搜档网
当前位置:搜档网 › 盾构段监控量测方案

盾构段监控量测方案

盾构段监控量测方案
盾构段监控量测方案

广深港客运专线ZH-4标

益田路隧道工程盾构段监控量测方案

编制:

审核:

批准:

中铁十五局广深港客运专线ZH-4标六工区

2010年6月13日

目录

1.编制目的 (4)

2.编制依据 (4)

3.工程概况 (4)

3.1地理位置 (4)

3.2工程范围 (4)

3.3设计参数 (5)

3.4建(构)筑物调查情况 (5)

4.地表沉降变形机理 (6)

4.1沉降机理分析 (6)

4.2地表沉降变形的演变分析 (6)

4.2.1前期沉降阶段 (6)

4.2.2通过期间沉降阶段 (6)

4.2.3盾尾间隙沉降阶段 (6)

4.2.4后期沉降阶段 (6)

5.工程施工特点 (7)

6.监测的目的及方法 (7)

6.1地表沉降监测 (7)

6.2监测控制网的施测精度 (7)

6.3监测的主要内容和测点布设 (8)

6.3.1地表变形监测 (8)

6.3.2洞外观察 (8)

6.3.4深层土体位移监测 (8)

6.3.5地下水位监测 (9)

6.3.6地下管线位移监测 (9)

7.施工监测资源配置 (10)

7.1监控测量仪器 (10)

7.2监控量测人员组织 (10)

8.施工监测控制精度和监测频率 (11)

8.1施工监测控制精度 (11)

8.2监测频率 (11)

8.3控制标准 (11)

8.3.1建筑物变形控制标准 (11)

8.3.2地表变形控制标准 (12)

8.3.3深层土体变形控制标准 (12)

8.3.4地下水位、管线位移控制标准 (12)

9.隧道结构变形监测 (12)

9.1隧道结构变形监测内容 (12)

9.2变形控制标准 (13)

9.3隧道结构变形监测频率 (13)

9.4隧道结构变形控制方法 (13)

10.监测数据的整理和分析 (14)

10.2最终报告内容 (14)

1.编制目的

盾构隧道下穿段地面建筑物密集,地下管线纵横交错,受盾构施工影响。建立完善、严格的监测体系、合理科学的监测方法。掌握盾构隧道施工动态,利用监测结果为设计方案优化和施工参数调整提供参考依据;监测数据经分段处理与必要的计算判断后进行预测和反馈,以便为工程和环境安全提供可靠的信息,特编制此方案。

2.编制依据

⑴《关于广深港客运专线深圳福田站及相关工程初步设计的批复》(铁鉴函〔2008〕832号)

⑵《建筑地基基础设计》(GB50007-2002)

⑶《建筑桩基技术规范》(JGJ94-2008)

⑷《建筑桩基坑工程监测技术规范》(GB50497-2009)

⑸《铁路隧道设计规范》(TB10003-2005)

⑹《铁路隧道监控测量技术规程》(TB10121-2008/J721-2007)

⑺《盾构法隧道施工与验收规范》(GB50446-2008)

⑻《建筑变形测量规程》(JGJ 8-2007)

⑼《精密工程测量规范》(GB/T15314-94)

⑽《国家一、二等水准测量规范》(GB/T 12897-2006)

⑾《孔隙水压力测试规程》(CFCS55 93)

⑿《地下铁道、轻轨交通工程测量规范》(GB50308-1999)

⒀《城市测量规范》(CJJ8-1999)

3.工程概况

3.1地理位置

益田路隧道位于新深圳站和福田站之间,地理位置位于深圳市宝安区龙华街道梅林检查站至深圳市市民中心一带。盾构隧道下穿段地面建筑物密集,可能受盾构隧道施工影响的邻近建筑物较多。

3.2工程范围

隧道起点里程益田路隧道起点里程DK104+730,终点里程DK110+966,全长6236m。盾构法隧道分两段:盾构施工第一段长度为1476.3m (DK107+915~DK109+391.3),盾构施工第

二段长度为1134m (DK109+832~DK110+966)。

3.3设计参数

益田路盾构隧道两个区间段线路设计最小平曲线半径是2000m,曲线段长1930.2m,最小竖曲线半径为15000m,最大坡度25‰,隧道埋深30~60m。隧道衬砌采用通用楔型环C50钢筋混凝土管片,管片外径12800mm,内径11700mm,宽度2000mm。

3.4建(构)筑物调查情况

盾构段地表建(构)筑物的调查情况详见下表3.1益田路隧道盾构段地表沉降监测横断面里程表。

4.地表沉降变形机理

4.1沉降机理分析

泥水加压盾构平衡法所引起的地表变形特征表现在:盾构掘进机的前方和顶部会产生微量的隆起,盾尾脱离以后,地表开始下沉,并形成一定的宽度和沉降槽地带,下沉的速率随时间而逐渐衰减,且与盾构经过的土质、施工工况和地表荷载、泥浆压力、掘进速度等有着密切的关系,并表现出相当大的差异。

4.2地表沉降变形的演变分析

泥水加压式盾构在推进过程中所引起的地表沉降,根据实测资料,按地表沉降变形曲线的形态,大致分为4个阶段:

4.2.1前期沉降阶段

盾构向前推进时,当盾构开挖面尚未到达测点以前的沉降或隆起;它主要是因为泥水压力的波动而引起。当开挖面泥水舱的泥水压力偏低时,造成盾构开挖面应力释放,从而引起地表沉降,当开挖面泥水舱内泥水压力偏高时,使开挖面土体受挤压,从而引起地表隆起。

4.2.2通过期间沉降阶段

盾构继续向前推进,当盾构切口达到测点起至盾尾离开测点期间发生的地表沉降或隆起,主要原因是进排浆流量不平衡造成。

4.2.3盾尾间隙沉降阶段

盾构继续推进,盾尾通过测点后产生的地表沉降。由于盾构体的外径大于管片的外径,盾尾通过测量点后,在地层中遗留下来的建筑空隙就需及时壁后注浆充填,以控制地表变形。但是往往因盾尾壁后注浆没有能够及时充填建筑空隙,或是注浆量、注浆压力、注浆部位、浆液配比和材料方面不适当,使建筑空隙中的浆液不能及时形成环箍,盾尾脱出后,无支撑能力的软土在不能自立的情况下就很快自行充填入建筑空隙,造成土层应力释放。除此以外,盾构在平面或高程纠偏过程中所引起的单侧土体附加压力在盾尾脱出后亦发生应力释放,于是又增加了盾尾部分的建筑空隙。这些情况终将最后反应到地表变形上来。

4.2.4后期沉降阶段

盾尾脱出一周后的地表沉降。这部分沉降主要是有土层的固结沉降和地基土的徐变引起。

5.工程施工特点

益田路隧道盾构段施工监测总体情况见表5.1益田路隧道盾构段监控量测表。

6.监测的目的及方法

监控量测目的:根据盾构施工动态,利用监测结果为设计方案优化和施工参数调整提供参考依据;监测数据经分段处理与必要的设计判断后进行预测和反馈,以便为工程和环境安全提供可靠的信息。

6.1地表沉降监测

监测方法:主要监测盾构掘进过程中引起的地表变形情况,监测方法是在地表埋设测点,在隧道沿线,地表影响范围外布设监测基准点,基准点按照国家二等水准观测的技术要求实施,用精密水准仪进行地面沉降的量测。根据监测结果进行分析,判断盾构掘进对地表沉降的影响。

6.2监测控制网的施测精度

监测基准点按国家二等水准的技术要求进行测量:基辅分划差M≦±0.5mm;每站高程中误差M站≤±1.0mm。往返较差成环线闭合差M≤±8L(mm)或0.8n(mm)。每次沉降观测时,对工作基点进行检核,基准网定期检测:每隔三个月检测一次。

6.3监测的主要内容和测点布设

6.3.1地表变形监测

地表变形监测点布置在地面上,监测断面垂直于线路方向,在隧道中线的两侧30m范围内布置测点,每个监测断面布设13个测点,按照设计要求在隧道的上方沿隧道方向每间隔50m布一个断面,在隧道中线方向上每10m布置一个纵向地表监测点,为了保证盾构施工时地面安全,加强地面沉降点监测。如图6.1 隧道横向地表变形监测点布置示意图

