电点。

引言 谷氨酸是一种酸性氨基酸,是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。不论在食品、化妆品还是医药行业,谷氨酸都有很大的用途。 谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。谷氨酸钠广泛用于食品调味剂,既可单独使用,又能与其它氨基酸等并用。用于食品内,有增香作用。甘氨酸具有甜味,和味精协同作用能显着提高食品的风味。谷氨酸作为风味增强剂可用于增强饮料和食品的味道,不仅能增强食品风味,对动物性食品有保鲜作用。

一、谷氨酸简介 谷氨酸一种酸性氨基酸。分子内含两个羧基,化学名称为α-氨基戊二酸。谷氨酸是里索逊1856年发现的,为无色晶体,有鲜味,微溶于水,而溶于盐酸溶液,等电点3.22。大量存在于谷类蛋白质中,动物脑中含量也较多。谷氨酸在生物体内的蛋白质代谢过程中占重要地位,参与动物、植物和微生物中的许多重要化学反应。医学上谷氨酸主要用于治疗肝性昏迷,还用于改善儿童智力发育。食品工业上,味精是常用的仪器增鲜剂,其主要成分是谷氨酸钠盐。过去生产味精主要用小麦面筋(谷蛋白)水解法进行,现改用微生物发酵法来进行大规模生产。 谷氨酸是生物机体内氮代谢的基本氨基酸之一,在代谢上具有重要意义。L -谷氨酸是蛋白质的主要构成成分,谷氨酸盐在自然界普遍存在的。多种食品以及人体内都含有谷氨酸盐,它即是蛋白质或肽的结构氨基酸之一,又是游离氨基酸,L型氨基酸美味较浓。 L-谷氨酸又名“麸酸”或写作“夫酸”,发酵制造L-谷氨酸是以糖质为原料经微生物发酵,采用“等电点提取”加上“离子交换树脂”分离的方法而制得。 谷氨酸产生菌主要是棒状类细菌,这类细菌中含质粒较少,而且大多数是隐蔽性质粒,难以直接作为克隆载体,而且此类菌的遗传背景、质粒稳定尚不清楚,在此类细菌这种构建合适的载体困难较多。需要对它们进行改建将棒状类细菌质粒与已知的质粒进行重组,构建成杂合质粒。受体菌选用短杆菌属和棒杆菌属的野生菌或变异株,特别是选用谷氨酸缺陷型变异株为受体,便于从转化后的杂交克隆中筛选产谷氨酸的个体,用谷氨酸产量高的野生菌或变异菌作为受体效果更好。供体菌株选择短杆菌及棒杆菌属的野生菌或变异株,只要具有产谷氨酸能力都可选用, 但选择谷氨酸产量高的菌株作为供体效果最好。这样就可以较容易地在棒状类细菌中开展各项分子生物学研究。有了合适的载体及其转化系统后,就可通过DNA体外重组技术进行谷氨酸产生菌的改造。这对以后谷氨酸发酵的低成本、大规模、高质量有较大的发展空间。

低盐固态酱油发酵工艺

低盐固态发酵法工艺流程图 二淋油(备用)三淋油(备用) 成品

酱油是以蛋白质原料(如豆粕.豆饼)和淀粉质原料(如小麦、麸皮)为主经蒸煮、制曲、发酵与调制而成的,是一种营养物质丰富的调味品。 工艺标准及岗位操作、工作标准和检验容 一、岗位名称:投料→蒸煮→冷却→接种→制曲→落曲→发酵→浸泡→淋油→配兑→灭菌→储存→沉淀→包装 二、投料 三、蒸煮(关键过程控制点) 1、工艺标准 蒸料时蒸汽压力须达到0.18Mpa~0.20Mpa、料温温度达到120℃左右; 1、1 不定期抽检消化率,消化率≥80%。 1、2 熟料:含水量44%~51%。 1、3 熟料感观:呈黄褐色、膨松发软,表面无浮水,无硬心,有香味,无异味。 2、岗位操作规程 2、1 蒸料前先检查设备运转是否正常,。 2、2 豆粕润水,水温75℃~80℃,加水量为豆粕重量的100%~120%。 2、3 豆粕加水完毕后,旋转润涨40min。 2、4 加麸皮,旋转混合3~5min后通蒸汽。 2、5 蒸料时打开蒸汽进汽阀门,第一遍汽压升到0.08mpa时关闭蒸汽阀门,打开排气阀门至0,排除假压,再通蒸汽,蒸汽压力达到0.18Mpa~0.20Mpa后,保压3min~5min后,打开排气阀门排气至0,然后关闭排气阀门。开启锅盖,出料。 2、6 利用降温设备使孰料迅速冷却,减少冷却过程中的杂菌污染和时间过长蛋白质二次变性。孰料冷却温度为60度。使用搅笼风机迅速均匀地把孰料输送到圆盘

