搜档网
当前位置:搜档网 › 针对矢量控制浅析SIEMENS公司6SE70系列变频器

针对矢量控制浅析SIEMENS公司6SE70系列变频器

针对矢量控制浅析SIEMENS公司6SE70系列变频器
针对矢量控制浅析SIEMENS公司6SE70系列变频器

针对矢量控制浅析SIEMENS公司6SE70系列变频器

【摘要】八一钢铁股份公司冷轧厂彩涂、镀锌生产线电气传动控制均采用了SIEMENS公司6SE70系列矢量变频器。本文简单介绍了矢量控制的基本原理,介绍了异步电机三相交流绕组物理模型等效为直流电机的物理模型的过程,并针对矢量控制浅析了6SE70系列变频器的控制模型结构。

【关键词】矢量;变频器;控制模型结构

1.前言

直流电动机动态性能好、调节范围宽广,便于实现控制,异步交流电机与直流电机相比较结构简单、造价低、易于维护,所以很早人们就想象控制直流电机一样去控制交流电机。异步交流电动机的数学模型是一个高阶、非线性、强耦合的多变量系统,通过传统的单变量、线性控制很难实现对其精确控制,针对此情况,许多专家学者对此进行潜心的研究,形成了现已得到普遍应用的矢量控制变频调速系统。

2.矢量控制通过坐标转换完成电机绕组物理模型的等效

2.1 矢量控制的原理

直流电动机的磁通Φ和电枢电流Ia可以独立进行控制,是一种典型的解耦控制,异步电动机的矢量控制就是仿照直流电动机的控制方式,把定子电流的磁场分量和转矩分量解耦开来,分别加以控制。这种解耦实际上是把异步电动机的物理模型设法等效变换成类似于直流电动机的模式,这种等效变换是借助于坐标变换来完成的,等效的原则是,在不同坐标系下电动机模型所产生的磁动势相同。

2.2 异步电机三相交流绕组物理模型等效为直流电机的物理模型

2.2.1 三相交流绕组等效为两相交流绕组

交流电机三相对称的静止绕组A、B、C通以三相平衡的正弦电流iA、iB、iC时所产生的合成磁势是旋转磁动势F,它在空间呈正弦分布,并以同步转速ω1,顺A-B-C相序旋转,其模型如图1(a)所示。产生同样的旋转磁动势并不一定非要三相,如图1(b)所示,两个互相垂直的静止绕组α和β通入两相对称电流可以产生相同的旋转磁动势F,由此可见iα、iβ和iA、iB、iC之间存在某种确定的换算关系,通过这种换算关系可以完成三相静止坐标系A、B、C轴系到两相静止坐标系α、β轴系之间的坐标变换。

2.2.2两相交流绕组等效为直流旋转绕组

如图1(c)所示,在两个匝数相等且互相垂直的绕组M和T,其中分别通

变频器矢量控制的基本原理分析

变频器矢量控制的基本原理分析 矢量控制的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。具体是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。矢量控制方式又有基于转差频率控制的矢量控制方式、无速度传感器矢量控制方式和有速度传感器的矢量控制方式等。基于转差频率控制的矢量控制方式同样是在进行U/f=恒定控制的基础上,通过检测异步电动机的实际速度n,并得到对应的控制频率f,然后根据希望得到的转矩,分别控制定子电流矢量及两个分量间的相位,对通用变频器的输出频率f进行控制的。基于转差频率控制的矢量控制方式的最大特点是,可以消除动态过程中转矩电流的波动,从而提高了通用变频器的动态性能。早期的矢量控制通用变频器基本上都是采用的基于转差频率控制的矢量控制方式。 无速度传感器的矢量控制方式是基于磁场定向控制理论发展而来的。实现精确的磁场定向矢量控制需要在异步电动机内安装磁通检测装置,要在异步电动机内安装磁通检测装置是很困难的,但人们发现,即使不在异步电动机中直接安装磁通检测装置,也可以在通用变频器内部得到与磁通相应的量,并由此得到了所谓的无速度传感器的矢量控制方式。它的基本控制思想是根据输入的电动机的铭牌参数,按照一定的关系式分别对作为基本控制量的励磁电流(或者磁通)和转矩电流进行检测,并通过控制电动机定子绕组上的电压的频率使励磁电流(或者磁通)和转矩电流的指令值和检测值达到一致,并输出转矩,从而实现矢量控制。

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计

基于空间矢量控制(SVPWM)技术的三相电压型整流器设计 作者:佚名来源:本站整理发布时间:2010-9-9 10:54:01 [收藏] [评论] 传统的变压整流器和非线性负载的大量使用使电网中电流谐波含量较高,对飞机供电系统和供电质量造成很大影响。消除电网谐波污染、提高整流器的功率因数是电力电子领域研究的热点。空间矢量PWM(SVPWM)控制具有直流侧电压利用率高、动态响应快和易于数字化实现的特点。本文采用空间矢量技术对三相电压型整流器进行研究,使其网侧电压与电流同相位,从而实现高功率因数整流。 1 空间矢量控制技术 SVPWM控制技术通过控制不同开关状态的组合,将空间电压矢量V控制为按设定的参数做圆形旋转。对任意给定的空间电压矢量V均可由这8条空间矢量来合成,如图1所示。任意扇形区域的电压矢量V均可由组成这个区域的2个相邻的非零矢量和零矢量在时间上的不同组合来得到。这几个矢量的作用时间可以一次施加,也可以在一个采样周期内分多次施加。也就是说,SVPWM通过控制各个基本空间电压矢量的作用时间,最终形成等幅不等宽的PWM脉冲波,使电压空间矢量接近按圆轨迹旋转。主电路功率开关 管的开关频率越高,就越逼近圆形旋转磁场。 为了减少开关次数,降低开关损耗,对于三相VSR某一给定的空间电压矢量 ,采用图2所示的合成方法。在扇区I中相应开关函数如图3所示。零矢量均匀地分布在矢量

