搜档网
当前位置:搜档网 › 圆周率的近似计算方法综述

圆周率的近似计算方法综述

圆周率的近似计算方法综述
圆周率的近似计算方法综述

序言

人们很早就知道圆的周长与直径之比是一个常数,数学家们把这一比率用希腊字母π来表示,称之为圆周率。圆周率π是科技领域中最直观和最主要的常数,它是一个极其驰名的数。在日常生活中人们经常与π接触,并且从有文字记载开始,圆周率就引进了外行人和学者们的兴趣,古今中外许多科学家在π值计算上献出了自己的智慧和劳动,甚至奉献了自己的一生。因此,准确计算圆周率的值,不仅直接涉及到π值计算时的需要,而且通过圆周率的数值计算促进了数学的发展。

π值的计算伴随着人类的进步而发展,作为一个非常重要的常数,它最早是解决有关圆的计算问题,所以,求出它的尽量准确的近似值,就是一个极其迫切的问题了。早在二千多年前,古希腊著名数学家阿基米德第一个用科学方法度量圆的周长,得出圆周长与直径之比(圆周率)为3.14;我国杰出数学家刘徽(公元前3世纪)提出震惊中外的“割圆术”求出圆周率的近似值为3.1416;南北朝伟大科学家祖冲之又进一步将圆周率计算在介于3.1415926与3.1615927之间的8位可靠数字。直至1882年德国数学家林德曼证明了π不仅是一个无理数,而且是一个超越数,给几千年来对π的认识历史划上了一个句号……

在一般工程应用中,对π值的精度只要求十几位,但是在某些特殊场合需要高精度的圆周率π值。在信息技术发展迅速的今天,尤其是电脑的发明以来,人们对π的计算位数大大增加, 如今,借助大型计算机对π有效的计算位数已达小数点后的27000亿位;同时π的计算也已成为验证超大型计算机计算效率和工作可靠性的一种有效手段。

尽管目前数学家已经将π值计算出小数点后27000亿位,但是,人们对π的研究还没有完,始终都在追求计算出更为准确的π值,π值里仍有许多未解的谜团。现在,圆周率的准确程度在一定程度上反映了一个地区和时代的数学水平,因此,π的值还要继续计算下去。

本文通过利用割圆术、韦达公式、级数加速法、拉马努金公式、迭代法等近似计算方法的介绍和计算实验,来综合表述圆周率π的计算方法。

- 1 -

1.圆周率的起源及早期发展

1.1圆周率简介

圆周率是代表圆周长和直径的比例的一个常数(约等于3.1415926)。在日常生活中,通常都用3.14来代表圆周率去进行计算。

早期的圆周率没有确定的字母表示,直至1600年,英国威廉·奥托兰特首先使用π表示圆周率,1737年欧拉在其著作中使用π。后来被数学家广泛接受,一直沿用至今。

圆周率不仅是一个无理数,而且还是一个超越数。早在1767年,兰伯特就证明了π是一个无理数;1794年,勒让德证明了π也是无理数;1882年,林德曼证明了π是超越数。

早期是通过实验对π值进行估算的,第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)),开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。

中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。

他用割圆术一直算到圆内接正192边形,得出π

3.16),这被称为

“徽率”。

南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。

1.2 早期的圆周率

数学中的圆,溯源到上古的时候,就引起了人类的探索。《墨经》书中说它是“一中同长也”(“一中”即一个中心或中点。“一中同长”就是到一个心的点的距离都相等,是对圆的定义)。成语说:“不以规矩,不成方圆。”等到人们知道了比例的概念之后,人们自然关顾圆周的长度与圆的直径之间一定的比例

- 2 -

- 3 -

常数。尽管圆有大有小,但对一个圆来说,其周长l 与直径d 之间的比例常数就是圆周率π。

历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果。古代东方常粗略地用3作为π的值。我们可以在《旧约·历代志下》第四章(4:

2)看到:“他又造一铜海,样式是圆的,径10肘,高5肘,围30肘。”这说明,当时的希伯来人近似以3作为圆周长与直径之比。这相当于拿圆的内接正六边形的周长近似圆的周长。我国第一部《周髀算经》中,就记载有圆"周三径一"这一结论。在我国,木工师傅有两句从古流传下来的口诀:叫做:"周三径一,方五斜七",意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7。这正反映了早期人们对圆周率π

计。东汉时期官方还明文规定圆周率取3为计算面积的标准。

在历史上,π从粗略的近似3开始,有不少数学家都对圆周率作出过研究。魏晋时,刘徽曾用使正多边形的边数逐渐增加去逼近圆周的方法(即“割圆

术”),求得π的近似值3.1416。 汉朝时,张衡得出π的平方除以16等于5/8,即π等于10的开方(约为3.162)。虽然这个值不太准确,但它简单易理解,所以也在亚洲风行了一阵。 王蕃(229-267)发现了另一个圆周率值,这就是3.156,但没有人知道他是如何求出来的。 公元5世纪,祖冲之和他的儿子以正24576边形,求出圆周率约为355/113,和真正的值相比,误差小于八亿分之一。这个纪录在一千年后才给打破。约在公元530年,印度数学大师阿耶波多利用384边形的周长,算出圆周率约为3.1415926 3.1415927π<<。欧洲斐波那契算出圆周率约为3.1418。

2.圆周率的近似计算历程

2.1 圆周率的早期计算

2.1.1 实验时期

通过实验对π值进行估算,这是计算π的的第一阶段。这种对π值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出的。早期的人们还使用了其它的粗糙方法。如古埃及、古希腊人曾用谷粒摆

在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。如古埃及人应用了约四千年的 4 (8/9)2 = 3.1605。在印度,公元前六世纪,曾取

π

= 3.162。在我国东、西汉之交,新朝王莽令刘歆制造量的容器――

律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。现在根据铭文推算,其计算值分别取为3.1547,3.1992,3.1498,3.2031比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计圆田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。

蒲丰在《或然性算术实验》一书中,提出了用实验方法计算π。这个实验方法的操作很简单:找一根粗细均匀,长度为 d 的细针,并在一张白纸上画上一组间距为 l 的平行线(方便起见,常取 l = d/2),然后一次又一次地将小针任意投掷在白纸上。这样反复地投多次,数数针与任意平行线相交的次数,于是就可以得到π的近似值。因为蒲丰本人证明了针与任意平行线相交的概率为 p = 2l/πd 。利用这一公式,可以用概率方法得到圆周率的近似值。在一次实验中,他选取 l = d/2 ,然后投针2212次,其中针与平行线相交704次,这样求得圆周率的近似值为 2212/704 = 3.142。当实验中投的次数相当多时,就可以得到π的更精确的值。

1850年,沃尔夫在投掷5000多次后,得到π的近似值为3.1596。目前宣称用这种方法得到最好结果的是意大利人拉兹瑞尼。在1901年,他重复这项实验,作了3408次投针,求得π的近似值为3.1415929。

2.1.2 几何法时期——割圆法

凭直观推测或实物度量,来计算π值的实验方法所得到的结果是相当粗略的。因此,古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。阿基米德真正使圆周率计算建立在科学的基础上。他是科学地研究这一常数的第一个人,是他首先提出了一种能够借助数学过程而不是通过测量的、能够把π的值精确到任意精度的方法。由此,开创了圆周率计算的第二阶段。