中。 2、7 蒸料时按要求掌握好压力、温度、时间。孰料膨松发软,表面无浮水,无硬心,有香味,无异味。 3、工作标准 3、1 每批次送检,测熟料水份,并不定期抽检熟料消化率。 3、2 按工艺标准和操作规程操作。 3、3 熟料接种时符合以下要求:有弹性、不粘、料不烫手。 3、4 工作后搞好绞龙、球罐及现场卫生至所有设施、地面无残料。 四、接种、制曲(制曲为关键过程控制点) 1、工艺标准 1、1 曲精接种量为原料量的0.3%左右,曲精的接种量应均匀。 1、2 圆盘曲料要摊平整。 1、3 接种料温必须在32℃~40℃间。 1、4 制曲是给米曲霉等有益微生物以最佳的生长条件,在熟料上充分繁殖,并分泌酱油发酵过程所需的各种酶如蛋白酶、淀粉酶、谷氨酰胺酶等。要制好曲,就要掌握好米曲霉的生理特性和生长规侓,控制好制曲的温度、湿度和通风量关键条件。 米曲霉是好氧性微生物,在曲料上生长变化分为四个时期 A 孢子发芽期:曲料接种后,米曲霉孢子在适宜的温度与水分的条件下开始发芽,发芽温度为30—32度时间为4—5小时。 B 菌丝生长期:当静止培养8小时左右,菌丝四面深入蔓延,菌丝能见到微微发白,能嗅到曲香味,品温至逐渐上升,曲料的耗氧量加大,需要间歇通风。通过通风供给新鲜空气,降低品温。品温维持在32—35度,入盘培养12小时左右,第

发酵罐发酵设备GMP验收性能确认PQ文件

BIOSTATDL-50型发酵罐验证方案

目录 1、概述.......................................................................................................... 错误!未定义书签。 2、验证目的.................................................................................................. 错误!未定义书签。 3、验证范围 (3) 4、验证合格标准 (5) 5、验证人员及职责 (6) 6、验证时间安排 (6) 7、验证前准备 (6) 8、验证 (6) 9、偏差处理与变更 (6) 10、验证结果 (8) 11、验证结果分析 (8) 12、评价及建议 (8) 13、验证结论 (9) 14、再验证周期 (9) 15、相关文件 (9) 16、附件 (9)

1、概述 BIOSTATDL-50型发酵罐是德国B.Braun.Biotechinternational公司生产,是药品原液生产中的菌体发酵工序采用的发酵罐。介绍设备的构造说 本设备为微生物的生长和一系列生化反应提供最适环境的场所。通入无菌空气,保证纯种发酵,通过调节空气流量和压力可以保证发酵罐的正压环境和微生物对溶氧的要求,微生物最适生长环境可通过控制温度、酸碱度、搅拌转速,溶解氧等参数来实现。通过对微生物生长环境的控制,最终得到最大量的目的产物。本发酵罐用于车间菌体的发酵 设备的参数 2、验证目的 根据GMP要求,每年应对本设备进行验证,以证明本设备各项功能符合设计要求,各项性能指标能满足我公司产品的生产需求和产品质量要求。 此生物反应器是用于微生物扩大培养和目的产物表达的密封性设备,如果罐体内不在生产使用前消毒灭菌完全,非生产用微生物会在良好的营养条件下竞争目的工程菌的生长,从而影响正常工程菌的生长和目的蛋白的表达。在进行纯培养之前,其内容物即培养基必须保证无菌,因此在发酵罐投入使用前,对其灭菌效果进行验证。 3、验证范围