的起、终点上,除零矢量外, 由V1、V2、V4合成,且中点截出2个三角形。一个开关周期中,VSR上桥臂功率开关管共开关4次,由于开关函数波形对称,谐波主要集中在整数倍的开关频率上。 2 直接电流控制策略 三相VSR的电流控制策略主要分为直接电流控制和间接电流控制。直接电流控制采用网侧电流闭环控制,提高了网侧电流的动、静态性能,并增强电流控制系统的鲁棒性。而在直接控制策略中固定开关频率的PWM电流控制因其算法简单、实现较为方便,得到了较好应用,在三相静止坐标系中,固定开关频率的PWM电流控制电流内环的稳态电流指令是一个正弦波信号,其电流指令的幅值信号来源于直流电压调节器的输出,频率和相位信号来源于电网;PI电流调节器不能实现电流无静差控制,且对有功电流和无功电流的独立控制很难实现。在两相同步旋转坐标系(d,q)中的电流指令为直流时不变信号,且其PI电流调节 器实现电流无静差控制,也有利于分别对有功电流 和无功电流 独立进行控制。 3 三相VSR数字控制系统 三相VSR数字控制系统结构如图4所示,控制系统采用电压外环和两个电流内环组成双环控制结构,电压环控制三相VSR直流侧电压,通过输出直流侧电压Vdc与给定参考电压 差值经过PI调节产生电流参考信号

组态王实现西门子变频器远程控制

组态王实现西门子变频器的远程监控 1引言 变频器作为一种智能调速元件,以多用途、高可靠性和明显的节电效果,在造纸、轧钢、印染、石油、化工等各个行业中被广泛使用。 在某污水处理厂中,进水泵房环节共有4台潜水泵,它们负责将污水抽到曝气池进行净化处理,当污水多时需要4台潜水泵满负荷运行,污水少时只需要1台潜水泵工作,因此潜水泵的工作数量受污水总量的影响很大。以前,由于没采用变频器进行控制电能浪费很大,现经过改造,4台潜水泵全部用西门子MIDIMASTERECO变频器进行控制,并且变频器通过串口连接到组态王开发的上位机监控系统中,这样既节省了电能,又实现了变频器的远程监控,取得了比较好的控制效果。 2 本系统中上位机利用RS232串口,再经过RS232/RS485转换器接到4台西门子MIDIMASTERECO变频器上。由于RS232的传输距离较短,只有15m左右,并且只能驱动1路变频器,所以必须利用 RS232/RS485转换器。系统结构图如图1所示。 3 3.1 组态王6.0是北京亚控公司开发的一个比较成熟的国产组态软件,其操作简单,易于学习,用它制作人机界面快捷简便,画面美观;具有强大的数据库功能,可连接大型的SQL数据库;而且其网络功能比较丰富,可以实现远程监控;最重要的是其拥有丰富的驱动程序库,用其提供的驱动程序可以方便地实现上位机PC与各种不同型号的PLC、变频器、板卡、网卡等设备的相互通讯。 组态王6.0与西门子变频器系列之间的通讯设置的具体步骤: (1)在组态王中新建一工程,设取名为“变频器控制工程”。 (2)在开发界面选择“设备”-“变频器”-“西门子”-“USS”-“串口”,如图2所示。 (3)为设备命名设为“西门子变频器1号”。 (4)选择串口,本文选“COM1”端口。 (5)设置设备的地址,格式为aa.bb,其中aa的范围1~32,bb的范围1~16。所有变频器的地址不能重复,本文中设西门子变频器1号的地址为:1.1。 (6)点击设置完成,即可。 经过上述设置后,当启动组态王工程“变频器控制工程”时,组态王会自动连接上设备地址为1.1的西门子变频器1号,并在其信息框中显示“打开通讯设备成功,设备初始化成功-西门子变频器1号”信息。 3.2 RS232 在上位机WIN98系统中,选择“控制面板”-“系统”-“设备管理器”-“端口”-“COM1”属性 ,设置如下:波特率-4800,数据位长度-8,停止位长度-1,奇偶校验位-偶校验。设置完毕后如图 3所示。 4 4.1 USS 西门子变频器与工控机的通信协议采用西门子USS协议,它是一种西门子所有传动产品通用的通信协议。此协议采用主-从式结构,通信时,上位机作为主站向变频器发送报文;变频器作为从站,只是对主站发来的报文(即指令)进行处理并执行相应动作,同时回应并发送响应的报文。所有主从之间的报文都由14个字节组成,每个数据报文都是标准的异步报文格式,包括:1个起始位、8个数据位、1个偶校验和1个停止位。上位机与变频器之间的数据传输是以ASCII码的形式进行的。所有从主站发送到从站的报文必须在1.5s内发完,否则,此报文将被从站忽略。从站在收到有效报文20ms内发送应答,若主站在这段时间内未收到应答,主站将重新发送此报文。