图6.1 隧道横向地表变形监测点布置示意图

6.3.2洞外观察

洞外观察的内容主要包括,地表开裂、地表隆沉、建(构)筑物开裂、倾斜、隆沉等状况的观察和记录,根据周边环境状况确定观测频率,且每天不少于1次。

6.3.3周边建(构)筑物监测

周边建(构)筑物监测包括沉降监测、倾斜监测和位移监测。采用电子水准仪或全站仪及测缝计进行量测。

建(构)筑物监测点布置在其结构外墙四角和受力结构柱处,对于低于5层(含5层)的邻近建筑物,可只在底层布置测点,对于高于5层的建筑物,在建筑物的底部、中部及上部四角埋设位移测点;建筑物边长超过50m时,在边长中部约按10m布置1个测点。倾斜监测仅对8层以上高层建筑物进行监测。根据“益田路隧道邻近建筑物基础情况及保护方案表”中所列邻近建筑物必须按设计要求布设监测点,对距离隧道中线30m以内的建筑物应布置测点纳入监测范围。

6.3.4深层土体位移监测

为了监测分析盾构隧道施工过程中引起的土体变形及其规律,分析隧道掘进时引起土体

变形的大小、范围及对周边环境的影响,提前预测周边敏感建筑物的变形。

根据隧道与建筑物的相对位置关系,采用断面形式布置测斜管,每个断面布设1~4个

检测孔,位于隧道一侧的检测孔深度与隧道结构底部同深,隧道中线处监测孔高于隧道外轮

廓不小于1m。监测孔内竖向每隔1m测量一次深层土体位移。见图6.2深层土体变形位移

监测布置剖面图

图6.2深层土体变形位移监测布置剖面图

采用电子水准仪按照二等水准测量要求,测定孔口标高,通过侧斜仪观测各层深度处水

平位移。埋设沉降标志,通过分层沉降仪测定孔内沉降标志的沉降。

6.3.5地下水位监测

地下水位实行全程监控,但间距可适当增大。地下水位监测孔位于隧道结构外侧不小于3m,孔底位于隧道结构底3m。钻孔内设置水位管利用水位计对地下水位进行量测的方法测试。由于水位监测孔不封闭,本工程采用的泥水盾构产生的泥水压力可能会击穿土体,引起

地面喷发,因此水位监测孔尽量布置在建筑物边且离开隧道尽可能远们设计图中所标示的水

位孔位置在实际监测中可按照上述原则予以调整,保证监测过程中的安全性。

6.3.6地下管线位移监测

地下管线位移监测包括水平位移和垂直位移监测。在隧道施工前应对隧道穿越地区进行

详细的地下管线调查,并对重要的地下管线进行监测。根据现有资料标出了隧道周边的地下

管线分布及测点布设情况,原则上按照地表沉降的监测范围对隧道中线两侧各30m范围内

的既有管线进行监测,尤其将上水管、煤气管等有压管道作为重点监测管线,一般在管线接

头部位应布设测点,其余段按管线长度方向每隔10m布设一个监测点。采用电子水准仪或

全站仪监测。

根据具体的管材、接头方式及其内部压力等具体情况和相关规范要求,地下管线监测采

用直接法和间接法相结合的方式进行。原则上地下管线的变形测量应直接在管线上设置观测

点进行监测,当无法直接进行观测时应去除其覆盖土体进行观测或监测管线周围土体变形。当采用间接法监测管线周围土体变形来反应管线变形时,监测点应埋入土中距管线距离不大于0.5m处且应与管线底同深。

7.施工监测资源配置

7.1监控测量仪器

益田路隧道盾构段施工监测投入的测量仪器见表7.1监控测量仪器配置表。

监控量测的仪器设备经过计量检定单位检定合格,并在有效期内。仪器设备验收、维护保养和检修均按规定程序进行。

7.2监控量测人员组织

工区成立施工监测小组,由工区总工王红路担任组长,测量班班长陈征担任副组长,李涛、张立凯、刘鹏举、罗林文、杨雷、李四邦、薛源等参加(见图7.1 六工区施工监测小组组织机构)。负责按设计做好施工监测元器件埋设,施工监测的数据采集、整理和分析,及时提供监测日报、周报、月报等有关监测资料。

图7.1 六工区施工监测小组组织机构

8.施工监测控制精度和监测频率

8.1施工监测控制精度

施工监测控制精度采用二等水准高程测量的方法由精密水准网向各监测点引测高程,测得各监测点上高程变化值。要求精度:基铺读数差△h≤±0.5mm,转站高差中误差M站≤±1.0mm,相邻基准点测量闭和差△h≤±1.0mm或0.6n。

8.2监测频率

监测频率控制如下:

①盾构到达监测断面(点)前50米:埋设好测点,读好初始读数;

②盾构到达监测断面(点)前50米到前30米:1次/天;

③盾构到达监测断面(点)前30米到前1倍盾构直径:2次/天;

④盾构到达监测断面(点)前1倍盾构直径到盾尾通过后3天:3次/天;

⑤盾尾通过监测断面(点)后3天到盾尾离监测断面(点)30米内:2次/天;

⑥盾尾通过监测断面(点)后30米到50米:1次/天;

⑦盾尾离监测断面(点)50米后:1-2次/周;

⑧盾尾通过监测断面(点)30天后:1次/月(长期监测)。

8.3控制标准

8.3.1建筑物变形控制标准

建筑物裂缝宽度控制标准为1.5mm,且每两次监测期间裂缝发展不超过0.1mm,建筑物最大沉降累计值按20mm进行控制。

砌体承重结构房屋基础局部倾斜不得大于0.002;混凝土框架结构相邻柱基的沉降差不得大于0.002倍的柱间距;Hg≤24m的高层整体倾斜不得大于0.004;24m<Hg≤60m的高层整体倾斜不得大于0.003;Hg>60m的高层整体倾斜不得大于0.0025。(Hg为自室外地面起算的建筑物高度)

当隧道施工对周边建筑物的影响不到以上标准的50%时,隧道正常施工;

当隧道施工对周边建筑物的影响大于以上标准的50%时,加密监测频率,及时跟踪注浆;

当隧道施工对周边建筑物的影响大于以上标准的75%时,应在现设计基础上再及时增加保护措施;

当隧道施工对周边建筑物的影响达到以上标准时,启动紧急预案,必要时疏散民众。

8.3.2地表变形控制标准

地表变形应按照如下标准进行控制:

当地表隆起值≤10mm,沉降值≤30mm时,隧道正常施工;

当地表隆起值为10~15mm.,沉降值为30~40mm时,加密监测频率,密切注意施工过程;当地表隆起值≥15mm,沉降值≥40mm时,隧道施工暂缓,进行施工检查,启动紧急预案。

8.3.3深层土体变形控制标准

深层土体变形监测作为一种辅助手段,可根据深层土体变形值推测邻近建筑物桩基变形,以10mm作为控制标准。

当变形量测值超过控制标准时,应对周边监测项目进行加密观测,及时跟踪注浆,如果量测值持续增大应结合建筑物监测进行分析,隧道施工暂缓,进行施工检查,待变形稳定后正常掘进。

8.3.4地下水位、管线位移控制标准

地下水位按初始稳定水位累计升降1m,变化速率0.5m/d作为控制标准;

按《建筑基坑工程监测技术规范》(GB50497-2009)规定的管线位移控制标准如下:刚性管道(压力)累计值为10~30mm,变化速率为1~3mm/d;刚性管道(非压力),累计值为10~40mm,变化速率为3~5mm/d;柔性管线累计值为10~40mm,变化速率为3~5mm/d。

地下管线种类繁多,结构形式、接头形式多样,不同的管线抗变形能力有较大差别,控制标准也有一定差别,在准确调查管线情况后对管线的沉降曲线允许最小曲率半径确定最大变形值,才能合理确定地下管线的变形控制标准。

在监测过程中出现管线变形较大,超过变形控制标准后,应加密监测频率,调整施工方法,加强盾构同步注浆,并可在必要时对管线进行跟踪注浆加固或开挖暴露后进行悬吊,对于煤气管、上水管在特殊情况下应采取暂时关闭,待加固完成变形稳定后恢复。

