搜档网
当前位置:搜档网 › 混凝土碳化试验

混凝土碳化试验

混凝土碳化试验
混凝土碳化试验

一.目的

检测混凝土的碳化性能,指导检测人员按规程正确操作,确保检测结果科学、准确。

二.检测参数及执行标准

检测参数:碳化性能

执行标准:GBJ82-85《普通混凝土长期性能和耐久性能试验方法》三.适用范围

适用于测定在一定浓度的二氧化碳气体介质中混凝土试件的碳化程度,以评定该混凝土的抗碳化能力。

四.职责

检测员必须执行国家标准,按照作业指导书操作,边做试验边做好记录,编制检测报告,并对数据负责。

五.样本大小及抽样方法

碳化试验应采用棱柱体混凝土试件,以3块为一组,试件的最小边长应符合表1的要求。棱柱体的高宽比应不小于3。无棱柱体试件时,也可用立方体试件代替,但其数量应相应增加。

碳化试验试件尺寸选用表表1

试件一般应在28天龄期进行碳化,采用掺合料的混凝土可根据其特性决定碳化前的养护龄期。碳化试验的试件宜采用标准养护。但应在试验前

2天从标准养护室取出。然后在60℃温度下烘48小时。

经烘干处理后的试件,除留下一个或相对的两个侧面外,其余表面应用加热的石蜡予以密封。在侧面上顺长度方向用铅笔以10毫米间距画出平行线,以预定碳化深度的测量点。

六.仪器设备

1、CCB-70碳化箱(包括架空试件的铁架温湿度测量以及恒温恒湿设施、气体分析仪),设备编号为:JC611

2、二氧化碳供气装置(包括气瓶、压力表及流量计)

3、碳化深度检测尺,设备编号为:GC531

4、辅助破型设备:万能试验机(200t或30t)、三角挫刀条2个

5、材料、工具:石蜡、电炉、托盘、酚酞试液

七.环境条件

养护条件:二氧化碳浓度为20±3%,温度为20±5℃,湿度为70±5%。

八.试验步骤及结果判定

1、将经过处理的试件放入碳化箱内的铁架上,各试件经受碳化的表面之间的间距至少应不少于50毫米。

2、将碳化箱盖严密封。密封可采用机械办法或油封,但不得采用水封以免影响箱内的湿度调节。开动箱内气体对流装置,徐徐充入二氧化碳,并测定箱内的二氧化碳浓度,逐步调节二氧化碳的流量,使箱内的二氧化碳浓度保持在20±3%。在整个试验期间可用去湿装置或放入硅胶,使箱内的相对湿度控制在70±5%的范围内。碳化试验应在20±5℃的温度下

进行。

3、每隔一定时期对箱内的二氧化碳浓度,温度及湿度作一次测定。一般在第一、二天每隔两小时测定一次,以后每隔4小时测定一次。并根据所测得的二氧化碳浓度随时调节其流量。去湿用的硅胶应经常更换。

4、碳化到了3、7、14及28天时,各取出试件,破型以测定其碳化深度。棱柱体试件在压力试验机上用劈裂法从一端开始破型。每次切除的厚度约为试件宽度的一半,用石蜡将破型后试件的切断面封好,再放入箱内继续碳化,直到下一个试验期。如采用立方体试件,则在试件中部劈开。立方体试件只作一次检验,劈开后不再放回碳化箱重复使用。

5、将切除所得的试件部份刮去断面上残存的粉末,随即喷上(或滴上)浓度为1%的酚酞酒精溶液(含20%的蒸馏水)。经30秒钟后,按原先标划的每10毫米一个测量点用碳化深度检测尺分别测出两侧面各点的碳化深度。如果测点处的碳化分界线上刚好嵌有粗骨料颗粒,则可取该颗粒两侧处碳化深度的平均值作为该点的深度值di (i=1~10)。碳化深度测量精确至1毫米。

