搜档网
当前位置:搜档网 › 计数型量具测量系统分析

计数型量具测量系统分析

计数型量具测量系统分析
计数型量具测量系统分析

计数型量具测量系统分析

何谓计数型量具

就是把各个零件与某些指定限值相比较,如果满足限值则接受该零件否则拒收。

计数型量具不能象计量型量具指示一个零件多幺好或多幺坏,它只能指示该零件被接受还是拒收。

小样法之做法

先选取二十个零件来进行。

选取二位评价人以一种能防止评价人偏倚的方式两次测量所有零件。

在选取二十个零件时,必须有一些零件稍许高或低于规范限值。

所有的测量结果(每个零件测四次)一致则接受该量具,否则应改进或重新评价该量具,如果不能改进该量具,则不能被接受并且应找到一个可接受之替代测量系统。

大样法

对于某计数型量具,用量具特性曲线(GPC)的概念来进行量具研究,GPC是用于评价量具的重复性和偏倚。

这种量具研究可用于单限值和双限值量具。

对于双限值量具,假定误差是线性一致的,只需检查一个限值。

大样法之做法

一般地,计数型量具研究包括获得多个被选零件的基准值。这些零件经过多次(m)评价,连同接受总次数(a),逐个零件地记录,从这些结果就能估计重复性和偏倚。

第一步骤

选取零件。最根本的是已知研究中所用零件的基准值。应尽可能按实际情况等间隔选取八个零件,其最大和最小值应代表该过程范围

八个零件必须用量具测量m=20,并记录接受的次数(a) 。

第二步骤

对于整个研究,最小的零件必须a=0,最大的零件a=20,记录接受的次数(a)。其余1≤a≤19 。

如果不满足这些准则,必须用量具测量更多的已知其基准值的零件(X)。直到满足上述条件。

如果最小值零件的a≠0,那幺选取越来越小的零件所评价直至a=0

如果,最大值零件的a≠20,那幺选取越来越大的零件并评价直至a=20。

如果六个零件不满足1≤a≤19,在全范围内的选取点选取额外零件,这些点可选在量具研究已测量的零件测量中间点。

计数型测量系统分析记录表

NO:产品名称/型号: 被測特性: 图号:

分析人:核准:

测量系统分析报告(MSA)方法

测量系统分析(MSA)方法 测量系统分析(MSA)方法**** 1.目的 对测量系统变差进行分析评估,以确定测量系统是否满足规定的要求,确保测量数据的质量。 2.范围 适用于本公司用以证实产品符合规定要求的所有测量系统分析管理。 3.职责 3.1质管部负责测量系统分析的归口管理; 3.2公司计量室负责每年对公司在用测量系统进行一次全面的分析; 3.3各分公司(分厂)质检科负责新产品开发时测量系统分析的具体实施。 4.术语解释 4.1测量系统(Measurement system):用来对被测特性赋值的操作、程序、量具、设备以及操作人员的集合,用来获得测量结果的整个过程。 4.2偏倚(Bias):指测量结果的观测平均值与基准值的差值。 4.3稳定性(Stability):指测量系统在某持续时间内测量同一基准或零件的单一特性时获 得的测量平均值总变差,即偏倚随时间的增量。 4.4重复性:重复性(Repeatability)是指由同一位检验员,采用同一量具,多次测量同一产品的同一质量特性时获得的测量值的变差。 4.5再现性: 再现性(Reproductivity) 是指由不同检验员用同一量具,多次测量同一产品的同一质量特性时获得的测量平均值的变差。 4.6分辨率(Resolution):测量系统检出并如实指示被测特性中极小变化的能力。 4.7可视分辨率(Apparent Resolution):测量仪器的最小增量的大小,如卡尺的可视分辨率为0.02mm。 4.8有效分辨率(Effective Resolution):考虑整个测量系统变差时的数据等级大小。用测量系统变差的置信区间长度将制造过程变差(6δ)(或公差)划分的等级数量来表示。关于 有效分辨率,在99%置信水平时其标准估计值为1.41PV/GR&R。 4.9分辨力(Discrimination):对于单个读数系统,它是可视和有效分辨率中较差的。 4.10盲测:指在实际测量环境中,检验员事先不知正在对该测量系统进行分析,也不知道所