阿基米德求圆周率的更精确近似值的方法,体现在他的一篇论文《圆的度量》之中。在这一书中,阿基米德第一次用上、下界来确定π的近似值,他用

- 4 -

- 5 -

几何方法证明了“圆周长与圆直径之比小于 3+(1/7) 而大于 3 + (10/71) ”,他还提供了误差的估计。重要的是,这种方法从理论上而言,能够求得圆周率的更准确的值。到公元150年左右,希腊天文学家托勒密得出 π=3.1416,取得了自阿基米德以来的巨大进步。

图2.1 割圆术

在我国,数学家刘徽率在《九章算术》方田章“圆田术 ”注中,提出割圆术作为计算圆的周长、面积以及圆周率的基础。他从圆内接正六边形出发,将边数逐渐加倍,如图 2.1,设圆面积为

0S 半径为r ,圆内接正n 边形边长为n l ,周长为n L , 面积为

n S 。 将边数加倍后,得到圆内接正2n 边形,其边长、周长、面积分别记为2n l 、2n

L 、2n S 。当 n l 已知,用勾股定理求出2n l 。即如图所示得

2l AE n === (2.1) 求得了内接正n 边形的周长n L ,即可求得正2n 边形的面积:.

211()222n n n l r S n AB OE n L r =?=?=? (2.2)

刘徽割圆术还注意到,如果在内接n 边形的每条边上作一高为CE 的矩形,就可以证明

2022()n n n n S S S S S <<+- (2.3)

由此,他从正六边形一值计算到192边形,得出π≈3.14,通常称为“徽率”。 南北朝时期的祖冲之计算出了圆周率数值的上下限:

3.1415926 3.1415927π<<,由于史料上没有关于祖冲之推算圆周率“正数”方

- 6 -

法的记载,一般认为这个正数的获得是沿用了刘徽的割圆术。如按刘徽割圆术从正六边形出发连续算到正24576边形时,恰好得到这一结果。

用Mathmatic 计算圆内接6144边形的结果如下

2.2 圆周率的经典计算公式

2.2.1 基本计算

1 数值积分法

⑴ 由定积分 π=+?1

0214dx x 计算出该积分的数值,即可得到π的近似值。

⑵将区间],[b a n 等分,则分点

),,1,0(n i i n a b a x i =-+=,计算定积分?=b a dx x f S )(。

利用定积分的几何意义,可以将小曲边梯形的面积近似地用矩形、梯形来代替,就有了梯形公式、矩形公式:

- 7 -

①矩形公式 左矩形公式∑-=-≈1

)(n i i x f n a b S 右矩形公式∑=-≈n

i i x f n a b S 1

)( 中矩形公式∑-=++-≈10

1)2(n i i i x x f n a b S ②梯形公式??

????+-≈∑-=1

102)()()(n i n i x f x f x f n a b S + 由Mathmatic 编程取n 为1000计算(见附录I(A)),由计算可知,中矩形公式取得的结果最接近圆周率值。

将小曲边梯形的曲边用三次抛物线来代替,就有了辛普森公式。

③辛普森(Simpson )公式

??????+++-≈∑∑-=-=+111010)2(4)(2)()(6n i n i i i i n x x f x f x f x f n a b S +

由Mathmatic 编程取n 为1000计算(见附录I(B)),由附录I(A)、(B)得,辛普森公式计算更为精确。

2 蒙特卡罗算法(Monte Carlo )

在直角坐标系中,以)0,0(O ,)0,1(A ,)1,0(B ,)1,1(C 为定点作一正方形,面积为11=S 。以原点为圆心,半径为1在该正方形内作扇形,面积42π=

S 。在该正

方形内随机投入n 个点,设其中m 个点落入扇形区域内。则

421π=≈S S n m , n m 4≈π 由Mathmatic 计算,分别取n 为1000,1001,1002得结果计算如下:

- 8 -

2.2.2 级数法

1、莱布尼兹级数(1674年发现) 0(1)421k

k k π∞

=-=+∑ 1844年,数学家达什在无计算机的情况下用此公式计算出了π的前200位小数。误差估计式为: 1111111(1)43572121

n n r n n π-??=--+-+???+-≤ ?--?? 根据莱布尼茨级数公式及误差公式计算结果如下图所示:

- 9 -

2. 欧拉的两个级数(1748年发现)

22116k k π∞

==∑ , 22018(21)k k π∞==+∑

- 10 -

莱布尼兹级数和欧拉的这两个级数的收敛速度较慢。

3. 基于x arctan 的级数 由泰勒级数210(1)arctan 21k k k x x k +∞

=-=+∑当1=x 时有0(1)421k

k k π∞=-=+∑即为莱布尼兹级数。当||x 的值越接近于0,级数收敛的速度越快。令 1tan 5

x α==,1arctan 5α=,222tan 25tan 21tan 112x x ααα===--,

225

22tan 212012tan 411tan 21195112ααα?===≈-??- ??? 因此,4444παβπα-≈

=,,就非常接近于0

- 11 -

1201tan 411119tan 1201tan 4239

1119αβα--===++。

由此,英国天文学教授John Machin 得出Machin 公式

21210011

16416arctan arctan 5239

(1)1(1)116421521239k k k k k k k k παβ∞∞++===-=---=?-?++∑∑

他利用这个公式计算到了100位的圆周率。

由此原理,可以得到

高斯公式

11148arctan

32arctan 20arctan 1857239π=+-

斯托梅尔公式 1

1124arctan 8arctan

4arctan 857239π=++ 类似公式

1115035cot (6)cot cot (117)416π---??=-- ???

111996cot (8)cot 3cot (268)45π---??=-- ???

1114527618cot (10)2cot cot (1393)42543π

---??=-- ??? 111112cot (18)3cot (70)5cot (99)8cot (307)4π

----=+++

11795cot (7)2cot 43π--??=+ ???

()1118cot (10)cot 2394cot (515)

---=-- ()111112cot (18)8cot 993cot (239)8cot (307)

----=+++ 2.2.3 迭代法

1、1593年,韦达给出

2

2

π

=

这一不寻常的公式是π的最早分析表达式。其推导过程是:

=

=

=

=

8

sin

8

cos

4

cos

2

cos

8

4

sin

4

cos

2

cos

4

2

sin

2

cos

2

sin

t

t

t

t

t

t

t

t

t

t

对于任意的N,总有

=

=

N

n

n

N

N

t

t

t

1

2

cos

2

sin

2

sin

则∏

=

=

N

n

n

N

N t

t

t

t

t

1

2

cos

2

sin

2

sin

令∞

N时,有∏∞

=

=

1

2

cos

sin

n

n

t

t

t

2

π

=

t,可得

)1(

2

cos

16

cos

8

cos

4

cos

2

1

1

∏∞

=

+

=

=

n

n

π

π

π

π

π

2

2

4

cos=

π

2

2

2

2

1

2

2

2

1

4

cos

8

cos

+

=

+

=

+

=

π

π

2

2

2

2

2

1

2

2

2

2

1

8

cos

16

cos

+

+

=

+

+

=

+

=

π

π

由归纳法得:

)2(

重根号)

n

2

2

2

2

2

2

cos

1

+

+

+

+

=

+

n

π

由公式(1)和(2)可得韦达公式

- 12 -

- 13 -

22

2222

222222222

2222 2cos

2

111++++++=++++==∏∏∞=∞=+n n n ππ 甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 π值。

2 迭代公式

⑴ 1989年,Borwein 发现下列收敛于

π1的迭代公式: )1(2)1(2461111

2212140441

0n n n n n n n n

n

n n n y y y a y a a z z y y z y ++-+=-=+-=-=-=+-- 迭代误差有估计式n e a n n

421641ππ-<- ⑵1996年,Bailey 发现另一个收敛于

π1的迭代公式

:

)20110221111552) , (2) , ()7 , 1/2552n n n n n n

n n n n n n n y c d y y e d c y a y a y a ------==-

==+==???-=-+? ???? 迭代误差有估计式n e a n n

51651ππ-<- 2.3 PC 机计算

1 Ramanujan 公式

44409801

(4)!(110326390)4(!)99n n

n n n n π∞==+?