发酵工艺流程

发酵工艺标准操作流程 (SOP) 一生产前准备 每次生产前按品种配方将所需原料称重准备齐全,并确认生产原料库存量,保证原料库存量足够下次生产所需、 二生产前检查 1检查蒸汽、压缩空气、冷却水进出的管路就是否畅通,所有阀门就是否良好,并关闭所有阀门、 2检查电路、控制柜、开关的状态,确保控制柜运行正常、 3检查空压机油表油表及轴承、三角带、气缸等就是否正常,确保空压机运行正常、 4检查发酵罐搅拌减速机的油量及密封轴降温水就是否正常、 三总过滤器灭菌 当蒸汽总管路上的压力为0、2-0、25MPa时,打开总过滤器进气阀输入蒸汽,同时打开出气阀的跑分阀、排气阀、排污阀,当三个阀均排出蒸汽时,调整进气阀、排污阀,稳定总过滤器压力0、15-0、2MPa,此时打开压力表下跑分,计时灭菌2-2、5小时、灭菌结束后启动空压机,当空气输入管道压力大于总过滤器压力时,关闭蒸汽阀,打开空气阀,将空气出入总过滤器,然后调整进气阀与排污阀,稳定总过滤器压力在0、15-0、2MPa,保持通气在15-20小时,当出气阀跑分与排污阀放出的空气为干燥空气时,完成灭菌、 四分过滤器灭菌 1当蒸汽管路压力为0、2-0、25MPa时,打开蒸汽过滤器的进气阀与排污阀,当蒸汽管路中无蒸汽凝结液后,再将蒸汽输入空气管路,然后打开分过滤器的进气阀、排污阀及出气阀上的跑分,当所有阀门均有蒸汽排出后,调整进气与排污阀,就是压力稳定在0、11-0、15MPa,计时灭菌30-35分钟、灭菌结束后,关闭蒸汽过滤器进出气阀、排污阀,并立即将空气输入预过滤器,使空气通过预过滤器进入到分过滤器,再调整分过滤器排污阀使压力稳定在0、11-0、15MPa,备用、

脂肪酶产生菌发酵条件的优化

绵阳师范学院 本科生毕业论文(设计) 题目脂肪酶产生菌M-6-2发酵条件的优化专业生物技术 院部生命科学与技术学院 学号0811420218 姓名杜长蔓 指导教师李俊刚 答辩时间2012年5月 论文工作时间:2011 年7 月至2012 年5 月

脂肪酶产生菌M-6-2发酵条件的优化 学生:杜长蔓 指导老师:李俊刚 摘要:本文对绵阳师范学院微生物实验室筛选和鉴定的产脂肪酶细菌 M-6-2的生长动力学和产酶动力学进行了研究;通过单因素实验和正交试验,对脂肪酶产生菌M-6-2 摇床发酵产脂肪酶的培养基组成和培养条件进行优化,得出较佳的产酶培养基组成配方为:1.5%淀粉+0.5%酵母膏为碳源、4.5%豆饼粉 +1.5%硝酸铵为最佳的氮源、0.05%磷酸氢二钠和0.15%硫酸镁;最优的发酵条件为:初始pH7.5,接种量1.5 %,装液量20ml/250ml,发酵温度35℃,在转速180r/min 下,培养16h,经过优化后发酵液脂肪酶酶活力最高可达到15.60 U/ml,较优化前提高了49.57%。脂肪酶产生菌M-6-2与国内文献报道的产脂肪酶细菌相比产酶活力高。对该菌株发酵条件进行优化后,为生产性试验打下了基础。 关键词:脂肪酶产生菌M-6-2;脂肪酶;发酵条件;优化;正交试验;

Lipase to produce bacteria M-6-2 Optimization of fermentation conditions Undergraduate: Du Changman Supervisor: Li Jun Gang Abstract: In this paper, Laboratory screening and identification of lipase production by bacteria in the M-6-2 growth kinetics and enzyme production kinetics were studied; through single factor experiments and orthogonal test, the lipase to produce bacteria M-6-2 shaker fermentation lipase medium composition and culture conditions were optimized to come to a better enzyme production medium composition formula: 1.5% starch and 0.5% yeast extract as carbon source, 4.5% of the soybean powder and 1.5% ammonium nitrate for the best source of nitrogen, 0.05% disodium hydrogen phosphate and 0.15% magnesium sulfate. Optimal fermentation conditions were: initial pH 7.5, 1.5% of the inoculum size, liquid volume 20ml/250ml, fermentation temperature 35 ° C, in the speed 180r/min next, cultured 16h After optimization of the fermentation broth lipase activity can reach 49.57% to 15.60 U / ml, compared to before optimization. Lipase to produce bacteria M-6-2 and reported in China in the production of lipase bacteria compared to the high activity of enzyme production. Of the strain fermentation conditions optimized, laid the foundation for the production of test. Key words: Lipase producing strain M-6-2;lipase ;fermentation conditions; optimization ;orthogonal test