9.隧道结构变形监测

9.1隧道结构变形监测内容

隧道结构变形监测内容包括砌结构拱顶沉降、水平收敛、拱底隆起、椭圆度等定期进行

监测。各监测项目应集中于同一横断面,监测横断面纵向间距50m,建议采用激光断面仪进行结构变形监测,精度应不低于1mm。

9.2变形控制标准

隧道结构变形控制标准:拱顶沉降:±10mm;水平收敛:±15mm;拱底隆起:±15mm;盾构环直径椭圆度≤3‰。初始观测值应在隧道壁后注浆凝固后12h内量测。

9.3隧道结构变形监测频率

隧道结构变形监测频率距开挖面≤20m:1次/天;距开挖面20~50m:1~2次/周;距开挖面>50m:1次/月,监测应持续直至结构变形稳定。

9.4隧道结构变形控制方法

成型管片的纵向垂直位移监测;采用水准测量的方法测量遂道底正下方固定位置的高程变化量。监测精度与地表监测相同。圆度变形监测与水平偏移监测采用4M(5M)长铝合金直尺法测量。水平横置直尺,用全站仪测定铝合金直尺中心坐标,比对与设计中心坐标的变化量测定水平偏移值,并推算下半环隧道圆度的变化值,采用收敛仪测定环片脱出盾尾后的净空收敛变化值。(图9.1 隧道结构变形监测示意图)

图9.1 隧道结构变形监测示意图

管片安装后,由于受到管片外侧的水土等压力而发生变形,其中最大跨度的变形最大。因此把收敛点布置在管环的最大跨度附近。周边收敛点以10m为一断面布置。采用穿孔钢卷尺式收敛计进行监测,监测频率同地面沉降监测。每次监测后,通过测量出来的监测点间距的大小计算监测点收敛值。然后绘出测点的累计收敛――时间图和每次收敛――时间图。

10.监测数据的整理和分析

10.1监测数据整理

监测成果报告分日报和最终结果报告。监测成果报告中应包含技术说明、监测时间、使用仪器、依据规范、监测方案及所达到精度,列出监测值、累计值、变形速率、变形差值、变形曲线,并根据规范及监测情况提出结论性意见。

监测成果报告必须能以直观的形式(如表格、图形等)表达出获取的与施工过程有关的监测信息(如被测指标的当前值与变化速率等),监测结果一目了然,可读性强。

10.2最终报告内容

每周一提交一次监测周报。汇总各测点一周的变化情况,累计沉降值及变化时变曲线图及前方待监测点的初始值。监测周报、月报的内容包括:

①工程概况

②监测项目和测点布置

③施工进度

④监测值的时程变化曲线

⑤监测结果分析和预报

⑥指出达到或超过警戒值的测点位置,初步分析其原因,提出处理建议意见

⑦提供以下图表:a各项监测成果表;b典型测点的变化值——时间曲线图;c沉降断面图;d监测测点布置图;e结合工程实际情况提供其它分析图表(如沉降值曲线图、测点的变化值随施工进展(或受力变化)变化曲线等。

报告提交后,以部位(施工单位)为单位,按监测时间顺序或监测部位,将监测原始资料、周报、月报、最终成果报告分电子文件和书面文件存档。电子文件部分,信息管理系统中数据库部分要转换成常见数据库格式,仪器采集部分按最原始的格式保存。书面文件,原始资料与报告分别归存。

工区施工监测的组织机构及流程见图10.1施工监测组织与流程图。

图10.1施工监测组织与流程图

原始数据经过审核,消除错误和取舍之后,可供计算分析。根据计算结果,绘出各监测项目监测值与盾构掘进的关系曲线。列出的图表力求格式统一,以便装订成册。

监测资料经整理校核后,列出阶段或最终成果表,并绘制有关过程线和关系曲线,在此基础上,对各监测资料进行综合分析。

每次监测工作结束后,均须提供监测资料、简报及处理意见。监测资料整理应及时,以便发现数据有误时,及时改正和补测,当发现测值有明显异常时,应迅速通知建设各方,以便采取相应措施,指导施工,确保盾构施工和盾构穿越段的场地环境安全。

隧道监控量测方案完整版

隧道监控量测方案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

四川省雅安至康定高速公路工程项目 C17合同段 隧道监控量测实施方案 中铁隧道股份有限公司 雅康高速公路C17合同段项目经理部 二0一四年九月十五日

目录

一、编制依据 1、《工程测量规范》(GB 50026-2007) 2、《公路工程技术标准》JTG B01-2003 2、《公路隧道施工技术规范》(JTG F60-2009) 4、隧道监控施工技术规范 3、招投标文件、设计图纸等有关资料。 二、编制目的 现场监控量测是斜井施工管理的重要组成部分,它不仅能指导施工,预报险情,确保安全,而且通过现场监测获得围岩动态的信息(数据),为修正和确定初期支护参数及混凝土衬砌支护时间提供信息依据,为完善斜井工程设计与指导施工提供可靠的足够的数据。 三、工程概况 雅安至康定高速公路项目路基土建工程施工C17标段位于四川省西部二郎麓、甘孜藏族自治州东南部,界于邛崃山脉与大雪山脉之间,大渡河由北向南纵贯全境。川藏公路穿越东北部,是进藏出川的咽喉要道,素有之称。 本合同段横跨泸定县烹坝乡喇嘛寺村与黄草坪村、康定县姑咱镇大杠村与上瓦斯村,涉及2县2乡镇4村,起讫桩号为 K108+450~K118+370,线路全长9.92km。本标段工程主要包括路基工程:1段长283.5米;桥梁工程:3座总长522.5米;隧道工程:3座隧道,其中大坪隧道长3021米,最大埋深863m;大杠山隧道长

4799米,最大埋深669米,龙进隧道长1287.5米,最大埋深 328m;涵洞工程:钢筋混凝土盖板涵,33m+12.52m两处。 四、监控量测管理 1、成立隧道现场监控量测小组,受项目总工领导并配齐必须的检测仪器、设备、用品,明确工作职责和标准,承担量测任务。 2、量测组负责测点埋设、日常量测、数据处理和仪器设备的保养维修工作,并及时将量测信息反馈于施工和设计。 3、现场监控量测按制定的量测工作计划认真组织实施,并与其它施工环节紧密配合,不间断的贯穿于整个施工过程中。 4、各预埋测点埋设要牢固可靠,易于识别并妥善保护,不能任意撤换和避免破坏。 5、按现场监控量测计划,在做好现场量测工作的同时,及时分析整理内业资料并分类归档,按规范要求做好量测竣工文件。 6、监控量测组织机构框图 图一监控量测组织机构图 五、监控量测技术要求 1.量测数据必须准确可靠。

监控量测施工方案

隧道监控量测专项施工方案 1 编制依据 根据隧道的围岩条件、支护类型和参数、施工方法以及所确定的量测目的进行编制。执行规如下: (1)《铁路隧道监控量测技术规程》(TB10121-2007) (2)《铁路隧道工程施工技术指南》(TZ204-2008) (3)《高速铁路隧道工程施工技术指南》(铁建设【2010】241号)(4)《高速铁路隧道工程施工质量验收标准》(TB10753-2010)(5)《新建铁路至线施工图安县隧道设计图》(成兰施隧-01) (6)《新建铁路至线施工图柿子园隧道设计图》(成兰施隧-02)(7)《新建铁路至线参考图隧道施工工法及辅助措施》(成兰隧参(11)19) 2 工程概况 安县隧道位于安县-高川区间,为双线隧道,单洞合修。进口里程 D2K73+335,出口里程D2K76+350,全长3015m。隧道洞身位于半径为3504.525的右偏曲线上,进出口均位于直线上,线路纵坡为17.8‰的单面上坡,轨顶面高程为674.101~727.768。隧道进口接路基工程,出口紧邻睢水河双线大桥,隧道最大埋深320m。 柿子园隧道位于安县-高川区间,为双线隧道,高川车站伸入隧道出口端;进口D2K76+696~D3K87+350段10654m为单洞合修隧道,其

余段为双洞分修隧道。除进出口均位于直线上外,隧道洞身有2处左偏曲线和2处右偏曲线,线路纵坡为17.8‰及6‰的单面上坡。进口里程D2K76+696,左线出口里程D2K90+765,右线出口里程YD2K90+758,单双线分修起点里程D3K87+300=YD3K87+345.59,隧道左线全长14069m,分修段右线全长3412.41m。轨面高程为733.927~980.048m。本标段施工里程D2K76+696~D3K85+560,共8864m,单洞合修。 3 量测目的 (1)为了掌握隧道施工中围岩和支护的力学动态信息及稳定程度并及时反馈,以指导施工作业,保证施工安全。 (2)经量测数据的分析处理与必要的计算判断后,进行预测和反馈,及时修改支护系统设计,以保证施工安全和隧道稳定。 4 作业准备 4.1 业技术准备 编制监控量测作业指导书后,应在开工前组织技术人员认真学习实施性施工组织设计,阅读施工图纸,熟悉监控量测规和技术标准。制定监控量测实施细则。对量测人员进行技术交底,进行上岗前技术培训,熟悉量测方法和技术。 4.2 外业技术准备 施工作业层中所涉及的各种外部技术数据收集。 配置监控量测所需要的仪器、设备,满足监控量测人员工作需要。