6、混凝土在各试验龄期时的平均碳化深度应按下式计算,精确到0.1毫米。

=-

t d n

d n

i i

∑=1 (1)

式中:-t d --试件碳化t 天后平均碳化深度,mm ;

i d --两个侧面上各测定的碳化深度,mm ;

n --两个侧面上的侧点总数。

以在标准条件下的3个试件碳化28天的碳化深度平均值作为供相互对比用的混凝土碳化值,以此值来对比各种混凝土的抗碳化能力及对钢筋的保护作用。

以各龄期计算所得的碳化深度绘制碳化时间与碳化深度的关系曲线,以表示在该条件下的混凝土碳化发展规律。

九.结果判定

得出碳化深度,绘制碳化时间与碳化深度曲线。

十.记录格式

检测过程中要随时做好记录,记录格式按《混凝土碳化试验记录》填写,报告格式按《混凝土碳化试验报告》填写。

十一.审批程序

把做好的记录及报告打印出来签字,一并交审核人审核,经批准人批准、盖章后发放报告。

混凝土碳化试验

一.目的 检测混凝土的碳化性能,指导检测人员按规程正确操作,确保检测结果科学、准确。 二.检测参数及执行标准 检测参数:碳化性能 执行标准:GBJ82-85《普通混凝土长期性能和耐久性能试验方法》三.适用范围 适用于测定在一定浓度的二氧化碳气体介质中混凝土试件的碳化程度,以评定该混凝土的抗碳化能力。 四.职责 检测员必须执行国家标准,按照作业指导书操作,边做试验边做好记录,编制检测报告,并对数据负责。 五.样本大小及抽样方法 碳化试验应采用棱柱体混凝土试件,以3块为一组,试件的最小边长应符合表1的要求。棱柱体的高宽比应不小于3。无棱柱体试件时,也可用立方体试件代替,但其数量应相应增加。 碳化试验试件尺寸选用表表1 试件一般应在28天龄期进行碳化,采用掺合料的混凝土可根据其特性决定碳化前的养护龄期。碳化试验的试件宜采用标准养护。但应在试验前

2天从标准养护室取出。然后在60℃温度下烘48小时。 经烘干处理后的试件,除留下一个或相对的两个侧面外,其余表面应用加热的石蜡予以密封。在侧面上顺长度方向用铅笔以10毫米间距画出平行线,以预定碳化深度的测量点。 六.仪器设备 1、CCB-70碳化箱(包括架空试件的铁架温湿度测量以及恒温恒湿设施、气体分析仪),设备编号为:JC611 2、二氧化碳供气装置(包括气瓶、压力表及流量计) 3、碳化深度检测尺,设备编号为:GC531 4、辅助破型设备:万能试验机(200t或30t)、三角挫刀条2个 5、材料、工具:石蜡、电炉、托盘、酚酞试液 七.环境条件 养护条件:二氧化碳浓度为20±3%,温度为20±5℃,湿度为70±5%。 八.试验步骤及结果判定 1、将经过处理的试件放入碳化箱内的铁架上,各试件经受碳化的表面之间的间距至少应不少于50毫米。 2、将碳化箱盖严密封。密封可采用机械办法或油封,但不得采用水封以免影响箱内的湿度调节。开动箱内气体对流装置,徐徐充入二氧化碳,并测定箱内的二氧化碳浓度,逐步调节二氧化碳的流量,使箱内的二氧化碳浓度保持在20±3%。在整个试验期间可用去湿装置或放入硅胶,使箱内的相对湿度控制在70±5%的范围内。碳化试验应在20±5℃的温度下