酱油的制作工艺及改进方法

一、酱油简介:酱油俗称豉油,主要由大豆、淀粉、小麦、食盐经过制油、发酵等程序酿制而成的。酱油的成分比较复杂,除食盐的成分外,还有多种氨基酸、糖类、有机酸、色素及香料等成分。以咸味为主,亦有鲜味、香味等。它能增加和改善菜肴的口味,还能增添或改变菜肴的色泽。我国人民在数千年前就已经掌握酿制工艺了。酱油一般有老抽和生抽两种:老抽较咸,用于提色;生抽用于提鲜。 二、酱油的分类按照制作工艺分为酿造酱油和配制酱油,其中配置酱油分为高盐稀态发酵酱油(稀醪发酵法是指在成曲后加入较多量的盐水,使酱醪成流动状态,有常温发酵和保温 发酵之分。酱油香气好,且滋味纯。可以室内大吃发酵,也可以室外罐式发酵。发酵周期扔较长,提取压榨出油!)分酿固稀发酵酱油(此工艺是一种速酿发酵型发酵工艺,利用不同温度、盐度和固稀发酵条件。把蛋白质原料和淀粉质原料分开制醪,先固态低盐后稀醪加盐 的发酵方法。发酵周期短,一般30天左右。酱油香气好,该工艺操作复杂)低盐固态发酵酱油(低盐固态发酵法是根据酱醅中食盐含量较低,不会过分抑制酶活力的原理进行发酵的方法,酱油色泽较深。滋味鲜美。生产设备较简单,操作方便。原料全氮利用率较高,采用浸淋法提取成品。发酵周期30天左右)。 低盐稀醪保温法酱油,对于配置酱油,其基本步骤都是原料处理,接种,制曲,发酵,淋油。 三、酿造酱油的相关材料介绍 1原料:蛋白质原料有大豆,豆粕,豆饼或其他蛋白质原料。淀粉质原料有小麦,麸皮,米糠和米糠饼或是其它淀粉质原料。 2.食盐:食盐使酱油具有适当的咸味,并且与氨基酸共同给以鲜味、增加酱油的风味。食盐还有杀菌防腐作用,可以在发酵过程中在一定程度上减少杂菌的污染,在成品中有防止腐败的功能。生产酱油宜选用氯化钠含量高、颜色白、水分少及杂质少、卤汁少的食盐。 3.酿造用水:一吨酱油需用水6~7吨。水是最好的溶剂,发酵生成的全部调味成分都要溶于水才能成为酱油。酱油中水占70%左右,凡是符合卫生标准能供饮用的水如自来水、深井水、清洁的江水河水湖水等均可使用。如果水中含有大量的铁、镁、钙等物质,不仅不符合卫生要求,而且影响酱油的香气和风味,一般来说在酱汁中含铁不宜超过

发酵工艺优化

发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统 至于装液量的问题,应该从以下几个方面考虑: 1、保持在你所需要的转速培养情况下(尤其是在后期,菌丝很多时,转速很高时),不能让发酵液把你的塞子湿掉,容易造成染菌。 2、装液量的体积在消毒过程中,不能因为沸腾把塞子湿掉,或者跑出三角瓶,装液量太多会出现这样的情况。很容易染菌。 3、根据你的菌种的情况和发酵液的粘度,需要的混匀程度等等方面也要考虑。 4、建议你做一个梯度试验(40-50-60-70-80等)就可以找到你所需要的装液量。 关于剩余空气的排除在灭菌完毕后(100度左右),立刻用盖子或者其他的用品把你的培养摇瓶盖好,有时候这么点空气根本对兼性厌氧发酵没有什么影响,如果你的菌种要求很严的话,最好用干冰加入已经灭菌的空摇瓶后,立刻用其他的样品培养基分装即可。当然也可以用氮气。最好是二氧化碳。 你可以再查查看是否有其他的方法,我说的也不完全。!!