隧道施工监控量测方案

乐昌至广州高速公路T10标长基岭隧道、龙归隧道 施工监控量测专项计划 编制: 审核: 审批: 中铁隧道集团广乐高速T10标项目部 二零一零年七月

乐昌至广东高速公路T10表标段内共有2隧道,分别为长基岭隧道和龙归隧道。其中长基岭隧道为特长隧道,是广乐高速控制性工程,长基岭隧道左线长3920m,右线长3940m;龙归隧道右线长640m,左线长565m。长基岭隧道位于粤北凹褶束~韶关凹褶中的天门坳隆起地区,地层复杂、断层发育。断裂主要为北北东向和北东向,南北向。隧道穿越14条断层破碎带或岩溶侵蚀破碎带。龙归隧道位于湘粤坳褶束的粤北凹褶束,以华夏构造为主体,形成以南北向褶皱-瑶山复背斜的褶皱和盆地。断裂主要为北北东向和北东向。隧道穿越1条断层破碎带。隧道开挖埋深浅、跨度大,采用的支护措施和结构形式复杂多样,施工中各种工法转换复杂,因此为保证隧道施工安全、经济、顺利进行,在施工过程中应采取全过程监控量测措施,以根据监测信息反馈设计和指导施工,积极优化与调整施工方法、施工工艺和施工参数,控制支护结构变形,了解围岩动态变化,掌握最佳工序过程,从而确保工程安全与质量,并保护周围环境的安全。 1 监测目的和意义 监控量测是地下工程动态设计的重要组成部分,是确保隧道安全开挖的基础。在施工中,通过监控量测,掌握围岩动态和支护结构的工作状态,利用监控量测结果调整设计支护参数,指导施工,积累资料并为以后的类似工程提供类比依据;同时预测事故和险情,以便及时采取措施防止事故发生。 (1)了解围护结构和周围地层的变形情况,为施工日常管理提供信息,保证施工安全。 监测数据和成果是现场施工管理和技术人员判断工程是否安全的重要依据。因此,在施工过程中,通常依据监测结果验证施工方案的合理性,调整施工参数,必要时采取辅助工程措施,以达到信息化施工之目的。 (2)通过对隧道支护结构的变位、应力监测,及时修改支护系统设计。 (3) 验证支护结构设计,为支护结构设计和施工方案的修订提供反馈信息。 (4) 积累资料,以提高地下工程的设计和施工水平。 支护结构的围岩压力分布受支护方式、支护结构刚度、施工过程和被支护围岩种类的影响,通常很复杂,现行设计分析理论尚未达到成熟的阶段,积累完整准确的地下工程开挖与支护监测结果,对于总结工程经验,完善设计分析理论是很有价值的。 2 监测的主要技术依据 2.1 执行的技术标准

盾构现场施工隧道监测方法

精心整理上海长兴岛域输水管线工程盾构推进 环境监测 技术方案

目录 一工程概况 二盾构推进对周边环境影响程度的分析和估计三监测施工的依据 四监测内容

上海长兴岛域输水管线工程盾构推进环境监测技术方案 前言 科学技术的发展与试验技术的发展息息相关。历史上一些科学技术的重大突破都得益于试验测试技术。因此,试验测试技术是认识客观事物最直接、最有效的方法,也是解决疑难问题的必要手段,试验测试对保证工程质量、促进科学的发展具有越来越重要的地位和作用。测量技术在土建工程中同样占有重要地位,它在各类工程建筑,尤其是在地下工程中已成为一个不可或缺的组成部分。随着科学技术的发展,测量的地位更显关键和重要。早期地下工程的建设完全 工作井相连。 输水管线总长约10563.305m,其中东线长5280.993m,西线长5282.312m。全线最小平曲线半径为R=450m;最大纵坡为8.9‰。具体详见下表。

施工工序,第一台盾构自原水过江管工作井始发推进(东线)至中间盾构工作井进洞后盾构主机解体调头,继续西线隧道推进施工。第二台盾构自中间盾构工作井始发推进(东线)至水库出水输水闸井进洞后盾构转场回中间盾构工作井,继续进行西线隧道推进施工。总体筹划详见下图: 二盾构推进对周边环境影响程度的分析和估算 因很复杂,其中隧道线形、盾构形状、外径、埋深等设计条件和土的强度、变形特征、地下水位分 V l S (x )i Z -地面至隧道中心深度。 φ-土的内摩擦角。 在已知盾构穿越的土层性质、覆土深度、隧道直径及施工方法后,即可事先估算盾构施工可能引起的地面沉降量,同时可及时地采取措施把影响控制在允许范围内。在推进过程中根据盾构性能及监测数据及时调整施工参数,控制变形量,确保周边环境的绝对安全,实现信息化施工。 三监测施工的依据 3.1技术依据 1) 上海长兴岛域输水管道工程技术标卷(甲方提供)

桥梁监控量测实施计划方案

桥梁施工监控量测实施方案

五实施本项目监测大纲 1桥梁施工监控量测实施方案 1.1监测技术方案 1.1.1监测目标 坝溪大桥和马溪河大桥施工控制将严格按照审批后的施工程序和工艺进行,本桥施工控制实现的目标主要有:通过调整拱架立模标高,控制拱架和拱圈线形,以保证成桥线型光顺,满足设计要求,同时应使桥面线型在经过若干年的混凝土收缩徐变后也满足使用要求。在施工过程中,保证拱架和拱圈的应力控制在预想和容许围,以保证结构在施工期间的安全性,测量的应力同时可以校核理论分析的准确性。 1.1.2监测容 对混凝土浇筑过程拱圈应力、变形进行监测坝溪大桥和马溪河大桥拱圈采用分次浇筑,在拱架荷载和拱圈混凝土浇筑过程中,对拱架关键部位的应力和拱架变形进行监测,确保施工过程的安全。 1)拱架关键部位的应力监测 为避免拱圈浇筑过程中拱架应力过高导致结构破坏,需在拱架拱脚位置、跨中位置、1/4跨位置设置拱架应变计,随时监测这些关键部位应力。 2)拱架变形监测 为防止拱圈混凝土浇筑过程中拱架发生异样变形,需在拱架跨中

截面和1/4跨截面的上下游两侧均设置挠度观测点和轴线偏差测点,测量仪器采用水准仪和全站仪。 1.2监测实施组织 施工监控不是一个独立的理论计算或实践技术问题,它是一项牵涉到设计、施工、监理、监控等单位的综合性工作。为了保证施工监控工作的顺利进行,及时、准确地按照监控单位提出的监控数据进行施工,并将施工结果及时反馈给监控单位进行误差分析,便于监控单位及时预报下一节段的施工控制数据,必须建立一个完善的施工监控实施组织,建议这一实施组织分两个层次开展工作,即成立施工监控领导小组与施工监控工作办公室。 施工监控领导小组组长由业主担任,设计、施工、监理、监控单位派员参加,负责组织、协调处理施工过程可能出现的重大问题。施工监控工作办公室主任由监控单位常驻工地的项目负责人担任,具体负责处理施工监控的有关日常事项。 在这个组织机构中,各方密切配合,各行其责: 业主单位:统一协调各方关系,主持解决施工过程中出现的重大问题。 设计单位:密切配合施工和监控单位的工作,对监控单位发出的主要监控指令予以确认,对施工中出现的需要变更的问题予以解决,及时调整或确认施工监控的目标状态,保证桥梁以理想状态投入营运阶段。 监理单位:接受监控单位提交的监控数据,向施工单位发布监控

施工监测方案-副本

目录 一、工程概况 (1) 1.1、设计概况 (1) 1.2、环境情况 (1) 二、编制依据 (1) 三、监测目的、原则及内容 (1) 3.1 监测目的 (1) 3.2 监测的原则 (2) 3.3监测的内容 (2) 四、监控量测方案 (3) 4.1、测点布置原则 (3) 4.2、地表沉降监测 (4) 4.3、地下管线监测 (9) 4.4、建(构)筑物沉降监测 (10) 4.5、水位观测 (11) 4.6、拱顶监测 (11) 五、监控量测的数据采集、预警及内业整理 (14) 5.1、数据采集 (14) 5.2、数据整理 (14) 5.3、数据分析 (14) 5.4、安全预报和反馈 (15) 5.5、监控量测三级预警及内业整理 (15) 六、监测管理体系与质量保证措施 (19)