混凝土的碳化深度

混凝土的碳化深度 混凝土碳化深度: 土碳化是指混凝土中的高碱性物质(主要是氢氧化钙)同大气中的二氧化碳(CO2)发生化学反应的现象。由于混凝土碳化是在混土碳化是在混凝土的构件外表面及表面下形成一个坚硬的碳化表皮,所以又称为混凝土“表面碳化”。 测定混凝土碳化深度值的意义: 检测混凝土碳化深度的目的之一是混凝土碳化深度的大小直接影响采用回弹法检测混凝土强度的 测定结果,即(对回弹法检测混凝土强度测定值进行修正)必须考虑混凝土碳化深度。 检测混凝土碳化深度的目的之二是由此可定性地推定混凝土中的钢筋锈蚀情况。下面简述混凝土碳化与钢筋锈蚀的关系分析。 混凝土碳化与钢筋锈蚀的关系: 普通硅盐水泥在水化过程中生成大量的氢氧 化钙。混凝土孔隙中充满了饱和氢氧化钙溶液,钢筋在碱性介质中表面生成难溶的Fe2O3和Fe3O4,这层保护膜(或钝化膜)使钢筋难以生锈。

混凝土硬化以后,表面遭受空气中二氧化碳的作用,氢氧化钙慢慢变成碳酸钙而失去碱性,即前述的混凝土碳化。 图c示出混凝土碳化深度达到钢筋表面,碳化部分的钢筋表面使氧化膜破坏而开始生锈,但碱性部分的钢筋表面并不生锈。钢筋一生锈,铁锈的体积增大,破坏了混凝土保护层,沿钢筋产生裂缝,水、空气进入裂缝,加速了钢筋的锈蚀。 因此,一般认为当混凝土保护层厚度大于碳化深度时,钢筋没有锈蚀;保护层厚度与碳化深度接近时,则钢筋表面开始有局部锈点出现,当碳化浓度大于保护层时,锈蚀一般不可避免地要出现。 由于已碳化混凝土中钢筋锈蚀将产生钢筋截面削弱、钢筋与混凝土相互作用能力降低,所以一般也认为当钢筋锈蚀发展

到混凝土保护层沿钢筋开裂的程度时,尽管尚不影响构件安全使用,但可认为是开始危及结构安全的前兆,甚至可认为这是构件使用寿命的一种极限状态。 混凝土碳化深度的检测方法: 碳化深度,可用合适的工具(如钻、凿子)在测区表面形成直径约为15mm的孔洞,其深度约等于保护层厚度,然后除去孔洞中的粉末和碎屑,不能用液体冲洗。用浓度为1%的酚酞酒精溶液立即洒在孔洞壁的边缘处,再用钢尺测量自混凝土表面至深处不变色、(未碳化部分呈紫红色)有代表性的交界处垂直距离1~2次,该距离即为混凝土的碳化深度值。每次测读至0.5mm。 在测区中选取n个碳化深度测点,得到相应碳化深度测量值,即可进行平均碳化深度值的计算。