2m3谷氨酸发酵罐设计

江西科技师范学院 生物工程专业《化工原理课程设计》说明书 题目名称2m3 产谷氨酸发酵罐的设计 专业班级2009 级生物工程(1)班 学号 学生姓名唐盼阙素云周婷 指导教师常军博士 2011 年10 月31 日

目录 一、设计方案的确定1 谷氨酸的生产工艺流程1 生产原料1 发酵菌株1 培养基的制备2 二、发酵罐主体设计计算2 发酵罐主要条件及主要技术指标2 罐体选型、几何尺寸的确定、罐体主要部件尺寸的设计计算3发酵罐的选型3 发酵罐容积的确定 3 发酵罐装液量的确定3 冷却装置的设计3 罐体选料4 罐体壁厚4 封头壁厚计算5 夹套直径5 挡板的设计5 搅拌器的设计5 搅拌器的计算5 搅拌轴功率的计算 6 管道设计8 通风管管径计算8 进出物料管8 冷却水进出口管径 8 管道接口8 仪表接口8 三、其他附件选型9 四、附录及图纸10 附录1计算结果汇总表10 附录2计算结果汇总表10 五、总结11 六、参考文献及资料12

一、设计方案的确定 谷氨酸的生产工艺流程 谷氨酸的生产主要包括以下工作:谷氨酸发酵的原料处理和培养基的配制; 子培养;发酵工艺条件的控制;谷氨酸提取;谷氨酸的精制。 发酵法生产谷氨酸的工艺流程如下: 图1 谷氨酸生产工艺流程图 生产原料 谷氨酸生产时发酵原料的选择原则:首先考虑菌体生长繁殖的营养;考虑到有利于谷氨酸的大量积累;还要考虑原料丰富,价格便宜;发酵周期短,产品易提取等因素。目前谷氨酸生产上多采用尿素为氮源,采用分批流加,以生物素为生长因子。国内大多数厂家用淀粉为发酵原料,主要有玉米、小麦、甘薯、大米等,其中甘薯的淀粉最为常用。少数厂家用糖蜜为发酵原料,主要有甘蔗糖蜜、甜菜糖蜜。 发酵菌株 现有谷氨酸生产菌分属于棒状杆菌属、短杆菌属、小杆菌属及节杆菌属。目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。目前国内各味精厂所使用的谷氨酸生产菌主要有(1)纯齿棒状杆菌及其 (2)天津短杆菌T613及其诱变株FM-415、CMTC6282、诱变株B9、B9-17-36、F-263等菌株; S9114等菌株;(3)北京棒杆菌及其诱变株D110等菌株。本实验选择北京棒杆菌。

发酵工艺优化

发酵工艺优化 发酵工艺优化 从摇瓶试验到中试发酵罐试验的不同之处 1、消毒方式不同,摇瓶是外流蒸汽静态加热(大部分是这样的),发酵罐是直接蒸汽动态加热,部分的是直接和蒸汽混合,会因此影响发酵培养基的质量,体积,PH,透光率等指标。扩大时摇考虑 2、接种方式不同,摇瓶是吸管加入,发酵罐是火焰直接接种(当然有其他的接种方式),要考虑接种时的菌株损失和菌种的适应性等。 3、空气的通气方式不同,摇瓶是表面直接接触。发酵罐是和空气混合接触,考虑二氧化碳的浓度和氧气的融解情况。 4、蒸发量不同,摇瓶的蒸发量不好控制,湿度控制好的话,蒸发量会少。发酵罐蒸发量大,但是可以通过补料解决的。 5、搅拌方式不同,摇瓶是摇转方式进行混合搅拌,对菌株的剪切力较小。发酵罐是直接机械搅拌,注意剪切力的影响和无菌的影响。 6、PH的控制,摇瓶一般通过碳酸钙和间断补料控制PH,发酵可以直接流加控制PH,比较方便。 7、温度控制,摇瓶是空气直接接触或者传热控制温度,但是发酵罐是蛇罐或者夹套水降温控制,注意降温和加热的影响。 8、注意染菌的控制方法不一样,发酵罐根据染菌的周期和染菌的类型等可以采取一些必要的措施减少损失。 9、发酵罐可以取样或者仪表时时检测,但是摇瓶因为量小不能方便的进行控制和检测。 10、原材料不一样,发酵所用原材料比较廉价而且粗旷,工艺控制和摇瓶区别很大等等 发酵工艺中补料的作用 补料分批培养(fed—batch culture简称FBC)是指在分批培养过程中、间歇或连续地补加一种或多种成分的新鲜培养基的培养方法、与传统的分批集中补料培养相比、它有以下优点: (1)可以避免在分批发酵中因—次投料过多造成发酵液环境突变,造成菌丝大量生长等问题,改善发酵液流变等性质,使得发酵过程泡沫得以控制,节省消泡剂,并提高了装罐系数。 (2)可以控制细胞质量,以提高芽抱的比例,并使pH得以稳定。 (3)可以解除底物抑制,产物反馈抑制和分解阻遏。 (4)可以使“放料和补料”方法得以实施。该方法在发酵后期、产生了一定数量代谢产物后,在发酵液体积测量监控下,放出一部分发酵液,同时连续补充——部分新鲜营养液,实现连续带放、既有利于提高产物产量.又可降低成本,使得发酵指数得以大幅度提高。 (5)利用FBC技术、可以使菌种保持最大的生产力状态.随着传感技术以及对发酵过程动力学理沦深入研究、用模拟复杂的数学模型使在线方式实最优控制成为可能。 连续补料控制目前采用有反馈控制和无反馈控制两种方式。有反馈控制:选择与过程直接关系的可检测参数作为控制指标,例如可以测量、控制发酵液PH、采用定量控制葡萄糖流加。稳定PH在次级代谢最旺盛水平。而无反馈控制FBC是指无固定的反馈参数,以经验和数学模型相结合的办法来操作最优化控制、从而使抗生素发酵产量得以大幅度提高。例如发酵过程中前体的补加。由此可见,要实现对发酵过程的有效控制,就先要解决补科的连续控制问题。 目前国外发酵生产过程连续补料采用:流量计(电磁流量计、液体质量流量计)、小型电动、气动隔膜调节阀和控制器来实现连续补料控制。菜发酵工厂在中试试验中还成功地运用了电子称加三阀控制的自动补科系统