施工监控量测方案 一、工程概况 1.1、设计概况 南湖路站~金岭路站区间位于贵阳市观山湖区,线路出南湖路站后,下穿金阳二手车市场、龙潭路、金阳新世界2E地块(碧潭五区),然后沿诚信北路敷设至金岭路站。区间全长788m,为双洞单线隧道,线间距12~14m,隧顶埋深6.5~10m。区间施工竖井设在右隧右侧市政道路绿化带上,横通道中线与线路相交于YDK13+760(=ZDK13+763.675)里程处,竖井距南湖路站377m,距金岭路站411m。竖井横通道与正洞相连,呈90°与正洞正交。 1.2、环境情况 竖井内净空尺寸为 6.0×8.0m,井深22.2m,横通道长25.6m,开挖宽度×高度=6.6X9.3m。竖井所处地层至上而下依次为素填土、红黏土、三叠系下统大冶组(T1d)灰岩,井深及横通道主要位于黏土层内,井底位于中风化灰岩内。 二、编制依据 1、《建筑基坑工程监测技术规范》(GB50497-2009); 2、《国家一、二等水准测量规范》(GB/T 12897-2006) 3、《城市轨道交通工程测量规范》(GB50308-2008); 4、《建筑地基基础工程施工质量验收规范》(GB50203-2002); 5、《建筑变形测量规范》(JCJ/T 8-2007); 6、《建筑基坑支护技术规程》(DB11/489-2007); 7、《地铁工程监控量测技术规程》(DB11/490-2007); 8、《地下铁道、轻轨交通工程测量规范》(GB50308-2008); 三、监测目的、原则及内容 3.1 监测目的 (1)保证施工安全 当地铁基坑开挖工程遇到软弱地层、高地下水位以及周围环境限制条件严格时,基坑开挖后必须采取围护结构体系或者利用地下室结构形成围护结构体系,才能使施工得以顺利进行。要保证施工的安全,则需要对地基及基坑围护结构体系的受力变形和位移等参量进行施工监测,一旦发现问题,及时采取措施加以解决。

某市政道路施工测量及监控量测施工方案

施工测量及监控量测 一施工测量 ㈠、测量控制点的移交和复测 工程上场后,由施工测量人员负责与监理工程师进行工程范围测区内有关三角网点、水准网点和中线控制桩点等基本数据测量资料的移交工作,并按规定作好交接手续;同时在收到基本数据测量资料后进行复核验算和复测工作,在此基础上实施工程施工所需的施工测量工作。 ㈡、施工测量 施工测量工作选派有经验的专业测量人员,采用全站仪、经纬仪、水准仪等精密仪器操作,主要包括以下几方面内容: (1)、根据监理工程师提供的测量数据资料研究布设自己的控制网点,增设的控制网点与监理工程师提供的三角网点和水准网点的基本数据完全吻合,同时满足规定的施测精度。 (2)、根据监理工程师提供的基本数据测量资料精确地测定建筑物的位置,进行施工放样和全部测量数据的计算工作。 (3)、在放测前10天将有关施工测量的意见报告(一式五份)报送监理工程师审批,内容包括:施测方法和计算方法;操作规程;观测仪器设备的配置和测量专业人员的设置等。 (4)、施工全过程中,保护和保存好施工范围内全部三角网点、水准网点和自己布设的控制点,使之容易进入和通视,防止移动和损坏。一旦发生移动和破坏立即报告监理工程师,并共同协商补救措施。 (5)、全部测量数据和放样均报监理工程师检查,必要时在监理工程师的直接监督下

进行对照测量。 二工程施工的监控量测 本工程采用明挖法施工,由于基坑开挖、降水施工对地层产生扰动,有可能引起地表、附近重要或高大建筑物变形或沉陷,危及附近建筑物的安全。因此,在施工过程中按规范要求进行施工监控量测,并根据监测成果,及时反馈信息指导施工,修正设计参数,优化施工工艺,变更施工方法,以确保建(构)筑物及作业人员、居民的安全。 ㈠、监控量测的目的 工程上场伊始,组织具备有丰富施工经验、监测经验及有结构受力计算、分析能力的工程技术人员成立专业监测小组,及时收集、整理各项监测资料,并对这些资料进行计算、分析、对比,以达到下列目的: 1、通过监控量测了解基坑周围土体在施工过程中的动态变化,明确工程施工对原始地层的影响程度及可能产生失稳的薄弱环节。预测基坑及结构的稳定性和安全性,提出工序施工的调整意见及应采取的安全措施,保证整个工程安全、可靠的推进。 2、通过监控量测了解支护结构的受力和变位状态,并对其安全稳定性进行评价。优化设计,使围护结构达到优质、安全、经济合理、施工快捷的效果。 3、通过监控量测,了解工程施工对周围地下管线的影响程度,以确保其处于安全的工作状态。 4、通过监控量测,了解施工降水效果及对周围地下水位的影响程度。 5、通过监控量测,为修正设计和施工参数、预估发展趋势、确保工程质量及周边管线的安全运营提供实测数据,是设计和施工的重要补充手段。 6、通过监控量测,收集数据,为以后的类似工程设计、施工及规范修改提供参考和

桥梁监控测量方案

桥梁监控测量方案 导线控制测量、桥轴线测量控制、墩、台、桩定位测量、支座垫石施工放样和支座安装、桥面控制测量、高程控制测量 1、导线控制测量 利用设计单位提供的已知点,用全站仪(必要时用GPS)补测导线点,并形成三维导线控制网进行桥轴线平面位置控制。经环导闭合测量,角度闭合差、坐标闭合差均满足一级导线技术要求。 2、桥轴线测量控制 利用已知的控制点坐标及施工图提供的桥轴线控制点坐标,用坐标放线法进行各匝道桥桥轴线恢复测量。即以桥轴线长度作为一个边,而布置成闭合导线,再采用坐标法施放轴线上各点。 3、墩、台、桩定位测量 施工阶段测定桥轴线长度,目的就是为了建立起施工放样墩、台、桩的平面控制。墩、台、桩定位测量的内容就是准确定出桥墩、台、桩的中心位置和它的纵轴线。可根据设计单位提供的墩、台、桩设计坐标,按坐标反算求出坐标法的放样数据,用以施放墩、台、桩平面位置。同时采用坐标法,在不同曲线控制点、交点设站,直接测距,对施放的墩、台、桩位置进行复核验证。 (1)桩基础钻孔定位放样 根据设计图计算出每个桩基中心的放样数据,设计图纸中已给出的数据也应经过复核后方可使用。施工放样采用全站仪坐标法进行。 (2)承台施工放样 用全站仪坐标法放出承台轮廓线特征点,供安装模板用。通过吊线法和水平靠尺进行模板安装,安装完毕后,用全站仪测定模板四角顶口坐标,直至符合规范和设计要求。用水准仪进行承台顶面的高程放样,其精度应达到四等水准要求,用红油漆标示出高程相应位置。 (3)墩身放样 桥墩墩身形式多样,大型桥梁地般采用分离式矩形薄壁墩。墩身放样时,先在已浇筑承台的顶面上放出墩身轮廓线的特征点,供支模板用(首节模板要严格控制其平整度)。用全站仪测出模板顶面特征点的三维坐标,并与设计值相比较,

隧道监控量测方案

长沙市渔业路及延伸道路工程 下穿京广铁路段暗挖隧道监控量测方案 中铁二十五局集团有限公司 二○一二年三月十三日

目录 1、监控量测的目的 (3) 2、监控量测的项目 (3) 3、量测断面的间距和频率 (3) 4、测点设置要求及测设工具 (4) 5、量测方法及数据处理 (5) 5.1、水平收敛量测 (5) 5.2、拱顶下沉量测 (6) 5.3、量测数据的处理与应用 (7) 6、量测数据整理、分析与反馈的要求 (9) 7、监控量测规范要求 (9) 8.监控量测仪器及量测作业要求 (10) 8.1.量测仪器 (10) 8.2.量测作业要点 (11) 9、量测的管理及人员配备 (12) 9.1、量测的管理 (12) 9.2、量测人员配备 (12) 10、监控量测与信息反馈程序图 (12) 隧道监控量测实施细则