- 14 -

该公式是由印度数学家拉马努金(1887-1920)给出的,是计算π的一个极其有效的公式。1985 年,数学家比尔高·斯帕伊利用该公式在计算机上计算出π的1750万位小数。该级数收敛速度非常快,级数每增加一项,大约可以提高8位小数的精度。

2 改进的计算公式Chudnovsky

n n n n n n n 30323

64032054514013413591409)!3()!()!6()1(64032012

1

+-∑∞==π

该级数每增加一项,大约可以提高14位小数的精度。

1999年9月,日本东京大学教授金田康正和其助手用时37小时21分,计算出了π的2061.5843亿位小数,检验用时46小时7分钟。

3 二分法计算

算法原理:f(x)=sin(x)在x=π点取的零点,又有函数在3与4之间只有一个零点。因此,可对区间[3,4]进行二分,逐渐达到π。

(1) a(1)=3;b(1)=4;k=1;

(2) if f(a(k))*f((a(k)/2+b(k))/2)<0

a(k+1)=a(k);

b(k+1)= (a(k)+b(k))/2;

k=k+1;

else

a(k+1)= (a(k)+b(k))/2;

b(k+1)=b(k);

k=k+1;

(3) 当k=n 时结束。x=(a(n)+b(n))/2.

算法程序:

Function xx=pi_1(n)

a(1)=3;b(1)=4;k=1;

for i=1;

if sin(a(k))*sin((a(k)+b(k))/2)<0

a(k+1)=a(k);

b(k+1)= (a(k)+b(k))/2;

k=k+1;

else

a(k+1)= (a(k)+b(k))/2;

b(k+1)=b(k);

k=k+1;

end

end

xx=(a(k)+b(k))/2;

执行程序,选择迭代次数为20,可以得到π=3.14159250259399.

计算π的方法还有很多本文仅列具几种常见并且典型的计算方法。最后不得不提一句的是,为什么对于π的位数的竞争会持续不断呢?这也应该是相当一部分人的问题吧,可能是因为分数诞生的缘故吧!

3. 圆周率计算的最新记录及意义

1946年,世界第一台计算机ENIAC制造成功,标志着人类历史迈入了电脑时代。电脑的出现使计算有了根本性的变革。1949年,ENIAC根据梅钦公式计算到2035(一说是2037)位小数,包括准备和整理时间在内仅用了70小时。随着计算机的发展一日千里,圆周率π值的纪录也就被频频打破。

1973年,有人就把圆周率算到了小数点后100万位,并将结果印成一本二百页厚的书,可谓世界上最枯燥无味的书了。1989年π值突破10亿大关,1995年10月超过64亿位。1999年9月30日,《文摘报》报道,日本东京大学教授金田康正已求到2061.5843亿位的小数值。如果将这些数字打印在A4大小的复印纸上,令每页印2万位数字,那么,这些纸摞起来将高达五六百米。2002年12月6日,金田康正利用一台超级计算机,计算出圆周率小数点后一兆二千四百一十一亿位数,改写了他本人两年前创造的纪录。据悉,金田教授还与日立制作所的员工合作,利用目前计算能力居世界第二十六位的超级计算机,使用新的计算方法,耗时四百多个小时,才计算出新的数位,比他一九九九年九月计算出的小数点后二千六百一十一位提高了六倍。圆周率小数点后第一兆位数是二,第一兆二千四百一十一亿位数为五。如果一秒钟读一位数,大约四万年后才能读完。

2009年8月日本筑波大学科学家利用超级计算机耗时29小时计算出圆周率π的小数点后25770亿位,取得了吉尼斯世界纪录。但该纪录在保持了不到一年的时间里,就被法国巴黎市的软件工程师法布里斯·贝拉德打破。贝拉德使用家用台式电脑,运用比日本科学家有效20倍的改良后的查德诺夫斯基方程算法,耗时131天时间计算出了圆周率小数点后27000亿位这个最新精确值,如果以每秒钟一个数字的速度朗读,这个最新纪录至少要花费49000年时间才能朗读完。[10]

圆周率π对于计算各种数量,例如体积、面积、周长以及任何与圆、圆柱、圆锥、球有重要的作用。但随着数学的不断发展,π的应用不再局限于求圆的面积和周长,椭圆、萁舌线、旋轮线等面积公式中也都出现了π值。此外,一

- 15 -

些函数的定义,积分的计算,指数的构成等都要用到π。把π的值计算到小数点后那么远的位置,并不仅仅是为了创造什么计算的纪录,而是有着更多的理由。一是为了确保π的“正态”统计信息。如果在一个实数的小数展开中,所有数字以相同频率出现,我们就说它是“简单正态的”;如果相同长度的数字串以相同频率出现,我们就说它是“正态的”。我们还不知道π(甚至2)是正态的或简单正态的。从1949年ENIAC开始,关于π的神奇计算就为着解决这个统计特征。从π的那些展开看,似乎说明它也许是正态的。Shanks在1873年计算的带错的707位又似乎说明π不是简单正态的。

π是正态的还是非正态的,这个问题当然不可能由计算机来解决。我们面临着一个典型的问题,它需要更高的数学才智,不能单靠计算。这类问题的存在,至少应该能部分医治“计算机万能”病,它在今天似乎颇为流行。不论普通大众还是学数学的同学,似乎越来越感觉任何数学问题都可以通过足够聪明的电子机器来解决。那样的机器不过是计算的能手和快手,只有对需要大量计算的数学问题,它们才有用武之地。

除了确定正态与否的统计规律特征外,π值的计算还有一个作用。每台新的自动计算机器在投入日常使用前,必须通过运行实验,执行一定的编码和程序。最通常的检验方法就是让新机器来计算和验证现成的π。因此,用圆周率来检验计算机的能力,并测试它们的准确度和速率。

参考文献:

[1] 李文林. 数学史概论.高等教育出版社.

[2] 傅海伦. 中外数学史概论.科学出版社.

[3]【美】H·W伊弗斯,李泳译. 数学圈2.湖南科学技术出版社2007:30-38.

[4] 徐品方,张红. 数学符号史.科学出版社 2006295-302.

- 16 -

[5]王广超.圆周率的数学实验算法设计.科技信息,2009,14.

[6] 杨德彬,高喜风.π的高精度计算的算法.黑龙江科技信息,2010,5.

[7] 应六英.圆周率-π.江西电力职业技术学院学报,2004,17(3).

