搜档网
当前位置:搜档网 › 第六章 弯曲变形

第六章 弯曲变形

第六章 弯曲变形
第六章 弯曲变形

材料力学习题册答案-第6章 弯曲变形

第六章弯曲变形 一、是非判断题 1.梁的挠曲线近似微分方程为EIy’’=M(x)。(√)2.梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角为零。(×)3.两根几何尺寸、支撑条件完全相同的静定梁,只要所受载荷相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是 否相同无关。(×)4.等截面直梁在弯曲变形时,挠曲线的曲率最大值发生在转角等于零的截面处。(×)5.若梁上中间铰链处无集中力偶作用,则中间铰链左右两侧截面的挠度相等,转角不等。(√)6.简支梁的抗弯刚度EI相同,在梁中间受载荷F相同,当梁的跨度增大一倍后,其最大挠度增加四倍。(×)7.当一个梁同时受几个力作用时,某截面的挠度和转角就等于每一个单独作用下该截面的挠度和转角的代数和。(√)8.弯矩突变的截面转角也有突变。(×) 二、选择题 1. 梁的挠度是(D) A 横截面上任一点沿梁轴线方向的位移 B 横截面形心沿梁轴方向的位移 C横截面形心沿梁轴方向的线位移

D 横截面形心的位移 2. 在下列关于挠度、转角正负号的概念中,(B)是正确的。 A 转角的正负号与坐标系有关,挠度的正负号与坐标系无关 B 转角的正负号与坐标系无关,挠度的正负号与坐标系有关 C 转角和挠度的正负号均与坐标系有关 D 转角和挠度的正负号均与坐标系无关 3. 挠曲线近似微分方程在(D)条件下成立。 A 梁的变形属于小变形 B 材料服从胡克定律 C 挠曲线在xoy平面内 D 同时满足A、B、C 4. 等截面直梁在弯曲变形时,挠曲线的最大曲率发生在(D)处。 A 挠度最大 B 转角最大 C 剪力最大 D 弯矩最大 5. 两简支梁,一根为刚,一根为铜,已知它们的抗弯刚度相同。跨中作用有相同的力F,二者的(B)不同。 A支反力 B 最大正应力 C 最大挠度D最大转角6. 某悬臂梁其刚度为EI,跨度为l,自由端作用有力F。为减小最大挠度,则下列方案中最佳方案是(B) A 梁长改为l /2,惯性矩改为I/8 B 梁长改为3 l /4,惯性矩改为I/2 C 梁长改为5 l /4,惯性矩改为3I/2 D 梁长改为3 l /2,惯性矩改为I/4 7. 已知等截面直梁在某一段上的挠曲线方程为: y(x)=Ax2(4lx - 6l2-x2),则该段梁上(B)

第12章 薄板的小挠度弯曲问题

第十二章薄板的小挠度弯曲问题知识点 薄板的基本概念 薄板的位移与应变分量 薄板广义力 薄板小挠度弯曲问题基本方程薄板自由边界条件的简化 薄板的莱维解 矩形简支薄板的挠度基尔霍夫假设 薄板应力 广义位移与薄板的平衡 薄板的典型边界条件 薄板自由边界角点边界条件挠度函数的分解 一、内容介绍 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板。薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。薄板的小挠度弯曲理论是由基尔霍夫基本假设作为基础的。 根据基尔霍夫假设,采用位移解法,就是以挠度函数作为基本未知量求解。因此,首先将薄板的应力、应变和内力用挠度函数表达。然后根据薄板单元体的平衡,建立挠度函数表达到平衡方程。 对于薄板问题,边界条件的处理与弹性力学平面等问题有所不同,典型形式有几何边界、混合边界和面力边界条件。 二、重点 1、基尔霍夫假设; 2、薄板的应力、广义力和广义位移; 3、薄板小 挠度弯曲问题的基本方程;4、薄板的典型边界条件及其简化。 §12.1 薄板的基本概念和基本假设