1、监控量测的目的 监控量测是隧道在施工过程中不可缺少的内容,不仅监测地层、围护结构体系、浅埋段围岩、支护动态,及施工对既有建(构)筑物的影响,通过对两侧数据的整理和分析,及时确定相应的施工措施,确保施工过程和既有建筑的安全。 2、监控量测的项目 2.1、必测项目是施工中必须作为一道工序进行的监控量测项目。它包括: (1)洞内外观察 (2)水平相对净空变化值的量测 (3)拱顶下沉的量测。 (4)地表沉降 2.2、选测项目是根据围岩性质、隧道埋置深度、开挖方式等条件自行确定的监控量测项目,作为必测项目的验证和补充。它包括: (1)围岩压力 (2)钢架压力 (3)隧底隆起 3、量测断面的间距和频率 3.1、洞内观察分为开挖工作面观察和初期支护观察,地质及支护状况的观察,对判断围岩的稳定性、进行开挖前方的地质预报等十分重要,所以地质观察和记录对开挖后的每一个工作面都应及时进行地质素描及数码成像,必要时应进行物理力学试验。初期支护完成后应进行喷层表面裂缝及其发展、渗水、变形观察和记录。 3.2、洞外观察包括边仰坡稳定,地表水渗透等观察。 3.3、净空变形量测断面的间距应根据围岩级别、隧道断面尺寸、埋置深度等确定,其间距按表1采用。拱顶下沉量测与净空水平收敛量测应在同一断面内

监控量测在地铁区间隧道盾构施工中应用

庞旭卿:监控量测在地铁区间隧道盾构施工中应用 监控量测在地铁区间隧道盾构施工中应用 庞旭卿1,2 (1.陕西铁路工程职业技术学院,陕西渭南714000;2.长安大学地测学院,西安710054) 【摘要】在地铁区间主体、车站、及附属结构施工中按照设计及规范要求采用科学先进、准确可靠的监测手段及时反馈信息指导施工,是确保施工安全的关键。针对深圳地铁5号线盾构施工区间隧道地质条件较差的特点,就盾构施工监控量测工艺流程及盾构施工测量、监测质量保证措施进行设计,保证了盾构隧道工程安全经济顺利地进行。 【关键词】地铁;区间隧道;盾构;监控量测 【中图分类号】U231;U45【文献标识码】B【文章编号】1001-6864(2011)09-0107-02 盾构法是地下隧道的一种施工方法,对地层的适应性也越来越好,因此在地下工程(尤其是地铁区间)中被广泛采用[1]。然而,在软土层中采用盾构法掘进隧道,会引起地层移动而导致不同程度的沉降和位移,因此,通过盾构法施工地铁中监控量测的实施及信息反馈,对控制周围位移量、确保临近建筑物的安全是非常必要的[2]。 1工程概况 深圳地铁5号线线路全长40.933km,区间以盾构施工为主。工程地质与水文地质条件复杂,有特殊土等不良地质现象,特别是淤泥层较厚,地下水丰富。含水层主要为砂层,结构松散,自稳性差,透水性强,施工中易发生坍塌、涌水、涌砂、变形、失稳等现象。临近地面建筑物多,施工干扰大;围护结构受土的侧压力后有向内收缩的趋势,钢管支撑预应力施加的控制难度大,预应力大则围护结构外扩,不够则围护结构收缩。 2盾构施工监控量测 2.1监测项目 主要包括:地表隆陷、隧道隆陷、土体内部位移、衬砌环内力和变形、土层压应力等[3]。具体内容详见表1。 表1盾构隧道施工监测项目汇总 序号监测项目量测器工具测点布置监测目的与要求量测频率 1地表隆陷水准仪每30m设一断面,过既有建筑物时加密每10m一断面 2隧道隆陷水准仪、钢尺5m设一断面 3周边净空 收敛位移 收敛仪 每5 50m一个断面, 每断面1 3个测点 4管片裂缝观察、目测 5管片实际 位置监测 水准仪每环 监测隧道施工引起的地 表变形、隧道变形情况, 确保施工安全。 掘进面前后<20m时测1 2 次/d,掘进面前后<50m时测1 次/2d,掘进面前后>50m时测1 次/周 随时观察 每天 2.2施工监测工艺流程 隧道与土体变形监测成果是确定盾构机掘进参数的重要依据,为保证盾构机正常掘进,信息化施工是重要手段,盾构区间施工监测的工艺流程如图1所示。 2.3施工监测实施 (1)测点布置:如图3 图5所示。地面沉降(隆陷)监测点布置:根据隧道通过的围岩条件布置测点,一般地段30m设一断面。 地面沉降观测点的观测周期:盾构机机头前10m和后20m范围每天早晚各观测一次,并随施工进度递进[4]。每次观测点应与上一次观测点部分重合,以做比较,掘进前后50m范围内两天观测一次,范围之外的检测点每周观测一次,直至稳定。当沉降或隆起超过规定限差(-30/+10mm)或变化异常时,应加大监测频率和检测范围。并将信息及时传递给有关部门。 监测方法:用精密水准仪进行测量。 监测要点:监测时严格按照GB12987-91国家二等水准测量规范执行,沉降点复测周期按照《城市测量规范》执行。 数据处理:地表沉降监测随施工进度进行,并将各沉降点沉降值存入计算机监测管理管理系统汇总成沉降变化曲线、沉降速度变化曲线统一管理,绘制报表。 (2)隧道隆陷。每5m设一断面;周边净空收敛位移测量:每10 20m设一断面。监测方法:用收敛仪测量。测量精度:?1mm。数据处理:监测值存入计算机监测管理系统统汇总成位移变化曲线、位移速度变化曲线统一管理。 (3)管片裂缝。监测方法:观察、目测。监测要点:发 701

隧道监控量测方案

目 录一.编制依据 1 二.编制原则 1 1.高效、适用原则 1 2.安全原则 1 3.符合本单位技术水平的原则 2三.适用范围 2 四.工程概况 2 1.隧道概况 2 2.施工存在的风险 2 3.监控量测目的 2 4.监控量测手段 3 五.监控量测实施方案 3 1.组织机构、人员及设备 3 2.监控量测程序和项目 4 3.监控量测点布置及方法 5 4.监测数据的统计分析与信息反馈 9六.无尺渐测现场应用 10 七.监控量测工作制度 11

八附件 12 表 施-CL-012 沉降观测记录表 13 表 施原-029 隧道工程现场监控量测记录表 14 表 施原-030 隧道工程周边位移现场监控量测记录表 15表 施原-031 隧道工程周边位移现场监控量测记录表 16

一.编制依据 1.承赤高速工程施工图; 2.承赤高速16标段指导性施工组织设计; 3.交通部的规范、规程、标准: (1)《国家一、二等水准测量规范》(GB12897—2006); (2)《工程测量规范》(GB50026-2007); 二.编制原则 1.高效、适用原则 监控量测是新奥法施工中不可缺少的一项技术内容,是监视围岩和支护稳定性的重要手段,是判断设计、施工是否正确合理的主要依据,是监视施工是否安全可靠的眼睛。为了更精确更迅速的了解围岩的动态变化,判定其稳定性,从而保证施工安全。 本方案的高效运行,能确保预报质量并有效的指导施工,适合本工程所有隧道。 2.安全原则 隧道施工中开挖形成后,必须立即喷射不小于4cm厚的混凝土及时封闭围岩作为初支初喷层,紧跟监控量测,监控量测应在开挖后2-4小时进行,否则工作人员不得进入掌子面作业。 本方案的操作实施要安全,并能指导安全施工。 3.符合本单位技术水平的原则 本方案拟投入的设备、实施人员均符合本单位现有水平,能确保方案顺利实施。 三.适用范围

盾构工程施工测量和监控量测方案

盾构工程施工测量和监控量测方案 1 施工测量 1.1 控制测量 为确保施工控制点的稳定可靠,测量与相邻标段测量点联测闭合,对地面首级和二级控制网点进行同等精度的复测工作。 (1)复测 按照招标文件的要求及《城市轨道交通工程测量规范》GB50308的规定,施工前,测量队对业主在交接桩时提供工程范围测区精密控制网、精密水准点等进行复测。复测时按照首级控制网点同等精度进行观测,并与邻近标段的平面和高程控制网点进行贯通联测,做好工程测量的相互衔接。将复测成果书面上报监理单位。 在工程施工期间,每两个月对首级控制网复测一次,并将复测成果上报监理单位。如监测发现施工场地周围的地面有变形时,及时对首级控制网进行复测,增加复测频率,确认控制点无误后才可以继续使用。如发现首级控制网测量超出规范允许范围时,立即报告监理单位,重新交桩后才可以使用首级控制网。 (2)控制测量 复测工作完成后,在首级控制网点的基础上,根据工程项目的施工需要并结合本标段工程特点城市道路交通建筑物等实际情况定平面和高程控制网方案,现场选点埋设控制网标石后组织施测。