[8] 王晓峰. 圆周率π在C语言课程中的应用. 科技信息,2009,28.

[9] 刘玉玲. 圆周率π的简介.高等数学研究,2007,2.

[10]木子.圆周率算到了小数点后27000亿位.江南晚报,2010年1月8日,A21.

- 17 -

附录I:

A:

- 18 -

B:

- 19 -

关于圆周率的计算

关于圆周率的计算 祖冲之在数学方面的突出贡献是关于圆周率的计算,确定了相当精确的圆周率值。中国古代最初采用的圆周率是“周三径一”,也就是说,π=3。这个数值与当时文化发达的其他国家所用的圆周率相同。但这个数值非常粗疏,用它计算会造成很大的误差。随着生产和科学的发展,π=3 就越来越不能满足精确计算的要求。因此,中外数学家都开始探索圆周率的算法和推求比较精确的圆周率值。在中国,据公元一世纪初制造的新莽嘉量斛(亦称律嘉量斛,王莽铜斛,是一种圆柱形标准量器,现存)推算,它所取的圆周率是3.1547 。二世纪初,东汉天文学家张衡在《灵宪》中取用π=≈3.1466,又在球体积计算中取用π≈3.1622。三国时东吴天文学家王蕃在浑仪论说中取用π≈3.1556。以上这些圆周率近似值,比起古率“周三径一”,精确度有所提高,其中π= 10还是世界上最早的记录。但这些数值大多是经验结果,并没有可靠的理论依据。 在这方面最先取得突破性进展的是魏晋之际的数学家刘徽,他在《九章算术注》中创立了“割圆术”,为计算圆周率建立起相当严密的理论和完善的算法。他所得到的圆周率值π=3.14 与π==3.1416,都很精确,在当时世界上是很先进的,至今仍在经常使用。继刘徽之后,祖冲之则将圆周率推算到更加精确的程度。据《隋书·律历志》记载,祖冲之确定了π的不足近似值 3.1415926 和过剩近似值 3.1415927,π的真值在这两个近似值之间,即 3.1415926<π<3.1415927 精确到小数 7 位。这是当时世界上最先进的数学成果,直到约一千年后,才为 15 世纪中亚数学家阿尔·卡西(Al—? kash1)和16世纪法国数学家韦达(F.Vièta,1540—1603)所超过。 关于他得到这两个数值的方法,史无明载,一般认为是基于刘徽割圆术。通过现代计算验证,如果按照割圆术计算,要得到小数 7 位准确的圆周率值,必须求出圆内接正12288 边形的边长和 24576边形的面积,这样,就要对9位数进行上百次加减乘除和开方运算,还要选择适当的有效数字,保证准确的误差范围。对于用算筹计算的古代数学家来说,这绝不是一件轻而易举的事情,只有掌握纯熟的理论和技巧,并具备踏踏实实和一丝不苟的研究精神,才能取得这样的杰出成就。祖冲之的这项记录在中国也保持了一千多年。 中国古代数学家和天文学家还往往用分数表示常量的近似值。为此,祖冲之确定了π的两个分数形式的近似值:约率π=22/7≈3.14 ,密率π=355/113 ≈3.1415929。这两个数值都是π的渐近分数。刘宋天文学家何承天及古希腊阿基米德等都已用到过。密率355/113 是π的分母小于10000的最佳近似分数,则为祖冲之首创。关于密率355/113是如何得到的,今人有“调日法”术,连分数法,解同余式或不定方程,割圆术等种种推测,迄今尚无定论。在欧洲,π= 355/113 是16世纪由德国数学家奥托(V.Otto,1550(?)—1605)和荷兰工程师安托尼兹(A.Anthonisz,1527—1607)分别得到,后通称“安托尼兹率”,但这已是祖冲之以后一千多年的事情了。自从我国古代灿烂的科学文化逐渐得到世界公认以来,一些学者就建议把π= 355 称为“祖率”,以纪念祖冲之的杰出贡献。 关于球的体积公式及其证明: 祖冲之的另一项重要数学成就是关于球的体积公式及其证明。各种几何体的体积计算是古代几何学中的基本内容。《九章算术》商功章已经正确地解决了

圆周率的计算方法

圆周率的计算方法 古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其他公式和由这些经典公式衍生出来的公式,就不一一列举了。 ?Machin公式 这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。 Machin.c 源程序 还有很多类似于Machin公式的反正切公式。在所有这些公式中,Machin公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin 公式就力不从心了。下面介绍的算法,在PC机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform)算法。FFT可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。 关于FFT算法的具体实现和源程序,请参考Xavier Gourdon的主页 ?Ramanujan公式 1914年,印度数学家Srinivasa Ramanujan在他的论文里发表了一系列共14条圆周率的计算公式,这是其中之一。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。

常用数学公式

常用数学公式大全 1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1、正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a 2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3、长方形 C周长S面积a边长 周长=(长+宽)×2C=2(a+b) 面积=长×宽S=ab 4、长方体 V:体积s:面积a:长b:宽h:高 (1)表面积(长×宽+长×高+宽×高)×2S=2(ab+ah+bh) (2)体积=长×宽×高V=abh 5三角形s面积a底h高 面积=底×高÷2s=ah÷2 三角形高=面积×2÷底 三角形底=面积×2÷高 6平行四边形 s面积a底h高 面积=底×高s=ah 7梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2s=(a+b)×h÷2 8圆形 S面积C周长∏d=直径r=半径 (1)周长=直径×∏=2×∏×半径C=∏d=2∏r (2)面积=半径×半径×∏ 9圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10圆锥体 v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数

圆周率计算公式

圆周率计算公式Revised on November 25, 2020

12 π= 22 π= 32 π= 42 π= 52 π= 62 π= 72 π= 82 π= 92 π= 102 π=314 112 π= 122 π= 132 π= 142 π= 152 π= 162 π= 172 π= 182 π= 192 π= 202 π=1256 212 π= 222 π= 232 π= 242 π= 252 π= 262 π= 272 π= 282 π= 292 π= 302 π=2826 312 π= 322 π= 332 π= 342 π= 352 π= 362 π= 372 π= 382 π= 392 π= 402 π=5024 412 π= 422 π= 432 π= 442 π=

452 π= 462 π= 472 π= 482 π= 492 π= 502 π=7850 512 π= 522 π= 532 π= 542 π= 552 π= 562 π= 572 π= 582 π= 592 π= 602 π=11304 612 π= 622 π= 632 π= 642 π= 652 π= 662 π= 672 π= 682 π= 692 π= 702 π=15386 712 π= 722 π= 732 π= 742 π= 752 π= 762 π= 772 π= 782 π= 792 π= 802 π= 812 π= 822 π= 832 π= 842 π= 852 π= 862 π= 872 π= 882 π=

892 π= 902 π=25434 912 π= 922 π= 932 π= 942 π= 952 π= 962 π= 972 π= 982 π= 992 π= 1002 π=31400 12~1002 12=1 22=4 32=9 42=16 52=25 62=36 72=49 82=64 92=81 102=100 112=121 122=144 132=169 142=196 152=225 162=256 172=289 182=324 192=361 202=400 212=441 222=484 232=529 242=576 252=625 262=676 272=729 282=784 292=841 302=900 312=961 322=1024 332=1089 342=1156 352=1225 362=1296 372=1396 382=1444 392=1521 402=1600 412=1681 422=1764 432=1849 442=1936 452=2025