西门子6se70变频器参数

6SE70调试基本参数设置 恢复缺省设置 P053=6 允许参数存取 6:允许通过PMU和串行接口OP1S变更参数 P060=2 固定设置菜单 P366=0 0:具有PMU的标准设置 1:具有OP1S的标准设置 P970=0 参数复位 参数设置 P060=5 系统设置菜单 P071= 装置输入电压 P095=10 异步/同步电机,国际标准 P100= 1:V/f控制 3:无测速机的速度控制 4:有测速机的速度控制 5:转矩控制 P101= 电机额定电压 P102= 电机额定电流 P103= 电机励磁电流,如果此值未知,设P103=0 当离开系统设置,此值自动计算。 P104= 电机额定功率因数 P108= 电机额定转速 P109= 电机级对数 P113= 电机额定转矩 P114=3 3:高强度冲击系统(在:P100=3,4,5时设置) P115=1 计算电机模型 参数值P350-P354设定到额定值 P130= 10:无脉冲编码器 11:脉冲编码器 P151= 脉冲编码器每转的脉冲数 P330= 0:线性(恒转矩) 1:抛物线特性(风机/泵) P384.02= 电机负载限制 P452= % 正向旋转时的最大频率或速度 P453= % 反向旋转时的最大频率或速度 数值参考P352和P353 P060=1 回到参数菜单 P128= 最大输出电流 P462= 上升时间 P464= 下降时间 P115=2 静止状态电机辩识(按下P键后,20S之内合闸) P115=4 电机模型空载测量(按下P键后,20S之内合闸) 6SE70 变频装置调试步骤

一.内控参数设定 1.1 出厂参数设定 P053=7 允许CBP+PMU+PC 机修改参数 P60=2 固定设置,参数恢复到缺省 P366=0 PMU 控制 P970=0 启动参数复位 执行参数出厂设置,只是对变频器的设定与命令源进行设定,P366 参数选择不同,变频器的 设定和命令源可以来自端子,OP1S,PMU。电机和控制参数未进行设定,不能实施电机调试。 1.2 简单参数设定 P60=3 简单应用参数设置,在上述出厂参数设置的基础上,本应用设定电机控制参数 P071 进线电压(变频器400V AC / 逆变器540V DC) P95=10 IEC 电机 P100=1 V/F 开环控制 3 不带编码器的矢量控制 4 带编码器的矢量控制 P101 电机额定电压 P102 电机额定电流 P107 电机额定频率HZ P108 电机额定速度RPM P114=0 P368=0 设定和命令源为PMU+MOP P370=1 启动简单应用参数设置 P60=0 结束简单应用参数设置 执行上述参数设定后,变频器自动组合功能图连接和参数设定。P368 选择的功能图见手 册S0-S7,P100 选择的功能图见手册R0-R5。电机控制效果非最优。 1.3 系统参数设置 P60=5 P115=1 电机模型自动参数设置,根据电机参数设定自动计算 P130=10 无编码器 11 有编码器(P151 编码器每转脉冲数) P350=电流量参考值A P351=电压量参考值V P352=频率量参考值HZ 3 3 P353=转速量参考值1/MIN P354=转矩量参考值NM P452=正向旋转最大频率或速度%(100%=P352,P353) P453=反向旋转最大频率或速度%(100%=P352,P353) P60=1 回到参数菜单,不合理的参数设置导致故障

永磁同步电动机矢量控制(结构及方法)

第2章永磁同步电机结构及控制方法 2.1 永磁同步电机概述 永磁同步电动机的运行原理与电励磁同步电动机相同,但它以永磁体提供的磁通替代后的励磁绕组励磁,使电动机结构较为简单,降低了加工和装配费用,且省去了容易出问题的集电环和电刷,提高了电动机运行的可靠性;又因无需励磁电流,省去了励磁损耗,提高了电动机的效率和功率密度。因而它是近年来研究得较多并在各个领域中得到越来越广泛应用的一种电动机。 永磁同步电动机分类方法比较多:按工作主磁场方向的不同,可分为径向磁场式和轴向磁场式;按电枢绕组位置的不同,可分为内转子式(常规式)和外转子式;按转子上有无起绕组,可分为无起动绕组的电动机(用于变频器供电的场合,利用频率的逐步升高而起动,并随着频率的改变而调节转速,常称为调速永磁同步电动机)和有起动绕组的电动机(既可用于调速运行又可在某以频率和电压下利用起动绕组所产生的异步转矩起动,常称为异步起动永磁同步电动机);按供电电流波形的不同,可分为矩形波永磁同步电动机和正弦波永磁同步电动机(简称永磁同步电动机)。异步起动永磁同步电动机用于频率可调的传动系统时,形成一台具有阻尼(起动)绕组的调速永磁同步电动机。 永磁同步伺服电动机的定子与绕组式同步电动机的定子基本相同。但根据转子结构可分为凸极式和嵌入式两类。凸极式转子是将永磁铁安装在转子轴的表面,如图 2-1(a)。因为永磁材料的磁导率十分接近空气的磁导率,所以在交轴(q 轴)、直轴(d 轴)上的电感基本相同。嵌入式转子则是将永磁铁安装在转子轴的内部,如图 2-1(b),因此交轴的电感大于直轴的电感。并且,除了电磁转矩外,还有磁阻转矩存在。 为了使永磁同步伺服电动机具有正弦波感应电动势波形,其转子磁钢形状呈抛物线状,其气隙中产生的磁通密度尽量呈正弦分布;定子电枢绕组采用短距分布式绕组,能最大限度地消除谐波磁动势。永磁体转子产生恒定的电磁场。当定子通以三相对称的正弦波交流电时,则产生旋转的磁场。两种磁场相互作用产生电磁力,推动转子旋转。如果能改变定子三相电源的频率和相位,就可以改变转子的转速和位置。