MSA测量系统分析步骤和应用

1.什么是MSA 1.1 测量系统:指被测试特性赋值的操作、程序、量具、设备、软件及操作人员的集合,是用来获得测量结果的整个过程。 1.2 量具:指任何用来获得测量结果的装置,包括用来测量合格或不合格的装置。 1.3 测量系统的分辨率:测量系统检出并如实指示被测特性中极小变化的能力(也称为分辨力)。 特别提醒:单独一个测量仪器不是测量系统,如一把卡尺、一台电子称等。 2.测量系统的作用 2.1 评估测量系统误差的大小,是否能被客户接受。 2.2 评估测量系统的稳定性,随着时间的推移,变异是否受控。 2.3 评估测量系统的偏倚值是否能被客户接受。 2.4 评估几种不同测量系统的优劣。通过MSA评估,找到测量系统改善的着力点,确定是进行人员培训,还是调整测量方法或调整仪器。 第一份X-R图显示过程正常,分辨力0.001,第二份X-R图显示过程不正常,分辨力0.01。虽然这是针对同一制程,但是为什么会有这么大的差异呢?从以上数据来看,第二份控制图的测量系统分辨力太低,导致虚发报警。因此可以推断出,做SPC的前提是MSA必须合格,虚发报警导致成本过高。

3.MSA评估的仪器和责任人员 3.1 测量系统一般由仪校人员或品质部的负责人来主导,由参与检测或试验人员来测量,以提供测量数值。不可以由品质部领导或仪校人员来测量和提供数值,需要特别注意的是:测量人员不可知道自己上次测量结果和别人测量结果,要保证盲测。MSA要识别的误差是测量人员、设备、环境、方法、标准值导致的误差,品质部领导和仪校人员一般不亲自测量产品,所以分析他们的测量数据基本没有价值。 3.2 MSA分析的范围来自控制计划所有的测量系统,包括计量性、计数性。 3.3 破坏性的测量系统现在一般不做分析,除非客户有特殊要求,如盐雾试验测量系统。 特别提醒:MSA分析的包括控制计划中所有测量系统,而不仅仅是测量特殊特性的测量系统。 4.MSA专业术语解释 4.1 准确度(Accuracy) 准确度或称偏移(BIAS),是指测量值与相对真值之间的差异。真值是使用更精密的仪器找到的相对真值。准确度值也称为偏倚值,一般说来要求其越小越好。在MSA中,一般分析偏倚值和稳定性值4.2 精密度(Precision)

MSA计数型测量系统分析指导书

莱州市XX机械有限公司作业文件 文件编号:JT/C-7.6J-004版号:A/0 (MSA)计数型测量系统 研究分析作业指导书 批准: 审核: 编制: 受控状态:分发号: 2015年11月15日发布2015年11月15日实施

计数型测量系统研究分析作业指导书 JT/C -7.6J -004 1 目的 为了配备并使用与要求的测量能力相一致的测量仪器,通过适当的统 计技术,对计数型测量系统进行分析研究,使测量结果的不确定度已知,为准确评定产品提高质量保证。 2适用范围 适用于公司使用的计数型测量仪器的测量系统的分析研究。 3职责 3.1检验科负责确定过程所需要的计数型测量仪器,并定期校准和检定,对使用的测量系统进行研究分析,对存在的异常情况及时采取纠正预防措施。 3.2工会负责根据需要组织和安排计数型测量系统分析所需应用技术的培训。 3.3生产科配合对测量仪器进行测量系统分析。 4计数型测量系统简介 计数型测量系统是一种测量数值为一有限的分类数量的测量系统,它与能获得一连串数值结果的计量型测 量系统截然不同。通/止规(go/no go gage )是最常用的 量具,它只有两种可能的结果;其它的计数型测量系统, 如目视标准,可能产生五到七个分类,如非常好、好、 一般、差、非常差。所以,针对计量性测量系统所描述的分析方法不能用于评价这样的系统。当使用任何测量系统进行决策时,都存在一定程度的风险。这些方法不能量化测量系统变异性,只有当顾客同意的情况下才能使用。选择和应用于这些技术应以基于一个良好的统计实践,了解影响产品和测量过程变差源,以及错误决定最终顾客的影响。 计数型测量系统的变差来源,应该通过利用了人为因素和人机工程学的研究结果使之最小化。 5研究分析方法 5.1某生产过程处于统计受控状态,其性能指数为Pp=PpK=0.5,这是不可 接受的。由于过程正在生产不合格的产品,于是被要求采取遏制措施,以便从生产过程中挑出不可接受的产品。见图1:

MSA计数型测量系统分析作业指导书

MSA 计数型测量系统研究分析作业指导书 (ISO13485-2016/ISO9001-2015) 1.0目的 为了配备并使用与要求的测量能力相一致的测量仪器,通过适当的统计技术,对计数型测量系统进行分析研究,使测量结果的不确定度已知,为准确评定产品提高质量保证。 2.0适用范围 适用于公司使用的计数型测量仪器的测量系统的分析研究。 3.0职责 3.1检验科负责确定过程所需要的计数型测量仪器,并定期校准和检定,对使用的测量系统进行研究分析,对存在的异常情况及时采取纠正预防措施。 3.2工会负责根据需要组织和安排计数型测量系统分析所需应用技术的培训。 3.3生产科配合对测量仪器进行测量系统分析。 4.0计数型测量系统简介 计数型测量系统是一种测量数值为一有限的分类数量 的测量系统,它与能获得一连串数值结果的计量型测量系统截然不同。通/止规(go/no go gage )是最常用的量具,它 只有两种可能的结果;其它的计数型测量系统, 目标 如目视标准,可能产生五到七个分类,如非常好、好、 一般、差、非常差。所以,针对计量性测量系统所描述的分析方法不能用于评价这样的系统。当使用任何测量系统进行决策时,都存在一定程度的风险。这Ⅱ Ⅱ LSL USL Ⅰ Ⅰ Ⅲ

些方法不能量化测量系统变异性,只有当顾客同意的情况下才能使用。选择和应用于这些技术应以基于一个良好的统计实践,了解影响产品和测量过程变差源,以及错误决定最终顾客的影响。 计数型测量系统的变差来源,应该通过利用了人为因素和人机工程学的研究结果使之最小化。 5.0研究分析方法 5.1某生产过程处于统计受控状态,其性能指数为Pp=PpK=0.5,这是不可 接受的。由于过程正在生产不合格的产 品,于是被要求采取遏制措施,以便从 生产过程中挑出不可接受的产品。见图 1: 与测量系统有关的“灰色”区域 LSL USL 0.40 0.50 0.60 图1过程范例 5.2具体的遏制行动是,过程小组采用了一个计数型量具,来对每一个零件与一个指定的限定值进行比较。如果零件满足限定值就可接受该零件,不满足的零件则拒收(如通/止量具)。许多这样的计数型量具基于一套基准零件来设定接收与拒收。不象计量型量具,计数型量具不能显示一个零件有多好或多么坏,

计数型MSA分析报告

XX 公司 计数型MSA 分析报告 日 期: 实 施 人: 评 价 人: 系统名称: 所属工序: 分析结论: 合格 不合格 审 核: 批 准: 胡梅青、彭春玲、罗玉容 2017年07月19日 张志超 印制板外观检验 中间检验

计数型MSA分析报告 目录 有效性 (4) 合格品误判率 (4) 不合格品错发率 (5)

印制板外观检验(中间检验) MSA分析报告 一、计数型MSA评测说明 所谓计数型MSA就是指计数型测量系统分析,就是让检验员评测覆铜板或印制板的某一项缺陷,并判定检验员评测结果与标准值不一致的严重度是否可接收的一种分析方法。在计数型测量系统分析中,主要评估:有效性(检验员对样品三次评测结果均与基准值一致的总次数,占样品总数量的比率)、合格品误判率(检验员对基准值为合格的样品,评测为不合格的次数,占基准值为合格样品被评测总次数的比率)、不合格品错发率(检验员对基准值为不合格的样品,评测为合格的次数,占基准值为不合格样品被评测总次数的比率)是否均满足接收要求。 二、试验方案 2.1 准备50块印制板,对于这50块印制板,外观合格样品 32 块,外观不合格样品18 块,对每一块样品随机编号,便于对应编号记录检验员每次对样品的评测结果,在让检验员对样品进行检验评测时,不允许检验员知道各个样品的编号。 2.2 2017 年 07 月,选择中间检验工序3位从事外观检验工作的检验人员,在其都不知晓每个试样判定结果前提下,分别让这3位检验人员在不同时间段对每块样品进行3次评测,并将每位检验人员评测结果及样品定义结果分别对应记录,不合格用“0”标记,合格用“1”标记。 三、数据收集 表1 计数型测量系统数据收集记录表