圆周率计算表(π取3.14)

3.14× 1=3.14 3.14× 2=6.28 3.14 × 3=9.42 3.14 × 4=12.56 3.14×5=15.7 3.14×6=18.84 3.14×7=21.98 3.14×8=25.12 3.14×9=28.26 3.14×10=31.4 3.14×11=3 4.54 3.14×12=37.68 3.14×13=40.82 3.14×14=43.96 3.14×15=47.1 3.14×16=50.24 3.14×17=53.38 3.14×18=56.52 3.14×19=59.66 3.14×20=62.8 3.14×21=6 5.94 3.14×22=69.08 3.14×23=72.22 3.14×24=75.36 3.14×25=78.5 3.14×26=81.64 3.14×27=8 4.78 3.14×28=87.92 3.14×29=91.06 3.14×30=9 4.2 3.14×31=97.34 3.14×32=100.48 3.14×33=103.62 3.14×34=106.76 3.14×35=109.9 3.14×36=113.04 3.14×37=116.18 3.14×38=119.32 3.14×39=122.46 3.14×40=125.6 3.14×41=128.74 3.14×42=131.88 3.14×43=135.02 3.14×44=138.16 3.14×45=141.3 3.14×46=14 4.44 3.14×47=147.58 3.14×48=150.72 3.14×49=153.86 3.14×50=157 3.14×51=160.14 3.14×52=163.28 3.14×53=166.42 3.14×54=169.56 3.14×55=172.7 3.14×56=175.84 3.14×57=178.98 3.14×58=182.12 3.14×59=185.26 3.14×60=188.4 3.14×61=191.54 3.14×62=19 4.68 3.14×63=197.82 3.14×64=200.96 3.14×65=20 4.1 3.14×66=207.24 3.14×67=210.38 3.14×68=213.52 3.14×69=216.66 3.14×70=219.8 3.14×71=222.94 3.14×72=226.08 3.14×73=229.22 3.14×74=232.36 3.14×75=235.5 3.14×76=238.64 3.14×77=241.78 3.14×78=24 4.92 3.14×79=248.06 3.14×80=251.2 3.14×81=25 4.34 3.14×82=257.48 3.14×83=260.62 3.14×84=263.76 3.14×85=266.9 3.14×86=270.04 3.14×87=273.18 3.14×88=276.32 3.14×89=279.46 3.14×90=282.6 3.14×91=285.74 3.14×92=288.88 3.14×93=292.02 3.14×94=295.16 3.14×95=298.3 3.14×96=301.44 3.14×97=30 4.58 3.14×98=307.72 3.14×99=310.86 3.14×100=314

十秒速记圆周率小数点后30位

十秒速记圆周率小数点后30位 商店要死要活就要遛 3.1415926 我傻我吧就去救 5358979 傻儿傻爸死脑儿 3238462 老师算算不傻啊 6433832 吃酒! 79 关于圆周率的计算历史 圆周率(π)是一个常数(约等于3.1415926),是代表圆周长和直径的比值。它是一个无理数,即是一个无限不循环小数。 中国古算书《周髀算经》(约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。 第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)),开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。 中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形,得出π≈根号10(约为3.14)。 南北朝时代著名数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值3.1415926和过剩近似值3.1415927,还得到两个近似分数值,密率355/113和约率22/7。他的辉煌成就比欧洲至少早了1000年。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲不知道是祖冲之先知道密率的,将密率错误的称之为安托尼斯率。 阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。 德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

圆周率的计算历程及意义

圆周率π的计算历程及意义 李毫伟 数学科学学院数学与应用数学学号:080412047 指导老师:王众杰 摘要: 圆周率π这个数,从有文字记载的历史开始,就引起了人们的兴趣.作为一个非常重要的常数,圆周率π最早是出于解决有关圆的计算问题.仅凭这一点,求出它的尽量准确的近似值,就是一个极其迫切的问题了.几千年来作为数学家们的奋斗目标,古今中外的数学家为此献出了自己的智慧和劳动.回顾历史,人类对π的认识过程,反映了数学和计算技术发展情形的一个侧面.π的研究在一定程度上反映这个地区或时代的数学水平. 关键词: 圆周率; 几何法; 分析法; 程序 1、实验时期 通过实验对π值进行估算,这是计算π的第一个阶段.这种对π值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出来 π=这个数据,最早见于有文字记载的基督教《圣经》的.在古代,实际上长期使用3 中的章节,其上取圆周率π为3.这一段描述的事大约发生在公元前950年前后.其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值.在我国刘徽之前“圆径一而周三”曾广泛流传.我国第一部《周髀算经》中,就记载有“圆周三径一”这一结论.在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七,”意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7,这正反应了人们早期对π和2这两个无理数的粗略估计.东汉时期,官方还明文规定圆周率取3为计算圆的面积的标准,后人称之为古率. 早期的人们还使用了其它的粗糙方法.如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值.或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率π的稍好些的值.如古埃及人应用了约四千年的()≈2984 3.1605.在印度,公元前六世纪,曾取π≈10≈3.162.在我国东、西汉之

圆周率的近似计算方法综述

序言 人们很早就知道圆的周长与直径之比是一个常数,数学家们把这一比率用希腊字母π来表示,称之为圆周率。圆周率π是科技领域中最直观和最主要的常数,它是一个极其驰名的数。在日常生活中人们经常与π接触,并且从有文字记载开始,圆周率就引进了外行人和学者们的兴趣,古今中外许多科学家在π值计算上献出了自己的智慧和劳动,甚至奉献了自己的一生。因此,准确计算圆周率的值,不仅直接涉及到π值计算时的需要,而且通过圆周率的数值计算促进了数学的发展。 π值的计算伴随着人类的进步而发展,作为一个非常重要的常数,它最早是解决有关圆的计算问题,所以,求出它的尽量准确的近似值,就是一个极其迫切的问题了。早在二千多年前,古希腊著名数学家阿基米德第一个用科学方法度量圆的周长,得出圆周长与直径之比(圆周率)为3.14;我国杰出数学家刘徽(公元前3世纪)提出震惊中外的“割圆术”求出圆周率的近似值为3.1416;南北朝伟大科学家祖冲之又进一步将圆周率计算在介于3.1415926与3.1615927之间的8位可靠数字。直至1882年德国数学家林德曼证明了π不仅是一个无理数,而且是一个超越数,给几千年来对π的认识历史划上了一个句号…… 在一般工程应用中,对π值的精度只要求十几位,但是在某些特殊场合需要高精度的圆周率π值。在信息技术发展迅速的今天,尤其是电脑的发明以来,人们对π的计算位数大大增加, 如今,借助大型计算机对π有效的计算位数已达小数点后的27000亿位;同时π的计算也已成为验证超大型计算机计算效率和工作可靠性的一种有效手段。 尽管目前数学家已经将π值计算出小数点后27000亿位,但是,人们对π的研究还没有完,始终都在追求计算出更为准确的π值,π值里仍有许多未解的谜团。现在,圆周率的准确程度在一定程度上反映了一个地区和时代的数学水平,因此,π的值还要继续计算下去。 本文通过利用割圆术、韦达公式、级数加速法、拉马努金公式、迭代法等近似计算方法的介绍和计算实验,来综合表述圆周率π的计算方法。 - 1 -