WK系列大型矿用挖掘机中的主从控制

采 掘 图 10 有重合度啮合插值多项式阶数 Fig 10 Interpolation polynomial order of engagement with contact ratio

动提升卷筒进行工作,因此要求 2 台电动机同时启动 位综合监控系统+PLC+基础变频传动组成 3 级控制 图 2 WK 系列大型挖掘机控制系统 Fig 2 Control system of WK series large excavators proportional coefficient of the high speed zone and the processing of feedback signals are proposed to solve the 图 1 WK 系列大型挖掘机变频传动调速电气系统 Fig 1 Working principle of variable frequency and speed regulation electric system of WK series large excavators 系统 (见图 2)。上位综合监控系统检测和显示挖掘机的运行状态,PLC 实现整机运行的时序逻辑控制,变2 提升机构传动系统 掘作业的主要机构,通过卷筒装置上的钢丝绳牵引铲斗作上下运动 (见图 3)。提升机构采用双电动机并联图 3 WK-20 型挖掘机Fig 3 WK-20 excavator 提升机构的 2 台电动机之间为硬轴联接,属于具有机械耦合的双电动机传动,2 台电动机的转速完

采掘机,必须保证 2 台电动机出力相同,作功相等。 2.2 控制方案的比较 2.2.1 利用变频系统电动机特性软化功能实现电动 图 7 从传动装置控制系统框图 Fig 7 Block diagram of control system of slave transmission 主从控制的关键技术是如何把主传动的转矩信号 (K153、K165 或 K168) 高速和精确地传送到从传动变 要对 PLC 进行软件编程才能实现控制,适合在已经 图 6 主传动装置控制系统框图 Fig 6 Block diagram of control system of master transmission 图 4 WK-20 型挖掘机提升机构 Fig 4 Lifting unit of WK-20 excavator 图 5 2 台电动机的机械特性曲线 Fig 5 Mechanical characteristic curve of two motors

西门子6se70系列变频器与s7-300的PROFIBUS-DP通讯举例

西门子6se70系列变频器与s7-300/400的PROFIBUS-DP通讯举例 本文通过举例讲述了Profibus-DP现场总线在生产现场的具体应用,详细介绍了西门子PLC与变频设备通过PROFIBUS-DP通讯的硬件组态、软件编程以及变频器的相关参数设置。 关键字:西门子 Profibus-DP 变频器 PLC 在工业厂矿的生产应用中,尤其是钢铁冶金行业,利用PLC通过Profibus-DP现场总线对变频装置进行控制,实现电机的启动、停车和调速最为常见。下面通过一个具体的实例来讲述西门子6se70系列变频器与s7-300/400的PROFIBUS-DP通讯的全过程。 一、硬件组态变频器 在STEP 7软件中创建一个项目,再硬件组态该项目,并建一个Profibus-DP网络,6se70系列变频器在PROIBUS DP->SIMOVERT文件夹里进行组态,并设定好通讯的地址范围。如下 图所示: 二、建立通讯DB块 一般地,读写数据都做在一个DB块中,且最好与硬件组态设定的I,O地址范围大小划分相同大小的区域,便于建立对应关系和管理。如下图所示,读变频器的数据的12个字节在DB0~DB11中,写给变频器的12个字节数据放在DB12~DB23中。接下来还可以存放诸如通讯的错误代码和与变频器有关的其它计算数据。 三、写通讯程序 通讯程序可以直接调用STEP 7编程软件的系统功能SFC1(DPRD_DAT),SFC15(DPWR_DAT) 来实现。例程段如下: CALL SFC 14 //变频器->PLC LADDR :=W#16#230 //通讯地址:为硬件组态的起始地址,即I Addess中的560 RET_VAL:=DB15.DBW24 //错误代码:查帮助可得具体含义 RECORD :=P#DB15.DBX0.0 BYTE 12 //传送起始地址及长度 CALL SFC 15 //PLC->变频器 LADDR :=W#16#230 //通讯地址:为硬件组态的起始地址,即Q Addess中的560 RECORD :=P#DB15.DBX12.0 BYTE 12 //传送起始地址及长度 RET_VAL:=DB15.DBW26 //错误代码:查帮助可得具体含义 四、变频器参数设置 变频器的简单参数设置如下表 对于写变频器的数据是与变频器的k3001~k3016(参见变频器使用大全功能图120)建立对应关系,读变频器的数据则是与变频器的参数P734建立对应关系。如下图所示:

矢量控制系统(FOC)基本原理

矢量控制(FOC)基本原理 2014.05.15 duquqiubai1234163. 一、基本概念 1.1模型等效原则 交流电机三相对称的静止绕组 A 、B 、C ,通以三相平衡的正弦电流时,所产生的合成磁动势是旋转磁动势F ,它在空间呈正弦分布,以同步转速ω1(即电流的角频率)顺着 A-B-C 的相序旋转。这样的物理模型如图1-1a 所示。然而,旋转磁动势并不一定非要三相不可,单相除外,二相、三相、四相…… 等任意对称的多相绕组,通以平衡的多相电流,都能产生旋转磁动势,当然以两相最为简单。 图1 图1-1b 中绘出了两相静止绕组α 和 β ,它们在空间互差90°,通以时间上互差90°的两相平衡交流电流,也产生旋转磁动势F 。再看图1-1c 中的两个互相垂直的绕组M 和 T ,通以直流电流M i 和T i ,产生合成磁动势F ,如果让包含两个绕组在的整个铁心以同步转速旋转,则磁动势F 自然也随之旋转起来,成为旋转磁动势。把这个旋转磁动势的大小和转速也控制成与图 1-1a 一样,那么这三套绕组就等效了。

三相--两相变换(3S/2S 变换) 在三相静止绕组A 、B 、C 和两相静止绕组α、β之间的变换,简称3S/2S 变换。其电流关系为 111221022A B C i i i i i αβ????-- ???????=?????????-????? () 两相—两相旋转变换(2S/2R 变换) 同步旋转坐标系中(M 、T 坐标系中)轴向电流分量与α、β坐标系中轴向电流分量的转换关系为 cos sin 2sin cos M T i i i i αβ??????????=??????-???? ?? () 1.2矢量控制简介 矢量控制是指“定子三相电流矢量控制”。 矢量控制理论最早为解决三相异步电机的调速问题而提出。交流矢量的直流标量化可以使三相异步电机获得和直流电机一样优越的调速性能。将交流矢量变换为两相直流标量的过程见图2。

财务公司在集团企业中的作用分析 (1)

财务公司在集团企业中的作用分析 1. 研究背景 1.1机遇与挑战 随着中国企业集团的发展壮大,国家“走出去”战略指引下,给企业集团财务管理的发展 创造了外部环境和机遇;国资委财务信息化指引,给财务管理发展确立的政策方向;金融 危机、不断变化的货币政策挑战企业的资金链。在外部金融市场无法满足企业集团产业发 展对资金与贴身金融服务需求的情况下,对设立以企业集团的资金管理、金融资源管理、 风险管理为经营范围的机构的呼声越来越高。 这种呼声为中国企业集团财务公司(如无特殊说明,以下简称“财务公司”)的诞生提供 了机遇,1987年具有中国特色的第一家财务公司成立,到2011年已经发展到了125家[1],财务公司在培育和发展具有核心竞争力的大企业集团的战略历程中得到了蓬勃发展。与此 同时,随着企业集团的发展壮大,国际金融环境的变化多端,企业集团对金融资源管理提 出了更高要求:企业集团如何通过产融结合支持公司战略实现?财务公司如何定位才能更 好地在全球范围内合理配置金融资源?如何确定财务公司职能并发挥其作用?中国理论界 和实务界都期待着切磋经验、激荡思想,因此,本文抛砖引玉,谈谈我们的观点。 1.2 政策规定与变迁 银监会对财务公司的定义为:以加强企业集团资金集中管理和提高企业集团资金使用效率 为目的,为企业集团成员单位提供财务管理服务的非银行金融机构。 自设立以来,财务公司具有双重属性,一方面是企业集团赋予的使命,另一方面又承担着 作为独立法人实体创造利润的本能。在双重目标的驱动下,财务公司必须处理好与企业集 团的关系,将“立足集团,服务集团”作为首要目标,充分发挥财务公司的职能和作用, 创新金融服务手段,拓展金融服务领域,提高金融服务水平,不断壮大自身金融实力,并 将其转化为集团的发展动力,在促进集团发展的同时,实现财务公司的自身目标。 财务公司的发展历程鉴证了我国经济发展与金融机制改革的不断变迁。相关监管机构对财 务公司的监管方式与力度不断进行尝试、调整和规范,并逐渐明晰了财务公司的业务范围、定义等。因此,财务公司在不同的历史阶段承载的职能与作用也发生着相应的变化。 根据我国金融体制改革进程中获得的阶段性成果,以及财务公司行业自律组织成立(1994 年中国财务公司协会成立)、监管部门变化(2003年财务公司的日常监管由中国人民银行转 归中国银监会),将财务公司的发展划分为三个阶段[2]:探索尝试期(1987年—1993年)、自律规范期(1994年—2003年)、健康有序期(2004年以后)。 从1989年到2003年底,中国GDP的年均增长率为9%左右,金融业资产总量的年平均增长 率为21.7%,而同期企业集团财务公司的年平均增长率达41.7%。财务公司在金融业中的资产比重,也由0.24%(1989年)、1.09%(1997年)提高至1.83%(2003年),财务公司 的资产增长速度远远高于金融同业水平和国民经济发展水平。说明财务公司顺应我国市场