发酵工艺优化

发酵工艺优化---现代发酵工业调控策略 发布日期:2010-04-10 来源:[标签:来源] 作者:[标签:作者] 浏览次数:716 发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在 发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH 值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率。在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。基于此,华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。他认为,必须高度重视细胞代谢流分布变化的有关现象,研究细胞代谢物质流与生物

发酵罐验证方案

BIOSTATDL-50型发酵罐验证方案

目录 1、概述....................................................................................................... 错误!未定义书签。 2、验证目的............................................................................................... 错误!未定义书签。 3、验证范围 (3) 4、验证合格标准 (5) 5、验证人员及职责 (6) 6、验证时间安排 (6) 7、验证前准备 (6) 8、验证 (6) 9、偏差处理与变更 (6) 10、验证结果 (8) 11、验证结果分析 (8) 12、评价及建议 (8) 13、验证结论 (9) 14、再验证周期 (9) 15、相关文件 (9) 16、附件 (9)

1、概述 BIOSTATDL-50型发酵罐是德国B.Braun.Biotechinternational公司生产,是药品原液生产中的菌体发酵工序采用的发酵罐。介绍设备的构造说 本设备为微生物的生长和一系列生化反应提供最适环境的场所。通入无菌空气,保证纯种发酵,通过调节空气流量和压力可以保证发酵罐的正压环境和微生物对溶氧的要求,微生物最适生长环境可通过控制温度、酸碱度、搅拌转速,溶解氧等参数来实现。通过对微生物生长环境的控制,最终得到最大量的目的产物。本发酵罐用于车间菌体的发酵 设备的参数 2、验证目的 根据GMP要求,每年应对本设备进行验证,以证明本设备各项功能符合设计要求,各项性能指标能满足我公司产品的生产需求和产品质量要求。 此生物反应器是用于微生物扩大培养和目的产物表达的密封性设备,如果罐体内不在生产使用前消毒灭菌完全,非生产用微生物会在良好的营养条件下竞争目的工程菌的生长,从而影响正常工程菌的生长和目的蛋白的表达。在进行纯培养之前,其内容物即培养基必须保证无菌,因此在发酵罐投入使用前,对其灭菌效果进行验证。 3、验证范围