学习要点: 本节讨论薄板的基本概念和基本假设。 薄板主要几何特征是板的中面和厚度。首先,根据几何尺寸,定义薄板为0.5≤δ/b≥1/80,并且挠度小于厚度的五分之一,属于小挠度问题。对于小挠度薄板,在横向载荷作用下,将主要产生弯曲变形。 根据薄板的外载荷和几何特征,外力为横向载荷,厚度远小于薄板的平面宽度,可以忽略一些次要因素,引入一些基本变形假设,抽象建立薄板弯曲的力学模型。 薄板的小挠度弯曲理论是由三个基本假设作为基础的,因为这些基本假设是由基尔霍夫首先提出的,因此又称为基尔霍夫假设。 根据上述假设建立的薄板小挠度弯曲理论是弹性力学的经典理论,长期应用于工程问题的分析。实践证明是完全正确的。 学习思路: 1、薄板基本概念; 2、基尔霍夫假设 1、薄板基本概念 薄板是工程结构中的一种常用构件,它是由两个平行面和垂直于它们的柱面所围成的物体,几何特征是其高度远小于底面尺寸,简称板 薄板的弯曲变形属于弹性力学空间问题,由于数学求解的复杂性,因此,需要首先建立应力和变形分布的基本假设。 薄板的上下两个平行面称为板面,垂直于平行面的柱面称为板边,如图所示。两个平行面之间的距离称为板厚,用δ 表示。平分板厚的平面称为板的中面。 设薄板宽度为a、b,假如板的最小特征尺寸为b,如果δ/b≥1/5,称为厚板;

第六章弯曲变形

第六章 弯曲变形 挠曲线的弯曲微分方程 W=f(x) 挠度 横截面形心(即轴线上的点)在垂直于x 轴方向的线位移, 转角 横截面对原来位置的角位移,称为该截面的转角 可以是挠曲线上的点的切线方向与x 轴的夹角,也是改点的法线与横截面的夹角 【转角就是这一点的切线的斜正值为正的,负值为顺时针】 规定转角顺时针为负值,逆时针为正值, 而且剪力是顺时针为正值,逆时针为负值 注意 用梁的轴线来代替梁 弯矩规定下凸为正(叫做凹曲线)左顺右逆【使下侧受压为正】 梁的弯曲变形是很小的,在tan θ=θ值 在数学表达式中有|' 1"w |p 1w +=中有二阶无穷小量 最后简化为 在规定的坐标系中, x 轴水平向右为正, w 轴竖直向上为正。此时,挠度的二阶导数在挠曲线凹(下凸)时为正,反之为负。 【挠度的二阶导数是弯矩,一阶导数是转角正好有弯矩的定义对应起来】 梁的挠曲线近似微分方程 在这公式中,只是纯弯曲,忽略了剪力和二阶无穷小量 6---3用积分法求弯曲变形 在挠曲线的某些点上,挠度和转角有时候是已知的 1()()M x x EI ρ=()"M x w EI =1()d EIw M x x C '=+?12()d d EIw M x x x C x C =++??

积分常数的确定 1.边界条件 简支梁左右胶支座挠度为0; 悬臂梁固定端挠度是零,转角也是零 2.连续条件 (1)挠度连续条件 (2)转角连续条件 3.感悟弯矩为零处转角取极值;转角为零处,挠度取极值【更加简单的是从挠度曲线上来判读】 4.事实上:在简支梁中, 不论集中载荷作用于什么位置, 其最大挠度值一般都可用梁跨中点处的挠度值来代替, 精确度能够满足工程要求.技巧:(a )对各段梁,都是由坐标原点到所研究截面之间的梁段上的外力来写弯矩方程的.所以后一段梁的弯矩方程包含前一段梁的弯矩方程.只增加了(x-a)的项. 对于见对方对于简支梁的来说;中间作用一个集中力的话,要是判断那一段的挠度和转角的话,1 比较a 和b 的值,谁大挠度最大值就在那一侧;因为转角是在弯矩等于零的地方,所以可以知道转角一定会在 角支座处可能取得2比较集中力作用点的转角值得正负也可以判断 6--4用叠加法求弯曲变形 载荷叠加法和结构叠加法(逐段钢化法) 在简支梁的一段作用的非集中载荷时候;要用积分的方法;取一小段dx 算出这一点的集度,再用第九栏的公式计算 0)(a x M -+