数学实验:怎样计算圆周率

怎样计算 姓名: 学号 班级:数学与应用数学4班

实验报告 实验目的:自己尝试利用Mathematica软件计算的近似值,并学会计算的近似值的方法。 实验环境:Mathematica软件 实验基本理论和方法: 方法一:数值积分法(单位圆的面积是,只要计算出单位圆的面积也就计算出了的值) 其具体内容是:以单位圆的圆心为原点建立直角坐标系,则单位圆在第一象限内的部分G是一个扇形, 由曲线()及坐标轴围成,它的面积是,算出了S的近似值,它的4倍就是的近似值。而怎样计算扇形G的面积S的近似值呢?如图

图一 扇形G中,作平行于y轴的直线将x轴上的区间[0,1](也就是扇形在x轴上的半径)分成n等份(n=20),相应的将扇形G分成n个同样宽度1/n的部分()。每部分是一个曲边梯形:它的左方、右方的边界是相互平行的直线段,类似于梯形的两底;上方边界是一段曲线,因此称为曲边梯形。如果n很大,每个曲边梯形的上边界可以近似的看成直线段,从而将近似的看成一个梯形来计算它的面积;梯形的高(也就是它的宽度)h=1/n,两条底边的长分别是和,于是这个梯形面积可以作为曲边梯形面积的近似值。所有这些梯形面积的和T就可以作为扇形面积S的近似值: n越大,计算出来的梯形面积之和T就越接近扇形面积S,而4T就越接近的准确值。 方法二:泰勒级数法 其具体内容是:利用反正切函数的泰勒级数 计算。 方法三:蒙特卡罗法

其具体内容是:单位正方形的面积=1,只要能够求出扇形G 的面积S在正方形的面积中所占的比例,就能立即得到S,从而得到的值。而求扇形面积在正方形面积中所占的比例k的值,方法是在正方形中随机地投入很多点,使所投的每个点落在正方形中每一个位置的机会均等,看其中有多少个点落在扇形内。将落在扇形内的点的个数m与所投的点的总数n的比可以作为k的近似值。能够产生在区间[0,1]内均匀分布的随机数,在Mathematica中语句是 Random[ ] 产生两个这样的随机数x,y,则以(x,y)为坐标的点就是单位正方形内的一点P,它落在正方形内每一个位置的机会均等。P落在扇形内的充分必要条件是。这样利用随机数来解决数学问题的方法叫蒙特卡罗法。 实验内容、步骤及其结果分析: 问题1:在方法一中,取n=1000,通过计算图一中扇形面积计算的的近似值。 分析:图一中的扇形面积S实际上就是定积分。 与有关的定积分很多,比如的定积分

π的近似值

3.141592653589793238462643383279502884197169399375105820974944592307816 4062862089986280348253421170679 82148086513282306647093844609550582231725359408128481117450284102701938 52110555964462294895493038196 44288109756659334461284756482337867831652712019091456485669234603486104 54326648213393607260249141273 72458700660631558817488152092096282925409171536436789259036001133053054 88204665213841469519415116094 33057270365759591953092186117381932611793105118548074462379962749567351 88575272489122793818301194912 98336733624406566430860213949463952247371907021798609437027705392171762 93176752384674818467669405132 00056812714526356082778577134275778960917363717872146844090122495343014 65495853710507922796892589235 42019956112129021960864034418159813629774771309960518707211349999998372 97804995105973173281609631859 50244594553469083026425223082533446850352619311881710100031378387528865 87533208381420617177669147303 59825349042875546873115956286388235378759375195778185778053217122680661 30019278766111959092164201989 38095257201065485863278865936153381827968230301952035301852968995773622 59941389124972177528347913151 55748572424541506959508295331168617278558890750983817546374649393192550 60400927701671139009848824012 85836160356370766010471018194295559619894676783744944825537977472684710 40475346462080466842590694912

圆周率200位记忆口诀

圆周率的来源和2000位 “圆周率”即圆的周长与其直径之间的比率。关于它的计算问题,历 来是中外数学家极感兴趣、孜孜以求的问题。德国的一位数学家曾经说过:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展的一个标志。”我国古代在圆周率的计算方面长期领先于世界水平,这应当归功于魏晋时期数学家刘徽所创立的新方法一一“割圆术”。 所谓“割圆术”,是用圆内接正多边形的周长去无限逼近圆周并以此求取圆周率的方法。这个方法,是刘徽在批判总结了数学史上各种旧的计算方法之后,经过深思熟虑才创造出来的一种崭新的方法。 中国古代从先秦时期开始,一直是取“周三径一”(即)的数值来进行有关圆的计算。但用这个数值进行计算的结果,往往误差很大。正如刘徽所说,用“周三径一”计算出来的圆周长,实际上不是圆的周长而是圆内接正六边形的周长,其数值要比实际的圆周长小得多。东汉的张衡不满足于这个结果,他从研究圆与它的外切正方形的关系着手得到圆周率。这个数值比“周三径一”要好些,但刘徽认为其计算出来的圆周长必然要大于实际的圆周长,也不精确。刘徽以极限思想为指导,提出用“割圆术”来求圆周率,既大胆创新,又严密论证, 从而为圆周率的计算指出了一条科学的道路。 在刘徽看来,既然用“周三径一”计算出来的圆周长实际上是圆内接正六边形的周长,与圆周长相差很多;那么我们可以在圆内接正六边形把圆周等分为六条弧的基础上,再继续等分,把每段弧再分割为二,

做出一个圆内接正十二边形,这个正十二边形的周长不就要比正六边形的周长更接近圆周了吗?如果把圆周再继续分割,做成一个圆内接正二十四边形,那么这个正二十四边形的周长必然又比正十二边形的周长更接近圆周。这就表明,越是把圆周分割得细,误差就越少,其内接正多边形的周长就越是接近圆周。如此不断地分割下去,一直到圆周无法再分割为止,也就是到了圆内接正多边形的边数无限多的时候,它的周长就与圆周“合体”而完全一致了。 按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072 边形,并由此而求得了圆周率为3.14和3.1416这两个近似数值。这个结果是当时世界上圆周率计算的最精确的数据。刘徽对自己创造的这个“割圆术”新方法非常自信,把它推广到有关圆形计算的各个方面,从而使汉代以来的数学发展大大向前推进了一步。 以后到了南北朝时期,祖冲之在刘徽的这一基础上继续努力,终于求得了圆周率:精确到了小数点以后的第七位。在西方,这个成绩是由法国数学家韦达于1593年取得的,比祖冲之要晚了一千一百多年。祖冲之还求得了圆周率的两个分数值,一个是“约率”22/7 ,另一个 是“密率” 355/113 ,其中355/113 这个值,在西方是由德国的奥托和荷兰的安东尼兹在16世纪末才得到的,都比祖冲之晚了一千一一百年。刘徽所创立的“割圆术”新方法对中国古代数学发展的重大贡献,历史是永远不会忘记的。 答应了大宝,教她点东西,才知道自己才疏学浅,不知道教她什么。偶尔看到巧计圆周率,就截图下来和她一起背,呵呵还真的有效,花三