MSA测量系统分析与结果解释

量具R&R 研究(交叉): 摘要: 每次测量过程结果时都会发现某些变异。产生这样的变异的变异源有两个:一是任何按照过程制造的部件都会存在差别,二是任何测量方法都不是完美无缺的?因此,重复测量同一部件不一定会产生同样的测量结果。 使用量具R&R 可以确定测量产生的变异性中哪一部分是由测量系统本身引起的。测量系统变异性包括由量具本身和操作员之间的变异性引起的变异。 此方法适用于非破坏性试验。当满足下列假定条件时它也可用于进行破坏性实验: (1)同一批内的所有部件都极为相似,以至于可以认为是同一种部件; (2)所有操作员都测量同一批部件。 可使用方差分析法、均值和R 法进行交叉量具R&R 研究。其中使用均值和R 法时计算更为简单,而方差分析法则更为准确。 在进行量具R&R 研究时,测量应按随机顺序进行,所选部件在可能的响应范围内提供了代表性样本,这一点非常重要。 1.1.1 数据说明 选择了十个表示过程变异预期极差的部件。由三名操作员按照随机顺序测量每个部件的厚度,每个部件测量两次。 1.1.2 方差分析法与均值-R 法的比较 由于利用控制图进行计算比较简单,因而首先产生了均值-R 法。但是,在某些方面方差分析法更为准确: (1)利用方差分析法可以研究操作员和部件之间会产生哪些交互作用,而均值-R 法却不同。 (2)利用方差分析法所用的方差分量对变异性进行的估计比使用均值-R 法的极差进行估计更准确。 1.1.3 量具R&R 的破坏性实验 量具R&R 研究的主要目的之一是要查看同一个操作员或多个操作员对同一个部件的重复测量结果是否相似。如果要进行破坏性实验,则无法进行重复测量。 要对破坏性测试应用Minitab 的量具R&R 研究,则需要假定某些部件“完全相同”,可视为同一个部件。如果假定是合理的,则可将同一批产品中的部件当作同一个部件。 如果上述情形满足该条件,则可以根据部件具体的测试方法选择使用交叉量具R&R 研究或嵌套量具R&R 研究。 如果每个操作员都要对每批部件进行检验,则使用交叉量具R&R 研究比较适合。 如果仅由一名操作员检验每批部件,则可使用嵌套量具R&R 研究。 2. 方差分析法 包含交互作用的双因子方差分析 通过双因子方差分析(方差分析)可以知道两个不同水平的因子是否可产生不同的响应变量平均值。 双因子方差分析表中列出了以下产生变异性的变异源: (1)部件,它表示由于测量不同的部件而产生的变异性。 (2)操作员,它表示由于进行测量的操作员不同而产生的变异性。 (3)操作员*部件,它表示测量过程中由于操作员和部件的不同组合而产生的变异性。如果操作员*部件项的p 值大于0.25,方差分析将在无交互作用项的情况下重新运行。 (4)误差或重复性,它表示在测量过程中不是由部件、操作员或者操作员与部件交互作用产生的变异性。

计数型测量系统分析(MSA)

计数型测量系统分析(MSA) 计数型测量系统的最大特征是其测量值是一组有限的分类数,如合格、不合格、优、良、中、差、极差,等等。当过程输出特性为计数型数据时,测量系统的分析方法会有所不同,一般可以从一致性比率和卡帕值两个方面着手考虑计数型测量系统分析。 计数型测量系统分析——一致性比率 一致性比率是度量测量结果一致性最常用的一个统计量,计算公式可以统一地概括为: 一致性比率=一致的次数/测量的总次数 根据侧重点和比较对象的不同,又可以分为4大类。 1. 操作者对同一部件重复测量时应一致,这类似于计量型测量系统的重复性分析。每个操作者 内部的计数型测量系统都有各自的一致性比率。 2. 操作者不但对同一部件重复测量时应一致,而且应与该部件的标准值一致(若标准值已知), 这类似于计量型系统的偏倚分析。将每个操作者的计数型测量系统的结果与标准值相比较、分析,又有各自不同的一致性比率。 3. 所有操作者对同一部件重复测量时应一致,这类似计量型测量系统的再现性分析,操作者计 数型测量系统分析之间有一个共同的一致性比率。 4. 各操作者不但对同一部件重复测量时应一致,而且应与该部件的标准值一致(若标准值已知)。 通常,使用这种一致性比率来衡量计数型测量系统的有效性。一般说来,一致性比率至少要 大于80%,最好达到90%以上。当值小于80%,应采取纠正措施,以保证测量数据准确可 靠。 计数型测量系统分析——卡帕值(k) K(希腊字母,读音kappa,中文为卡帕)是另一个度量测量结果一致程度的统计量,只用于 两个变量具有相同的分级数和分级值的情况。它的计算公式可以统一的概括为:

以上公式中,P0为实际一致的比率;P e为期望一致的比率。K在计算上有两种方法:Cohen 的k和Fleiss的k。 K的可能取值范围是从-1到1,当k为1时,表示两者完全一致;k为0时,表示一致程度不比偶然猜测好;当k为-1时,表示两者截然相反,判断完全不一致。通常,k为负值的情况很少出现,下表归纳了常规情况下k的判断标准。在计数型测量系统中研究一个测量员重复两次测量结果之间的一致性,一个测量员的测量结果与标准结果之间的一致性,或者两个测量员的测量结果之间的一致性时,都可以使用k。 计数型测量系统分析的合格标志 对于测量系统的分析,用户最终要得出测量系统是否合格的结论。如果可以认定测量系统合格,测量系统分析工作可以结束。但如果测量系统不合格,则要进一步分析,查找出问题,并迅速解决问题。本文主要介绍的是特殊的但是在某些行业非常适用的计数型测量系统分析方法,这将帮助企业相关人员更全面深入的理解测量系统分析(MSA)。

测量系统分析全集

测量系统分析(MSA) 目录 通用测量系统指南 - 引言、目的和术语 - 测量系统的统计特性 评价测量系统的程序

- 测量系统变差的类型:偏倚、重复性、再现性、稳定性和线性 - 测量系统的分析 - 测量系统研究的预备 - 计量型测量系统分析: 1.稳定性分析方法 2.重复性和再现性分析方法 3. 线性分析方法 - 量具特性曲线 - 计数型量具研究 Measurement System Analysis – MSA 测量系统分析 测量系统的特性 ◆测量: -通过把零件与已定的标准进行比较,确定出该零件有多少单位的过程。 -有数值与标准测量单位 -是测量过程的结果 测量数据的质量 ◆基准值 -确定比较的基准

- 关于理解“测量的准确性”专门重要 - 能够在实验条件下,使用更准确的仪器以建立准确的测量来获得 测量数据的质量 ◆ 高质量 - 关于某特性,测量接近基准值 ◆ 低质量 - 关于某特性,测量远离基准值 过程 ◆ ★人 ★装置★ ★方法★环境 输入 过程/系统过程模式 质量循环中的测量系统

测量系统必须具有的性能 ◆测量系统必须处于统计操纵中 ◆测量系统的变差小于制造过程的变差 ◆测量系统的变差小于规定极限或同意的公差 ◆测量变差小于过程变差或公差带中较小者 ◆测量最大(最坏)变差小于过程变差或公差带中较小者 定义 ◆量具 -用来猎取测量的任何设备 ◆测量系统 - 用来给被测特性赋值的操作、程序、量具及其他设备、软件和操作人员的集合 ◆公差 -零件特性同意的变差 ◆受控 - 变差在过程中表现稳定且可预测 ◆不受控 -所有专门缘故的变差都不能消除 -有点超出操纵图的操纵限,或点在操纵限内呈非随机分布形状 受控过程

计数型测量系统分析

计数型测量系统分析 是一种测量数值为一有限的分类数据的测量系统,和获得一连串数值结果的计量型测量系统不同。通/止规是最常用的量具,它只有两种结果;测量的零件是被接受或是拒收。 范例 对于通/止规的测量系统,小组从过程中随机选取了50个零件(或限度樣品),进行测量系统的分析;以3评价者,每位评价者对每个零件测量3次。得出的结果如下;

“1”表示可接受的决定;“0”表示不可接受的决定。假设试验分析 小组展开了交叉表格来比较每个评价者和其它人结果。

A*B交叉表 ○123 B*C交叉表 C 总计 0 1 B 0 数量43 5 48 期望数量15.67 31.33 48.0 1 数量7 95 102 期望数量34.33 68.67 102.0 数量50 100 150 总计 期望数量50.0 100.0 150.0 A*C交叉表 C 总计 0 1 A 0 数量42 7 49 期望数量15.35 33.65 49.0 1 数量 5 96 101 期望数量31.65 69.35 101.0 数量47 103 150 总计 期望数量47.0 103.0 150.0 这些表格的目的在于确定评价者间的一致性程度。小组使用Kappa来衡量两个评价者对同一物体 评价时,其评定结果的一致性。Kappa为1时,表示有完全的一致性(0,0和1,1 占了全部的数量),为0时,表示一致性不比可能性(0,0 / 0,1 / 1,0 / 1,1的数量一样多)来得好。 Kappa测试在诊断区(获得相同评定的零件)中的数量和那些基于可能性期望的数量是否有差别。 P0 = 在对角栏框中,观测的总和。 Pe = 在对角栏框中,期望的总和。

相关主题