西门子G120在抓斗起重机控制中的应用

西门子G120在抓斗起重机控制中的应用 摘要:本文结合紫金矿业集团珲春多金属有限公司的2台抓斗起重机项目,介绍了西门子G120变频调速系统在抓斗起重机中的控制方式、参数设置;并通过两台G120的主从控制模式,结合PLC的逻辑控制,实现了开闭和升降电机在满抓过程中的力矩平衡。 关键词:抓斗起重机;变频调速系统;PLC控制;参数设置;主从控制模式;力矩平衡 前言 起重机在工业生产中有广泛应用,用来实现物体在三维空间中的转运。其中水平面上两个方向的运动分别由大、小车完成,称为行走系统;而垂直方向的运动则由起升机构负责。大多数的起重机通过吊钩与被运物体相连,而当被运物体为粉状或小颗粒状时,则需要通过抓料斗,这就是抓斗起重机。其中专门负责升、降运动的电机称为升降电机,另一台开闭电机除了负责抓斗的打开和闭合(放料和抓料)外,抓斗升降时,它还会同升降电机一起出力。 抓斗起重机的抓斗传动系统由开闭机构、升降机构两部分组成,通过钢丝绳与各自的滚筒联接,两者之间没有任何电气联锁,也无法加装合适的检测开关,在抓斗起重机运行过程中,满抓启升过程是技术关键,也是操作难点,在满抓启升过程中,抓斗升降、开闭电机容易出现受力不均匀的情况,需要起重机操作员靠经验点动调整抓斗升降及抓斗开闭钢丝绳的松紧度,并掌握抓斗提升电机投入运行的时机,如果抓斗开闭电机的钢丝绳太松,易造成抓斗料斗漏料;如果抓斗升降电机的钢丝绳太松,则开闭电动机单独受力过载,容易引起电机损坏或钢丝绳断裂。此过程要求起重机操作员具有较强的操作经验和较高的操作技巧,而且需要操作员精神集中,劳动强度大。本文根据实际项目介绍一种操作简单、安全可靠的控制方法来解决这一实际困难。 1.系统整体概述 抓斗桥式起重机主要由桥架、小车、运行机构、司机室、抓斗及电控设备等部分组成。 本项目起重机的起重重量16吨,起升高度19.5米,跨度31.5米,起升开闭速度4-40米/分钟,大车行走速度9.45-94.5米/分钟。抓取的物料为精铜矿和石英砂,采用3.2立方米容量的抓斗。大车由2台15kw的变频电机驱动,小车由2台4kw的变频电机驱动,开闭和起升机构各由一台75Kw的变频电机驱动;开闭升降变变频器配置分别由功率单元6SL3224-0BE38- 8UA0、控制单元6SL3246-0BA22-1BA0、控制面板6SL3255-0AA00-4CA1组成。控制系统主要由PLC、变频器、联动操作台等组成。PLC采集手柄控制器信号,经过程序进行逻辑判断,依据判断结果调节变频器的输出,来控制驱动电机的方向、转速。在变频器分配方面,大车小车的变频器都采用一拖二的方式,即一台变频器同时驱动两台电机;开闭和起升各采用一台变频器进行矢量主从控制。 2.系统控制原理 大车小车分别设有正反向和三档速度可调,变频器采用V/F控制方式,速度调节为固定速度调节,通过司机室左边的操作手柄进行操作。起升和开闭也分别设正反向和三档速度可调,起升设有转矩和速度切换控制,起升和开闭变频器采

变频器的VF控制与矢量控制

变频器的V/F控制与矢量控制 U/f=C的正弦脉宽调制(SPWM)控制方式其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 一、矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。 V/F控制与矢量都是恒转矩控制。U/F相对转矩可能变化大一些。而矢量是根据需要的转矩来调节的,相对不好控制一些。对普通用途。两者一样 1、矢量控制方式—— 矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。 矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。 在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。 具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量 (励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 2、V/F控制方式—— V/F控制,就是变频器输出频率与输出电压的比值为恒定值或成比例。例如,50HZ时输出电压为380V的话,则25HZ时输出电压为190V。 变频器采用V/F控制方式时,对电机参数依赖不大,V/f控制是为了得到理想的转矩-速度特性,基于在改变电源频率进行调速的同时,又要保证电动机的磁通不变的思想而提出的,通用型变频器基本上都采用这种控制方式。V/f控制变频器结构非常简单,但是这种变频器采用开环控制方式,不能达到较高的控制

西门子财务公司的资金管理

西门子财务公司的资金管理 2009-07-13 09:11:31| 分类:案例研究| 标签:|字号大中小订阅 一、西门子财务公司的基本情况 西门子成立于1847年,总部设在德国柏林和慕尼黑,经过160多年的发展,业务已经遍及世界190多个国家,是世界上最大的电气工程和电子公司之一。西门子将核心业务全面整合为工业、能源、医疗、权益投资、跨部门经营和跨部门服务六大板块。其中,跨部门经营板块主要包括西门子财务公司(SFS)与IT解决方案和服务集团(SIS),跨部门服务板块主要由西门子房地产公司构成。 西门子财务公司的正式称谓是“西门子金融服务公司(Siemens Financial Services Ltd., SF S)”,它最早是1997年从西门子集团财务部(又称中央财务部,GF)分离出来,全职负责西门子集团具体金融业务运作的一个职能部门。2000年,该职能部门进一步发展成为集团100%控股的独立法人即SFS,为工业、能源和医疗三大业务提供跨部门金融服务,目前在全球雇员数已超过1900人。组织架构上,作为西门子集团的全资子公司,SFS接受集团CFO(也是西门子集团公司董事会成员)的直接领导,主要负责集团金融政策的执行和金融业务运作,而西门子集团CFO直管的另一部门CF则负责整个集团的金融战略与政策制定(见图1)。 图1:西门子集团组织架构 SFS主要履行两大职能:一是为集团成员单位提供专业化的融资服务与安排,即“内部银行”职能;二是以满足集团成员企业需求为导向,为他们提供全方位的财务管理咨询与金融支持。概括起来,SFS业务可以分为四大类 (见表1)。 表1: SFS主要业务基本情况