发酵工艺条件的优化修订稿

发酵工艺条件的优化集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

发酵工艺条件的优化 发酵优化对于搞发酵的工作者而言是非常必需的,下面结合其他战友的一些经验之谈引出此专题,希望大家踊跃讨论,以其提高发酵水平和解决实际问题。 发酵工艺的优化在发酵行业起到很大的作用,尤其是在发酵生产中,它是提高发酵指标的一项非常,有用的技术手段.同时也是搞发酵行业的人的必备知识要求之一,借此我想通过和大家交流共同提高发酵方面的知识水平.发酵工艺优化方法与思路:发酵工艺优化的方法有很多,它们之间不是孤立的,而是相互联系的。在一种发酵中,往往是多种优化方法的结合,其目的就是发酵是细胞大规模培养技术中最早被人们认识和利用的。发酵技术在医药、轻工、食品、农业、环保等领域的广泛应用,使这一技术在国民经济发展中发挥着越来越重要的作用。为了提高发酵生产水平,人们首先考虑的是菌种的选育或基因工程的构建。而实际上,发酵工艺的优化,包括生物反应器中的工程问题,也同样非常重要。发酵环境条件的优化是发酵过程中最基本的要求,也是最重要、最难掌握的技术指标。温度、pH值、溶氧、搅拌转速、氨离子、金属离子、营养物浓度等的优化控制,依据不同的发酵而有所不同。同时,微生物在生长的不同阶段、生产目的代谢产物的不同时期,对环境条件可能会有不同的要求。因此,应该在生物反应器内,使温度、pH值、溶氧、搅拌转速等不断变换,始终为其提供最佳的环境条件,以提高目的产物的得率,在发酵放大实验中,一般都很注重寻找最佳的培养基配方和最佳的温度、pH值、溶氧等参数,但往往忽视了细胞代谢流的变化。例如:在溶解氧浓度的测量与控制时,关心的是最佳氧浓度或其临界值,而不注意细胞代谢时的摄氧率;用氨水调节pH值时,关心的是最佳pH值,却不注意添加氨水时的动态变化及其与其他发酵过程的参数的关系,而这些变化对细胞的生长代谢却非常重要。 注意:大家可以从以下各个方面进行交流.尽量能够分类进行叙述,我总结了以下几累,也不是很全,当然从其他的方面进行交流也可以,但是希望你注明附加说明!!!谢谢大家的参与!!!!!!!!!一. 好氧发酵1. PH 工艺的优化2. 溶氧工艺的优化3.原材料工艺的优化4.消毒(灭菌)工艺的优化5.菌种制备工艺的优化6.小试到中试,中试到生产等扩大实验的工艺优化7.成本工艺优化8.种子罐工艺的优化9.发酵罐工艺参数控制的优化10.仪表控制的工艺优化11.环境的工艺优化12.染菌处理的工艺优化13.紧急情况处理的工艺优化(停电\停水\停气\停汽等)14.补料工艺的优化15.倒种工艺的优化16发酵设备的工艺优化17.其他的工艺优化 二. 厌氧工艺的优化三.固体发酵的工艺优化四.其他1. PH工艺的优化A.配料中的PH 很重要,其中有配前PH,配后PH,消前PH,消后PH,接种前PH,工艺控制PH等,配前PH,配后PH,可以用来检测厡材料的质量,初步估计配料的情况,如果出了错误,有时候可以从PH中的变化看出来,能够减少错误的发生.B.另外,每次有新的配方我们总是要用PH方法检测其中的每种厡材料是否会和其他的发生反应,可以互相两两混合,检测PH的变化,也可以用来作为配微量元素的检测.C.消前PH可以用来减少消毒过程对培养基的破坏,因为培养基在消毒中会有PH的变化,在不同的PH条件下对培养基破坏也不一样,因此可以在消毒的时候选择合适的PH,消毒完后可以调节过来,这样一来可以对PH敏感的一些原材料减少破坏,这种方法在生产中已经取得了初步的成绩,提高了指标.D.工艺控制的PH,在发酵的产抗期间,通过在不同的发酵时间调整不同的P H,可以减少杂质的产生,同时还可以缓解溶氧,比如在头孢发酵中,通过在后期调整PH可以减少DCPC的含量,给提取工序带来很大的好处,E.补料罐通过PH的调节可以更好的通过流加物料而不影响发酵.(部分发酵在不同时期的PH有所不同,所以通过补料罐的调整可以对发酵指标有所提高)F.发酵过程中的PH调节可以通过各种方法,不一定要添加氨水和氢氧化钠,可以添加玉米桨等其他的物料来进行调节.G.控制放罐时的PH可以对后面的过滤有所影响,所以一定要控制好放罐前的PHH.绘制种子瓶和种子罐以及发酵罐等整个发酵过程的PH生长曲线,可以用来参考控制工艺,检测无菌情况的发生.A. 华东理工大学的张嗣良提出了“以细胞代谢流分析与控制为核心的发酵工程学”的观点。他认为,必须高度重视细胞代谢流分布变化

相关主题