历史上一些圆周率计算方法

历史上一些圆周率计算方法 从古至今,计算圆周率一直挑战着人类的探索能力极限,人们为此提出了效率越来越高的计算方法。可是,你知道多少圆周率的另类计算法呢?今天我们就来和大家分享一下,历史上出现的几个最奇怪的圆周率计算法。 功亏一篑的人肉计算记录 电脑计算圆周率屡破记录,但新时代对机器的信任和依赖使得人们已经主动放弃了自己手动演算的能力。为了打破手算圆周率的记录,让人们重新拾回对自己演算能力的信心,澳大利亚一个 16 岁的小伙子决定人肉计算圆周率的前 100 位。他挑选了圆周率的一个广义连分数公式,准备了 2000 张草稿纸,并精心地规划了一番。从此开始,他总是把这厚厚的一叠草稿纸带在身边。不管是在家还是在学校,他都端坐在草稿纸面前,不停地挥动着手中的笔。他很快成为了学校的一道风景线——无视上下课铃声,雷打不动地做着枯燥的加法和除法。 2 年后的某堂历史课上,就在他书写最后一个除法竖式时,悲剧发生了:新来的代课老师发现他有小动作,点名叫他起来回答问题。当他无视老师继续埋头苦算时,不明真相的代课老师一怒之下抢过草稿纸,并撕成了无数碎片。 最辗转的计算方法 在一本统计学读物中,为了告诉读者在日常生活中数字无处不在,作者统计出了自家厕所的卷筒纸平均每多少天换一次,乘以平均每天的大便次数,乘以平均每次大便需要扯下来的卫生纸张数,乘以每一截卫生纸的长度,乘以把一长截卫生纸对折 10 次的厚度,除以 1024 ,除以自动切割机从卷筒纸最外层切到最里层(厚度为 R-r )的时间,除以切完整个卷筒纸(剩余的 R+r )还需要的时间,除以切割机移动的速度,得出了圆周率近似值。 作者顺便指出,若读者愿意,还可以在末尾乘以平均每个男人拥有的 jj 根数。 用生命换来的圆周率 这个多少有些标题党了,但实际情况就是如此——这个 3.14 真的是由无数人的鲜血换来的。 2003 年,美国纽约警方搜集了 30 年来发生在斑马线上的车祸,从里面抽取了所有身高在 5 英尺 6 英寸到 8 英寸之间(大概从 1.68 米到 1.73 米)的遇难行人,统计了他们的尸体与斑马线相交的概率,并应用Buffon 投针实验理论得到了圆周率的近似值。纽约警方还专门发表了文章,称由此他们得出,行人被撞事故是完全随机的,一切都是遵循大自然的规律的。文章末尾请求出行人看开一些,生命在规律面前弱不禁风,该发生的总会发生。 凶案现场也有圆周率

圆锥体计算方法

圆锥体计算方法 圆锥体的体积=底面积×高×1/3(圆锥的体积是等底等高圆柱体的三分之一)=1/3πr2h 圆柱体的表面积=高×底面周长+底面积×2 即S圆柱体=(π×d×h)+(π×r2×2) 圆锥的体积 一个圆锥所占空间的大小,叫做这个圆锥的体积. 根据圆柱体积公式V=Sh(V=πr2h),得出圆锥体积公式: V=1/3Sh(V=1/3SH) S是底面积,h是高,r是底面半径。 圆锥的表面积 一个圆锥表面的面积叫做这个圆锥的表面积. S=πl2×(n/360)+πr2或(α*l^2)/2+πr2(此α为角度制)或πr(l+r)(L表示圆锥的母线) 圆锥的计算公式 圆锥的侧面积=母线的平方×π×360百分之扇形的度数 圆锥的侧面积=1/2×母线长×底面周长 圆锥的侧面积=π×底面圆的半径×母线 圆锥的侧面积=高的平方*3.14*百分之扇形的度数 圆锥的表面积=底面积+侧面积S=πr2+πrl (注l=母线) 圆锥的体积=1/3底面积×高或1/3πr2h 圆锥的母线:圆锥的顶点到圆锥的底面圆周之间的距离。 圆锥的其它概念 圆锥的高: 圆锥的顶点到圆锥的底面圆心之间的距离叫做圆锥的高圆锥只有一条高。 圆锥的侧面积: 将圆锥的侧面积不成曲线的展开,是一个扇形 圆锥的母线: 圆锥的顶点到圆锥的底面圆周之间的距离。一般用字母L表示。 知识总结:一个圆锥的体积等于与它等底等高的圆柱的体积的1/3。 要知道了锥度的计算公式,你的问题就都可以解决了. 公式是C=(D-d)/L C表示锥度比D 表示大端直径d表示小端直径L表示锥的长度①已知锥度比C,小头直径d,总长L,则

大头直径D=C*L+d ②已知大头直径D,锥度比C,总长L,则小头直径d=D-C*L ③已知大头直径D,小头直径d,锥度比C,则总长L=(D-d)/C ④已知大头直径D,小头直径d,总长L,则锥度比C=(D-d)/L 各种管材理论重量计算公式、钢材理论重量计算公式1、角钢:每米重量=0.00785×(边宽+边宽—边厚)×边厚 2、管材:每米重量=0.02466×壁厚×(外径—壁厚) 3、圆钢:每m重量=0.00617×直径×直径(螺纹钢和圆钢相同) 4、方钢:每m重量=0.00786×边宽×边宽 5、六角钢:每m重量=0.0068×对边直径×对边直径 6、八角钢:每m重量=0.0065×直径×直径 7、等边角钢:每m重量=边宽×边厚×0.015 8、扁钢:每m重量=0.00785×厚度×宽度 9、无缝钢管:每m重量=0.02466×壁厚×(外径-壁厚) 10、电焊钢:每m重量=无缝钢管 11、钢板:每㎡重量=7.85×厚度 12、黄铜管:每米重量=0.02670×壁厚×(外径-壁厚) 13、紫铜管:每米重量=0.02796×壁厚×(外径-壁厚) 14、铝花纹板:每平方米重量=2.96×厚度 15、有色金属密度:紫铜板8.9 黄铜板8.5 锌板7.2 铅板11.37 16、有色金属板材的计算公式为:每平方米重量=密度×厚度 17、方管: 每米重量=(边长+边长)×2×厚×0.00785 18、不等边角钢:每米重量=0.00785×边厚(长边宽+短边宽--边厚) 19、工字钢:每米重量=0.00785×腰厚[高+f(腿宽-腰厚)] 20、槽钢:每米重量=0.00785×腰厚[高+e(腿宽-腰厚)]

matlab 圆周率的近似计算 实验报告

开放性数学实验报告 (2016 / 2017学年第2学期) 题目:基于MATLAB的圆周率近似计算 专业通信工程 学生姓名杨坤冯著豪周李鑫 班级学号 B16011115 B16011110 B16011124 指导教师赵礼峰 指导单位南京邮电大学理学院 日期 2017/5/20