(3)平面控制测量 为满足施工需要,严格地按四等导线测量规范增设了导线点,在盾构竖井处适当位置增设了精密导线点和精密水准点。将新增设的控制点与地面首级控制网进行了联测,确保竖井投点在多方控制中。 盾构始发井投点测量 为指导盾构掘进施工,必需把导线数据导入始发井强制对中平台上,施工完成到设计标高时,根据现场的实际情况和现有的仪器设备,采用投点仪投点(投点仪标称精度不低于1/30000),把井口上测设的

为了提高投点精度,在竖井口长边对角适当位置设置投点P1,P2点,如图10-1-1-1。然后利用地面上的控制网进行联测,将测量数据进行平差后,计算出P1、P2各点的坐标(或用前方交会法,定出P1、P2各点),将P1、P2点投在井下的投点板上,如图10-1-1-2所示。 为了检核投点精度,在井上作多次投点,投在投点板上的P1′、P2′、P1″、P2″…点。取中定出P1、P2的投影。然后将全站仪分别架设在各点上。观测通道内设置的P3、P4,采用全圆法观测各点的角度、距离、平差后计算出各点坐标,以此作为通道、隧道暗挖控制的定向边(P3~P4)。 洞内导线测量 通过竖井定向,导线严格按四等导线要求联测至隧道内,并在隧道内设置通视效果好且稳固的导线点,导线点采用强制对中的形式,直线隧道施工导线点平均边长150米,特殊情况下不短于100米。为

隧道监控量测实施方案word参考模板

南宁枢纽II标 隧道监控量测实施方案 编制:日期: 审核:日期: 审批:日期:

一、工程概况 1、花油山隧道位于低山丘陵区,地形起伏大,山体植被发育,海拔高程70~220m,自然坡度20°~40°之间,中心里程DK28+330,全长5400m.系浅埋暗挖双线隧道。其中V级围岩4805m, IV级围岩460m,明洞135m(进口段)。本隧道因其地质条件极差、为南宁枢纽最长隧道,施工进度、安全都是控制的重难点,是全线控制工期工程。因工期紧,任务重,另设置5个斜井, 1#斜井长250米、2#斜井长340米、3#斜井长290米、4#斜井长320米、5#斜井长310米。 隧道经过地质以泥质砂岩、泥岩夹含砾砂岩为主,位于南宁复式背斜内,次级褶曲发育。本隧道为全线的最长隧道,制约工程的工期。需加强组织,快速施工,保证工期目标实现。是本合同中的重点和难点工程。 2、新那窝隧道中心里程YDK765+973.5,为单线隧道,隧道最大埋深35m,地表植被发育,隧道全段为V级围岩,隧道范围内不良地质为岩溶,顺层偏压及顺层。 3新羽四岭隧道中心里程为:ZDK795+841,长度762m。系双层集装箱单线隧道。其中V级围岩390m, IV级围岩358m,明洞14m(进口段)。隧道进口里程ZDK795+460,出口里程ZDK796+222,中心里程ZDK795+841,全长762m。隧道除ZDK795+460~ZDK796+026.79段位于R=800m的右偏曲线上,其余均为直线段;进、出口浅埋并有部分明洞。 二、编制依据 1、设计施工图; 2、《铁路隧道监控量测规程》(TZ10121-2007); 3、《铁路隧道锚喷构筑法技术规范》(TB10108-2002); 4、《实施性施工组织设计》

盾构施工监测方案

广州市轨道交通三号线北延段工程施工 8 标段 【龙归站~人和站盾构区间(二) 】土建工程 盾构隧道施工监测方案
§1 编制依据 §1 编制依据
1、 广州市轨道交通三号线北延段工程施工 8 标段工程合同文件 (GDJCDG-0521) 2、 《盾构法隧道工程施工及验收规程》 (DGJ08-233—1999) 3、 《地下铁道、轻轨交通工程测量规范》 (GB50308-1999) 4、 《地下铁道工程施工及验收规范》 (GB50299-1999) 5、 《建筑变形测量规范》 (JGJ/T8-97) 6、 《土木工程监测技术》 夏才初等编著,中国建筑工业出版社,2001.7
§2 工程概况 §2 工程概况
三号线延长线出龙归站沿 106 国道继续向北行进,穿过沙坑涌、北二环高速 公路、泥坑涌、流溪河后到人和站。本区间为龙归~人和区间的第二段盾构施工 段,由南端风井始发往北掘进至北端中间风井吊出,掘进长度为 1750.4 米(右 线) 。 本标里程范围 YCK19+830~YCK21+660,即南端风井终点~北端风井起点 段盾构和南端风井;含 4#、5#、6#联络通道。 南端风井起点里程 YCK19+830,终点里程 YCK19+909.6,结构净长度为 78m;4#联络通道里程 YCK19+900,与风井合建。 盾构区间起点里程 YCK19+909.6, 终点里程 YCK21+660, 右线盾构长 1750.4 米, 左线盾构长 1749.2 米, 区间盾构总长 3499.6 米; 5#联络通道里程 YCK20+500, 6#联络通道里程 YCK21+100。 见图 2-1。
1

隧道监控量测方案审批稿

隧道监控量测方案 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

四川省雅安至康定高速公路工程项目 C17合同段 隧道监控量测实施方案 中铁隧道股份有限公司 雅康高速公路C17合同段项目经理部 二0一四年九月十五日

目录

一、编制依据 1、《工程测量规范》(GB 50026-2007) 2、《公路工程技术标准》JTG B01-2003 2、《公路隧道施工技术规范》(JTG F60-2009) 4、隧道监控施工技术规范 3、招投标文件、设计图纸等有关资料。 二、编制目的 现场监控量测是斜井施工管理的重要组成部分,它不仅能指导施工,预报险情,确保安全,而且通过现场监测获得围岩动态的信息(数据),为修正和确定初期支护参数及混凝土衬砌支护时间提供信息依据,为完善斜井工程设计与指导施工提供可靠的足够的数据。 三、工程概况 雅安至康定高速公路项目路基土建工程施工C17标段位于四川省西部二郎麓、甘孜藏族自治州东南部,界于邛崃山脉与大雪山脉之间,大渡河由北向南纵贯全境。川藏公路穿越东北部,是进藏出川的咽喉要道,素有之称。 本合同段横跨泸定县烹坝乡喇嘛寺村与黄草坪村、康定县姑咱镇大杠村与上瓦斯村,涉及2县2乡镇4村,起讫桩号为 K108+450~K118+370,线路全长9.92km。本标段工程主要包括路基工程:1段长283.5米;桥梁工程:3座总长522.5米;隧道工程:3座隧道,其中大坪隧道长3021米,最大埋深863m;大杠山隧道长

4799米,最大埋深669米,龙进隧道长1287.5米,最大埋深 328m;涵洞工程:钢筋混凝土盖板涵,33m+12.52m两处。 四、监控量测管理 1、成立隧道现场监控量测小组,受项目总工领导并配齐必须的检测仪器、设备、用品,明确工作职责和标准,承担量测任务。 2、量测组负责测点埋设、日常量测、数据处理和仪器设备的保养维修工作,并及时将量测信息反馈于施工和设计。 3、现场监控量测按制定的量测工作计划认真组织实施,并与其它施工环节紧密配合,不间断的贯穿于整个施工过程中。 4、各预埋测点埋设要牢固可靠,易于识别并妥善保护,不能任意撤换和避免破坏。 5、按现场监控量测计划,在做好现场量测工作的同时,及时分析整理内业资料并分类归档,按规范要求做好量测竣工文件。 6、监控量测组织机构框图 图一监控量测组织机构图 五、监控量测技术要求 1.量测数据必须准确可靠。

盾构段监控量测方案

广深港客运专线ZH-4标 益田路隧道工程盾构段监控量测方案 编制: 审核: 批准: 中铁十五局广深港客运专线ZH-4标六工区 2010年6月13日 目录

1.编制目的 (4) 2.编制依据 (4) 3.工程概况 (4) 3.1地理位置 (4) 3.2工程范围 (4) 3.3设计参数 (5) 3.4建(构)筑物调查情况 (5) 4.地表沉降变形机理 (6) 4.1沉降机理分析 (6) 4.2地表沉降变形的演变分析 (6) 4.2.1前期沉降阶段 (6) 4.2.2通过期间沉降阶段 (6) 4.2.3盾尾间隙沉降阶段 (6) 4.2.4后期沉降阶段 (6) 5.工程施工特点 (7) 6.监测的目的及方法 (7) 6.1地表沉降监测 (7) 6.2监测控制网的施测精度 (7) 6.3监测的主要内容和测点布设 (8) 6.3.1地表变形监测 (8) 6.3.2洞外观察 (8)