工程力学课后习题答案第十二章 组合变形

第十二章 组合变形 习 题 12.1 矩形截面杆受力如图所示。已知kN 8.01=F ,kN 65.12=F ,mm 90=b , mm 180=h ,材料的许用应力[]MPa 10=σ,试校核此梁的强度。 题12.1图 解:危险点在固定端 max y z z y M M W W σ= + max 6.69[]10MPa MPa σσ=<= 12.2 受集度为q 的均布载荷作用的矩形截面简支梁,其载荷作用面与梁的纵向对称面间的夹角为0 30=α,如图所示。已知该梁材料的弹性模量GPa 10=E ;梁的尺寸为 m 4=l , mm 160=h ,mm 120=b ;许用应力[]M Pa 12=σ;许可挠度[]150 l w = 。试校核梁的强度和刚度。 题12.2图 22zmax 11 cos3088y M q l q l ==?解: 22ymax 11 sin 3088 z M q l q l ==?

22 ymax zmax 2 211 cos30sin 308866 z y q l q l M M bh bh W W σ??= +=+ 26cos30sin 30 ()8ql bh h b =+ 3 2 616210422 ( )8120160100.1600.120 -???=+??? []6 11.971012.0,Pa MPa σ=?==强度安全 44 z 3 5512sin 30384384z y q l q l W EI Ehb ?== 4 4 3 5512cos30384384y y z q l q l W EI Ehb ?== max W == = []4 0.0202150 m w m =<=刚度安全。 12.3 简支于屋架上的檩条承受均布载荷kN/m 14=q , 30=?,如图所示。檩条跨长 m 4=l ,采用工字钢制造,其许用应力[]M Pa 160=σ,试选择工字钢型号。 14 kN/m q = 题12.3图 解: cos ,sin y z q q q q ??== 22 max max ,8 8 y z z y q l q l M M = = max max max []y z z y M M W W σσ=+≤

第七章梁弯曲时变形

第七章 梁弯曲时的变形 §7?1 概 述 图7?1所示的简支梁,任一横截面的形心即轴线上的点在垂直于x 轴方向的线位移,称为挠度,用y 表示;横截面绕中性轴转动的角度,称为该截面的转角,用θ表示,如图中C 截面转过的角度θ即为C 截面的转角。 )(x f y = (7?1) 称为挠曲线方程。 )(d d tan x f x y '== ≈θθ (7?2) 称为转角方程。 §7?2 梁的挠曲线近似微分方程及其积分 在小变形情况下,梁的挠曲线为一平坦的曲线,挠曲线近似微分方程为 EI x M x y )(d d 2 2± = (7?3) 式中的正负号取决于2 2d d x y 与)(x M 的正负号的规定。在如图11?2所示的坐标系中,y 轴以向下为正,当M (x )>0时,梁的挠曲 的符号关系如图11?2所示。这样,在图示坐标系中,)(x M 与2 2d d x y 的符号总是相反,所以式(7?3)中应取负号,即:

EI x M x y ) (d d 2 2- = (7?4) 对该挠曲线近似微分方程进行积分,可求得任一截面的挠度及转角。 当梁为等截面直梁时,弯曲刚度EI 为常数,对式(7?4)积分一次,得 []?+-== C x x M EI x y d )(1d d θ (7?5) 再积分一次,可得 ()[]??++- =D Cx x x M EI y 2 d 1 (7?6) 以上两式中,C 、D 为积分常数,可通过梁的边界条件及变形连续条件确定。例如在简支梁(图7?3a )中,A 、B 支座处的挠度都等于零;在悬臂梁(图7?3b )中,固定端处挠度和转角都等于零。积分常数C 、D 确定后,代入式(7?5)、(7?6),便可求得梁的转角方程和挠曲线方程,进而可求得梁上任一横截面的转角和挠度。 EI ,试 解b ),弯矩方程为: (a ) (2)建立梁的挠曲线近似微分方程 由式(7?4)得: EI x l F EI x M x y ) ()(d d 2 2-= -= (b ) (3)对微分方程二次积分 积分一次,得: ??? ??+-== C Fx Flx EI x y 2211d d θ (c ) 再积分一次,得: ? ?? ??++-= D Cx Fx Flx EI y 32 61211 (d ) (4)利用梁的边界条件确定积分常数 在梁的固定端,横截面的转角和挠度都等于零,即: 0=x 时,0=y ,0=θ 代入式(c )、(d ),求得C =0,D =0。