MATLAB圆周率的近似计算 B16011115杨坤 B16011110冯著豪B16011124周李鑫 摘要:圆周率(Pi)是圆的周长与直径的比值,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数。π也等于圆形之面积与半径平方之比。是精确计算圆周长、圆面积、球体积等几何形状的关键值。在分析学里,π可以严格地定义为满足sin x = 0的最小正实数x。 计算圆周率一直是很多人的追求。在电子计算机还没有发明的时候就有很多先贤用各种方法计算了圆周率的近似值最著名的应该是祖冲之,他计算出了圆周率的位数达到了小数点后七位。该记录在世界范围内保持了八百年。 之后圆周率的计算进入了分析法时期,这一时期人们开始利用无穷级数或无穷连乘积求π,摆脱可割圆术的繁复计算。无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,使得π值计算精度迅速增加。 在分析法的基础上,电子计算机的出现使得圆周率的计算精度大幅提高。计算圆周率已经成为评判超级计算机的性能指标的项目之一。 如今个人计算机的性能也达到了一个极高的程度。学习使用计算机计算圆周率可以帮助我们更好地学习matlab同时对数学也会有更深的理解。 关键词:圆周率计算;投点法;定积分计分法;幂级数;韦达公式 一、问题分析 计算圆周率有很多方法,不同方法之间自然也有好坏之分。在强大的计算机性能的支持下,我们能使用不同的方法计算圆周率并且感受不同方法孰优孰劣。首先我们需要了解不同的计算方法是怎么计算圆周率的,然后使用matlab编写代码帮助我们实现算法,计算出圆周率。 二、实验方法 1.投点法: 投点法,顾名思义就是通过投点计算圆周率。在一个边长为1的正方形里以1为半径画一个四分之一圆,再向正方形里投点,在概率的学习中我们知道,大量地向这个正方形中投点时,在投的点足够多的前提下,落在四分之一扇形里的点与投的所有点的个数之比应该为扇形与整个正方形的面积之比。扇形的面积为四分之一圆,即1/4*pi,正方形的面积为 1.设投n个点,落在扇形里的点的个数为count即可推出pi=4*(count/n)。 代码如下: count=0; ezplot('x^2+y^2=1',[0,1,0,1]),hold on ,grid on n=10000; for i=1:1:n x=rand(1,1); y=rand(1,1); plot(x,y,'*'),hold on

圆周率计算公式

12π=3.14 22π=12.56 32π=28.26 42π=50.24 52π=78.5 62π=113.04 72π=153.86 82π=200.96 92π=254.34 102π=314 112π=379.94 122π=452.16 132π=530.66 142π=615.44 152π=706.5 162π=803.84 172π=907.46 182π=1017.36 192π=1133.54 202π=1256 212π=1384.74 222π=1519.76 232π=1661.06 242π=1808.64 252π=1962.5 262π=2122.64 272π=2289.06 282π=2416.76 292π=2640.74 302π=2826 312π=3017.54 322π=3215.36 332π=3419.46 342π=3629.84 352π=3846.5 362π=4069.44 372π=4298.66 382π=4534.16 392π=4775.94 402π=5024 412π=5278.34 422π=5538.96

432π=5805.86 442π=6079.04 452π=6358.5 462π=6644.24 472π=6936.26 482π=7234.56 492π=7593.14 502π=7850 512π=8167.14 522π=8490.56 532π=8820.26 542π=9456.24 552π=9498.5 562π=9847.04 572π=10201.86 582π=10562.96 592π=10930.34 602π=11304 612π=11683.94 622π=12070.16 632π=12462.66 642π=12861.44 652π=13266.5 662π=13677.84 672π=14095.46 682π=14519.36 692π=14949.54 702π=15386 712π=15828.74 722π=16277.76 732π=16733.06 742π=17194.64 752π=17662.5 762π=18136.64 772π=18617.06 782π=19103.76 792π=19596.74 802π=200.96 812π=20601.54 822π=21113.36 832π=21631.46 842π=22155.84 852π=22686.5 862π=23223.44

圆周率计算公式

圆周率计算公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

12 π= 22 π= 32 π= 42 π= 52 π= 62 π= 72 π= 82 π= 92 π= 102 π=314 112 π= 122 π= 132 π= 142 π= 152 π= 162 π= 172 π= 182 π= 192 π= 202 π=1256 212 π= 222 π= 232 π= 242 π= 252 π= 262 π= 272 π= 282 π= 292 π= 302 π=2826 312 π= 322 π= 332 π= 342 π= 352 π= 362 π= 372 π= 382 π= 392 π= 402 π=5024 412 π= 422 π= 432 π= 442 π=

452 π= 462 π= 472 π= 482 π= 492 π= 502 π=7850 512 π= 522 π= 532 π= 542 π= 552 π= 562 π= 572 π= 582 π= 592 π= 602 π=11304 612 π= 622 π= 632 π= 642 π= 652 π= 662 π= 672 π= 682 π= 692 π= 702 π=15386 712 π= 722 π= 732 π= 742 π= 752 π= 762 π= 772 π= 782 π= 792 π= 802 π= 812 π= 822 π= 832 π= 842 π= 852 π= 862 π= 872 π= 882 π=

数学实验怎样计算圆周率

怎样计算 姓名: 学号 班级:数学与应用数学4班 实验报告 实验目的:自己尝试利用Mathematica软件计算的近似值,并学会计算的近似值的方法。 实验环境:Mathematica软件 实验基本理论与方法: 方法一:数值积分法(单位圆的面积就是,只要计算出单位圆的面积也就计算出了的值) 其具体内容就是:以单位圆的圆心为原点建立直角坐标系,则单位圆在第一象限内的部分G就是一个扇 形, 由曲线()及坐标轴围成,它的面积就是,算出了S的近似值,它的4倍就就是的近似值。而怎样计算扇形G的面积S的近似值呢?如图

图一 扇形G中,作平行于y轴的直线将x轴上的区间[0,1](也就就是扇形在x轴上的半径)分成n等份(n=20),相应的将扇形G分成n个同样宽度1/n的部分()。每部分就是一个曲边梯形:它的左方、右方的边界就是相互平行的直线段,类似于梯形的两底;上方边界就是一段曲线,因此称为曲边梯形。如果n很大,每个曲边梯形的上边界可以近似的瞧成直线段,从而将近似的瞧成一个梯形来计算它的面积;梯形的高(也就就是它的宽度)h=1/n,两条底边的长分别就 是与,于就是这个梯形面积 可以作为曲边梯形面积的近似值。所有这些梯形面积的与T就可以作为扇形面积S的近似值: n越大,计算出来的梯形面积之与T就越接近扇形面积S,而4T就越接近的准确值。 方法二:泰勒级数法

其具体内容就是:利用反正切函数的泰勒级数 计算。 方法三:蒙特卡罗法 其具体内容就是:单位正方形的面积=1,只要能够求出扇形G 的面积S在正方形的面积中所占的比例,就能立即得到S,从而得到的值。而求扇形面积在正方形面积中所占的比例k的值,方法就是在正方形中随机地投入很多点,使所投的每个点落在正方形中每一个位置的机会均等,瞧其中有多少个点落在扇形内。将落在扇形内的点的个数m与所投的点的总数n的比可以作为k 的近似值。能够产生在区间[0,1]内均匀分布的随机数,在Mathematica 中语句就是 Random[ ] 产生两个这样的随机数x,y,则以(x,y)为坐标的点就就是单位正方形内的一点P,它落在正方形内每一个位置的机会均等。P落在扇形内的充分必要条件就是。这样利用随机数来解决数学问题的方法叫蒙特卡罗法。 实验内容、步骤及其结果分析: 问题1:在方法一中,取n=1000,通过计算图一中扇形面积计算的 的近似值。

相关主题