6.3.4深层土体位移监测 (8) 6.3.5地下水位监测 (9) 6.3.6地下管线位移监测 (9) 7.施工监测资源配置 (10) 7.1监控测量仪器 (10) 7.2监控量测人员组织 (10) 8.施工监测控制精度和监测频率 (11) 8.1施工监测控制精度 (11) 8.2监测频率 (11) 8.3控制标准 (11) 8.3.1建筑物变形控制标准 (11) 8.3.2地表变形控制标准 (12) 8.3.3深层土体变形控制标准 (12) 8.3.4地下水位、管线位移控制标准 (12) 9.隧道结构变形监测 (12) 9.1隧道结构变形监测内容 (12) 9.2变形控制标准 (13) 9.3隧道结构变形监测频率 (13) 9.4隧道结构变形控制方法 (13) 10.监测数据的整理和分析 (14)

地铁车站监控量测方案_(车站)

一、汉中门车站基坑施工监测方案 1.1 工程概况 汉中门车站位于汉中路南侧,其南侧为汉中门市民广场,北侧为南京中医药大学,车站西端离虎踞路高架桥最近的桥墩约30m车站总长度为:161. 50米, 车站标准段宽度:20. 90米。顶板埋深约2. 8?3. 6米,基坑开挖深度约20. 93?23. 1米。车站西端南北侧在施工阶段各设一个10nm8m的盾构吊出井,东端车站底板设1. 9X1. 9的电缆过轨通道与I号风道内电缆夹层相界接。车站东西两端北侧设活动塞风道、风井,在南北两侧共设四个出入口通道。车站西端地下三层设防淹门一道(与人防隔断门结合),其承载力按秦淮河百年一遇洪水标高11 . 5m 考虑。汉中门站地形平坦,本场地南侧为汉中门广场。车站设计为地下三层三跨箱形结构,采用明挖顺做法施工;岛式站台,站台宽12m 有效站台长度140m。 根据本工程特点,车站土体基坑围扩设计采用间隔布设、桩芯相切、护壁咬合人工挖孔桩,同时利用人工挖孔桩设混凝土圈梁,与主体结构共同参与基坑围护。车站西端的2、3 号出入口由于地质条件好分别采用锚喷支护及土钉支护;位于车站东端的1、4号出入口采用? 800钻孔灌注桩作为基坑围护结构,桩间距900。地下二层框架结构,围护结构采用密排的? 1000人工挖孔桩,挖孔桩采用钢筋砼桩与素砼桩间隔布设(局部地段采用密排钢筋砼桩),桩芯相切,护壁咬合。东端1号风道为地下三层框架结构,围护结构采用密排的?1200人工挖孔 桩,挖孔桩采用钢筋砼桩,桩芯相切,护壁咬合。围护结构支撑采用?609mm勺钢管支撑(壁厚t=12mm),竖向设四道,支撑水平间距为5m

1. 2工程地质条件和周边环境情况 1. 2. 1.地形、地貌、地质 汉中门站拟建场区隶属于I级阶地地貌单元。地表以下1. 80—4. 30米为近期杂填土、粉质粘土、素填土;第四系沉积层底板埋深5. 10—22. 90米,主要为全新世?上更新世沉积粉质粘土和混合土:下部基岩为白垩系“红层” ,岩芯为泥质粉砂岩加粉砂质泥岩,软硬相间,属极软岩。汉中门车站地质参数由《南京地铁二号线汉中门站岩土工程详细勘察报告》(编号:2004168-1)提供。穿越的主要土层由上至下依次为:①—杂填土; ①—2b2-3素填土;②—15-2粉质粘土;②一3b2-3粉质粘土;③一lb |-2粉质粘土:③一2b2-3粉质粘土;③一3b1- 2粉质粘土:③一4e粉质粘土:Klg-1a强风化泥质粉砂岩:Klg-2a中风化泥质粉砂岩。 1. 2. 2.水文 本站地下水类型主要为上层滞水、孔隙潜水和基岩风化裂隙水。上层滞水主要赋存于①层填土的碎砖、碎石等杂物的孔隙格架中;孔隙潜水分布在②层软土中;③层硬可塑粉质粘土,可视为相对隔水层;基岩风化裂隙水土要分布于岩石风化界面和粉砂岩、泥质粉砂岩裂隙中,裂隙多被允填、裂隙一般不富水。地下水年变幅0. 50?1. 50米,地下水对砼无腐蚀性,对钢筋砼结构中的钢筋无腐蚀性,对钢结构具有弱腐蚀性。场地土对砼无腐蚀性,对钢结构有弱腐蚀性。 设计时,地下水位埋深按1. 00米考虑。 1. 2. 3.气象 本项目所在区域处于长江下游北热带季风气候区,具有气候温和,雨量充沛,日照充足,无霜期长,四季分明等特点,因受大陆、海洋以及来自南北天气系统段影响,气候比较复杂,年际间的变化大,气象灾害比较频繁,年降雨量为1000?1200mm年内分布也不

围岩监控量测方案设计

银山隧道监控量测施工方案 一、工程概况 本标段共有一座隧道,为银山隧道,隧道位于河婆镇南部银山一带,为中低山地貌,起伏较大,山顶最大地面高程182m,进口最低高程102m,最大高差约84m。隧址区气候属南亚亚热带季风气候,具有常年气候温和充足,雨量充沛,无霜期长,植被丰富,水域发达的特点。隧道进口位于一冲沟和侧壁中,地形较陡,坡度15~45°,坡向朝东;出口位于冲沟和斜坡上,地形较陡,坡度10~45°,坡向朝西。隧道布置型式为分离式隧道,起止桩号左线ZK98+062~ZK98+655,长593m;右线K98+~K98+575,长535m。银山隧道为不良地质隧道,洞口端浅埋且偏压严重,是本标段的重点(关键)和难点工程。 隧道洞身主体主要穿越全风化花岗岩、全风化碎块状花岗岩,局部有辉绿岩侵入,围岩级别主要为Ⅲ~Ⅴ级。 隧道主要围岩划分情况见表1 二、监控量测 开挖和支护过程的围岩变形和稳定监测主要是通过围岩监控量测来实现的。监控量测是信息化设计与施工的重要容。通过施工现场的监控量测,为判断围岩稳定性,支护、衬砌可靠性,二次衬砌合理施作时间,以及修改施工方法、调整围岩级别、变更支护设计参数提供依据,指导日常施工管理,确保施工安全和质量。 2.1实施机构 监控量测工作根据业主要求由施工方承担,成立专业的监控量测小组,成员由多年从事地下工程施工及监测经验的技术人员组成,监测主管由具有丰富施工经验,具有数据分析和计算能力的专职监测工程师担任。监测小组在监测主管的领导下负责日常监测工作及资料整理工作并及时反馈指导施工。配置情况见下表; 表2 银山隧道围岩监控量测小组

2.2 实施原则 监测系统设计原则:施工监测是一项系统工程,监测工作的成败与监测方法的选取及测点的布置直接相关。根据我单位监测工作的经验,归纳以下5条原则:可靠性原则:可靠性原则是监测系统设计中所考虑的最重要的原则。为了确保其可靠性。首先,系统需要采用可靠的仪器。其次,在监测期间保护好测点。 多层次监测原则:在监测对象上以位移为主,兼顾其它监测项目;在监测方法上以仪器监测为主,并辅以巡检的方法;在监测仪器选择上以机测仪器为主,辅以电测仪器。 重点监测关键区的原则:观测仪器布置合理,注意时空关系,布点时形成具有一定测点覆盖率的监测网,同时注意控制关键部位。在具有不同地质条件和水文地质条件地段,其稳定的标准是不同的。稳定性差的地段重点进行监测。 方便实用原则:为减少监测与施工之间的干扰,监测系统的安装和测量尽量做到方便实用。 经济合理原则:系统设计时考虑实用的仪器,不必过分追求仪器的先进性,以降低监测费用。 2.3监测实施容和技术要求 监控量测包含策划、量测、数据整理分析、安全性评价、工程措施建议等部分,成果须按时报设计、施工、监理,业主以便进行动态设计和各方掌握围岩稳定性情况。 2.3.1量测围及阶段 进出口高边坡支护段、洞身浅埋段地表和大断层、大变形地段、正洞洞身。 2.3.2量测项目 银山隧道监控量测分必测项目和选测项目两种类型。 1.以洞外观察、水平收敛量测、拱顶下沉量测、洞身浅埋段地表下沉量测为

相关主题