第7章_梁的弯曲变形分析

第7章 梁的弯曲变形与刚度 7.1 梁弯曲变形的基本概念 7.1.1 挠度 在线弹性小变形条件下,梁在横力作用时将产生平面弯曲,则梁轴线由原来的直线变为纵向对称面内的一条平面曲线,很明显,该曲线是连续的光滑的曲线,这条曲线称为梁的挠曲线(图7-2)。 梁轴线上某点在梁变形后沿竖直方向的位移(横向位移)称为该点的挠度。在小变形情况下,梁轴线上各点在梁变形后沿轴线方向的位移(水平位移)可以证明是横向位移的高阶小量,因而可以忽略不计。 挠曲线的曲线方程: )(x w w = (7-1) 称为挠曲线方程或挠度函数。实际上就是轴线上各点的挠度,一般情况下规定:挠度沿y 轴的正向(向上)为正,沿y 轴的负向(向下)为负(图7-4)。 必须注意,梁的坐标系的选取可以是任意的,即坐标原点可以放在梁轴线的任意地方,另外,由于梁的挠度函数往往在梁中是分段函数,因此,梁的坐标系可采用整体坐标也可采用局部坐标。 7.1.2 转角 梁变形后其横截面在纵向对称面内相对于原有位置转动的角度称为转角(图7-3)。 转角随梁轴线变化的函数: )(x θθ= (7-2) 称为转角方程或转角函数。 由图7-3可以看出,转角实质上就是挠曲线的切线与梁的轴线坐标轴x 的正方向之间的夹角。所以有:x x w d ) (d tan = θ,由于梁的变形是小变形,则梁的挠度和转角都很小,所以θ和θtan 是同阶小量,即:θθtan ≈,于是有: 图7-2 梁的挠曲线 图7-3 梁的转角 ) (x

x x w x d ) (d )(= θ (7-3) 即转角函数等于挠度函数对x 的一阶导数。一般情况下规定:转角逆时针转动时为正,而顺时针转动时为负(图7-4)。 需要注意,转角函数和挠度函数必须在相同的坐标系下描述,由式(7-3)可知,如果挠度函数在梁中是分段函数,则转角函数亦是分段数目相同的分段函数。 7.1.3 梁的变形 材料力学中梁的变形通常指的就是梁的挠度和转角。但实际上梁的挠度和转角并不是梁的变形,它们和梁的变形之间有联系也有本质的差别。 如图7-5(a )所示的悬臂梁和图7-5(b )所示的中间铰梁,在图示载荷作用下,悬臂梁和中间铰梁的右半部分中无任何内力,在第二章曾强调过:杆件的内力和杆件的变形是一一对应的,即有什么样的内力就有与之相应的变形,有轴力则杆件将产生拉伸或压缩变形,有扭矩则杆件将产生扭转变形,有剪力则杆件将产生剪切变形,有弯矩则杆件将产生弯曲变形。若无某种内力,则杆件也没有与之相应的变形。因此,图示悬臂梁和中间铰梁的右半部分没有变形,它们将始终保持直线状态,但是,悬臂梁和中间铰梁的右半部分却存在挠度和转角! 事实上,材料力学中所说的梁的变形,即梁的挠度和转角实质上是梁的横向线位移以及梁截面的角位移,也就是说,挠度和转角是梁的位移而不是梁的变形。回想拉压杆以及圆轴扭转的变形,拉压杆的变形是杆件的伸长l ?,圆轴扭转变形是截面间的转角?,它们实质上也是杆件的位移,l ?是拉压杆一端相对于另一端的线位移,而?是扭转圆轴一端相对于另一端的角位移,但拉压杆以及圆轴扭转的这种位移总是和其变形共存的,即只要有位移则杆件一定产生了变形,反之只要有变形就一定存在这种位移(至少某段杆件存在这种位移)。但梁的变形与梁的挠度和转角之间就不一定是共存的,这一结论可以从上面对图7-5(a )所示的悬臂梁和图7-5(b )所示的中间铰梁的分析得到。 图7-4 梁的挠度和转角的符号 x x (a) 正的挠度和转角 (b) 负的挠度和转角 (a) 悬臂梁的变形 (b)中间铰梁的变形 图7-5 挠度和转角实质上是梁的位移 无变形

相关主题