西门子6SE70参数

6SE70变频器参数详解 摘取自网络 P072:变频器进线电流 P095:电机类型 P100:选择开/闭环控制方式的功能参数 P114:选择各种工艺边界调节启动控制系统的功能参数 P115:选择各种启动环节和特殊功能的功能参数 P101:电机额定电压 P102:电机额定电流 P103:电机励磁电流 P104:功率因素 P107:电机额定频率 P108:电机额定转速 P109:电机极对数 P113:电机额定转矩 P120:与电机额定阻抗相关的电机电感 P121:设定定子与电缆电阻 P122:根据电机额定阻抗设定的电机定子侧总漏抗 P127:估算转子电阻温度影响 P128:最大输出电流 P130 编码器类型 P151 编码器脉冲数 P215:在一控制的采样时间(P357)内,设定所允许的转速实际值最大变法 P216:设定n/f实际值预控滤波时间常数 P223:设定接到速度调节器负输入端的n/f实际值滤波时间常数 P235:速度调节器增益 P235:速度调节环P参数 P240:速度调节环I时间参数 P240:速度调节器积分时间 P258:最大允许电动的有功功率 P259:运行回馈的最大有功功率 P273:转矩平滑给定的滤波时间常数功能参数,它只在弱磁区使用 P278:在低速范围内,无编码器速度控制(频率控制P100=3)过程中,所需最大附加动态转矩P279:在低速范围内,无编码器速度控制(频率控制P100=3)过程中最大附加动态转矩 P283:在调制器异步调制范围内设定PI电流调节器调整增益 P284:在调制器异步调制范围内设定PI电流调节器调整时间 P303:设定磁通给定滤波时间常数 P306:设定最大EMF的功能参数 P313:电流模式切换位反EMF模式 P315:设定电机额定电压反EMF模式的PI调节器积分增益 P316:设定用于反EMF模式的PI调节器积分时间 P319:输入电流提升

《电机矢量控制技术》矢量控制综述资料

福建工程学院 研究生课程论文 课程名称电机及其系统分析教师姓名 研究生姓名 研究生学号 研究生专业电气工程 研究方向电力工程 年级一年级 所在学院信息学院 日期2016年01 月13日

评语

矢量控制技术的发展以及在应用中的改善 摘要:电机在很多场合得到了广泛的使用,因为它具有的独特优点,例如它为现代运动控制系统提供了一种具有诸多优点和适用广泛的装置。异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。在上世纪70年代西门子工程师F.Blaschke 首先提出异步电机矢量控制理论来解决交流电机转矩问题。矢量控制实现的基本原理是通过测量和控制异步电动机定子电流矢量,根据磁场定向原理分别对异步电动机的励磁电流和转矩电流进行控制,从而达到控制异步电动机转矩的目的。 关键词:矢量控制,异步电机,解耦 ABSTRACT:In many occasions, the motor has been widely used because it has unique advantages, such as it provides a lot of advantages and is suitable for a wide range of modern device having the motion control system. Dynamic mathematical model of the induction motor is a high order, nonlinear, strongly coupled multivariable systems. In the 1970s, Siemens engineers F.Blaschke first proposed induction motor vector control theory to solve the problem of the AC motor torque. The basic principle of vector control is achieved by measuring and controlling asynchronous motor stator current vector, based on the principle of field-oriented asynchronous motor excitation current and torque current control, respectively, so as to achieve the purpose of control of induction motor torque. Key Word : Vector control ,Induction motor ,Decoupling 0、序言 异步电动机的数学模型是一个极其复杂的模型。总的归结起来可以异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统[1]。而且在研究三相异步电动机的复杂的数学模型中,我们常常会做出以下几方面的假设。第一,我们往往会忽略空间谐波。第 二、忽略磁路饱和。并且假设它们的自感和互感都是线性的。第三、忽略铁芯损耗。第四、不考虑频率和温度对绕组的影响。由于感应电动机的励磁和电枢都是同一个绕组,所以转矩和磁链之间就相对比较复杂。电磁转矩的物理表达式为 22?φCOS I C T T e = 可以知道感应电动机各个参量相互耦合,这也是感应电动机难以控制的根本原因[2]。由于矢量控制具有转矩控制的线性特性,控制效率很高,调节器的设计也比较容易实现。而且,速度的调节较宽在接近零转速时仍然可以带动额定负载运行,具有良好的起制动性能,所以矢量控制技术才会被人们慢慢的所利用[3]。异步电机数学模型的电压方程、磁链方程、转矩方程和运动方程如下: 电压方程:

VF控制与矢量控制 瞬间弄懂

针对异步电机,为了保证电机磁通和出力不变(转矩不变),电机改变频率时,需维持电压V和频率F的比率近似不变,所以这种方式称为恒压频比(VF)控制。VF控制-控制简单,通用性强,经济性好,用于速度精度要求不十分严格或负载变动较小的场合。从本质上讲,VF控制实际上控制的是三相交流电的电压大小和频率大小,然而交流电有三要素,就是除了电压大小和频率之外,还存在相位。VF 控制没有对电压的相位进行控制,这就导致在瞬态变化过程中,例如突加负载的时候,电机转速受冲击会变慢,但是电机供电频率也就是同步速还是保持不变,这样异步电机会产生瞬时失步,从而引起转矩和转速振荡,经过一段时间后在一个更大转差下保持平衡。这个瞬时过程中没有对相位进行控制,所以恢复过程较慢,而且电机转速会随负载变化,这就是所谓VF控制精度不高和响应较慢的原因。 矢量控制国外也叫磁场定向控制,其实质是在三相交流电的电压大小和频率大小控制的基础上,还加上了相位控制,这个相位在具体操作中体现为一个角度,简单的讲就是电机定子电流相对于转子的位置角。 综上,我觉得矢量控制和VF控制的最本质的区别就是加入了电压相位控制上。从操作层面上看,矢量控制一般把电流分解成转矩电流和励磁电流,这里转矩电流和励磁电流的比例就是由转子位置角度(也就是定子电压相位)决定的,这时转矩电流和励磁电流共同产生的转矩是最佳。宏观上看,矢量控制和VF控制的电压,电流,频率在电机稳定运行时相差不大,都是三相对称交流,基本上都满足压频比关系,只是在瞬态过程如突加、突减负载的情况下,矢量控制会随着速度的变化自动调整所加电压、频率的大小和相位,使这个瞬时过程更快恢复平衡。 变频器采用V/F控制方式时,对电机参数依赖不大,一般强调“空载电流”的大小。变频器作矢量控制时,对电机参数的依赖很大,所以必须对电机作旋转

矢量控制和伺服控制

矢量控制方式—— 矢量控制,最简单的说,就是将交流电机调速通过一系列等效变换,等效成直流电机的调速特性,就这么简单,至于深入了解,那就得深入了解变频器的数学模型,电机学等学科。矢量控制原理是模仿直流电动机的控制原理,根据异步电动机的动态数学模型,利用一系列坐标变换把定子电流矢量分解为励磁分量和转矩分量,对电机的转矩电流分量和励磁分量分别进行控制。 在转子磁场定向后实现磁场和转矩的解耦,从而达到控制异步电动机转矩的目的,使异步电机得到接近他励直流电机的控制性能。 具体做法是将异步电动机的定子电流矢量分解为产生磁场的电流分量(励磁电流)和产生转矩的电流分量(转矩电流)分别加以控制,并同时控制两分量间的幅值和相位,即控制定子电流矢量,所以称这种控制方式称为矢量控制方式。 电机伺服控制方式 一般伺服包含三种控制方式:速度控制方式,转矩控制方式,位置控制方式。速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。 (1)如果对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 (2)如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm;如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。 应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。 应用领域如数控机床、印刷机械等等。 3、速度模式:通过模拟量的输入或脉冲的频率都可以进行转动速度的控制,在有上位控制装置的外环PID控制时,速度模式也可以进行定位,但必须将电机的位置信号或直接负载的位置信号作为上位机的反馈信号,以进行运算控制。位置模式也支持直接负载外环检

西门子6SE70系列变频器调试指南

西门子6SE70系列变频器调试指南 一. 参数复位出厂设定值 步骤1:P053=6 (选择“允许通过PMU 和串行接口SCom1 (OP1S)和PC)变更参数”);步骤2:P060=2 (选择“固定设置”菜单); 步骤3:P366=0 (选择“具有PMU 的标准,通过MOP (BICO1)的设定值”); 步骤4:P970=0 (选择“启动参数复位”)。 步骤5:P060=0 (选择“用户参数”) 参数复位后,变频器通过PMU操作。 二. 快速调试 步骤1:P060=3 (菜单选择“简单应用的参数”); 步骤2:P071=380 (输入装置进线电压,单位为V); 步骤3:P095=10 (选择输入类型为IEC标准异步电动机); 步骤4:P100=1 (选择“V/f开环控制方式”); 步骤5:P101=?(输入电机额定电压,单位为V,见电机铭牌); 步骤6:P102=?(输入电机额定电流,单位为A,见电机铭牌); 步骤7:P104=?(输入电机功率因数,见电机铭牌); 步骤8:P107=?(输入电机额定频率,单位为Hz,见电机铭牌); 步骤9:P108=?(输入电机额定转速,单位为r/min,见电机铭牌); 步骤10:P=109=?(输入电机极对数,见电机铭牌); 步骤11:P368=?(选择设定值和命令源: 0:通过PMU+MOP1操作面板进行操作 1:通过端子排上的模拟量/数字量输入 2:通过端子排上的固定设定值和数字量输入 3:通过端子排上的MOP和数字量输入); 步骤12:P370=1 (启动简单应用的参数设置); 之后变频器开始自检,完成后面板将显示008,将X101端子1和8短接,此时面板显示009,代表准备运行,这样变频器就可以通过P368设定的控制源进行控制了。 下面具体介绍P368为不同值时变频器的接线和操作方法。 1.P368=0,通过PMU操作(面板操作) P368=0时,变频器只通过PMU可以操作,操作方法如图1所示。 图1 P368=0,PMU操作方法

相关主题