混凝土碳化深度及对回弹影响

混凝土碳化深度及对回弹影响 混凝土的碳化是混凝土所受到的一种化学腐蚀。空气中CO2气渗透到混凝土内,与其碱性物质起化学反应后生成碳酸盐和水,使混凝土碱度降低的过程称为混凝土碳化,又称作中性化,其化学反应为:Ca(OH)2+CO2=CaCO3+H2O。水泥在水化过程中生成大量的氢氧化钙,使混凝土空隙中充满了饱和氢氧化钙溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe2O3和Fe3O4,称为钝化膜(碱性氧化膜)。碳化后使混凝土的碱度降低,当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。可见,混凝土碳化作用一般不会直接引起其性能的劣化,对于素混凝土,碳化还有提高混凝土耐久性的效果,但对于钢筋混凝土来说,碳化会使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,因而会使混凝土对钢筋的保护作用减弱。 影响混凝土碳化速度的因素是多方面的。首先影响较大的是水泥品种,因不同的水泥中所含硅酸钙和铝酸钙盐基性高低不同;其次,影响混凝土碳化主要还与周围介质中CO2的浓度高低及湿度大小有关,在干燥和饱和水条件下,碳化反应几乎终止,所以这是除水泥品种影响因素以外的一个非常重要的原因;再次,在渗透水经过的混凝土时,石灰的溶出速度还将决定于水中是否存在影响Ca(OH)2溶解度的物质,如水中含有Na2SO4及少量Mg2+时,石灰的溶解度就会增加,如水中含有Ca(HCO3)2的Mg(HCO3)2对抵抗溶出侵蚀则十分有利。因为它们在混凝土表面形成一种碳化保护层;另外,混凝土的渗透系数、透水量、混凝土的过度振捣、混凝土附近水的更新速度、水流速度、结构尺寸、水压力及养护方法与混凝土的碳化都有密切的关系。 混凝土碳化破坏的防治,对于混凝土的碳化破坏,我们在施工中总结出了一系列治理措施:一是,在施工中应根据建筑物所处的地理位置、周围环境,选择合适的水泥品种;对于水位变化区以及干湿交替作用的部位或较严寒地区选用抗硫酸盐普通水泥;冲刷部位宜选高强度水泥;二是,分析骨料的性质,如抗酸性骨料与水、水泥的作用对混凝土的碳化有一定的延缓作用;三是,要选好配合比,适量的外加剂,高质量的原材料,科学的搅拌和运输,及时的养护等各项严格的工艺手段,以减少渗流水量和其它有害物的侵蚀,以确保混凝土的密实性;另外,若建筑物地处环境恶劣的地区,宜采取环氧基液涂层保护效果较好,对建筑物地下部分在其周围设置保护层;用各种溶注液浸注混凝土,如:用溶化的沥青涂抹。还有,若建筑物一旦发生了混凝土碳化,最好采用环氧材料修补,若碳化深度较大,可凿除混凝土松散部分,洗净进入的有害物质,将混凝土衔接面凿毛,用环氧砂浆或细石混凝土填补,最后以环氧基液做涂基保护。 测碳化很简单: 1.在砼表面凿个小洞,深1cm左右; 2.用洗耳球或小皮老虎吹掉灰尘碎屑;文档冲亿季,好礼乐相随mini ipad移动硬盘拍立得百度书包 3.在凿开的砼表面滴或者喷1%的酚酞酒精溶液; 4.用游标卡尺或碳化深度深度测定仪测定没有变色的砼的深度规范有规定,超过6mm就要抽芯修正平均碳化深度值小于或等于0.4mm时,视为无碳化;大于或等于6.0mm时,取6.0mm。对于新浇注的混凝土不超过3个月龄期的,视为无碳化答案补充你可以看下这本书《建筑结构检测技术标准》GB/T50344-2004 答案补充碳化深度值的测量准确与否与回弹值一样,直接影响推定混凝土强度的精度。测出来的值是越小越正常提高回弹法检测混凝土抗压强度精确度的探讨回弹法检测混凝土抗压强度在我国使用已达四十余年,因其简便、灵活、准确、可靠、快速、经济等特点而倍受工程检测人员的青睐,是我国目前工程检测中应用最为广泛的检测仪器之一。当对工程结构质量有怀疑时,均可运用回弹法进行检测。但回弹法在使用过程中还是出现了较多的操作不规范、随意性大、计算方法不当等问题,造成了较大的测试误

混凝土碳化的几点原因

1.混凝土碳化 混凝土的碳化是指大气中的二氧化碳首先渗透到混凝土内部的孔隙中,而后溶解于毛细孔中的水分,与水泥水化过程中所产生的水化硅酸钙和氢氧化钙等水化产物相互作用,生成碳酸钙等产物。所以,混凝土碳化是由于混凝土存在着孔隙,里面充满着水分和空气,在混凝土的气相、液相、固相中进行着一个十分复杂的多相物理化学连续过程。 2.混凝土碳化影响因素 有内在因素,也有外界因素。 2.1影响混凝土碳化的内在因素 不同的水泥,其矿物组成、混合材量、外加剂、生料化学成分不同,直接影响着水泥的活性和混凝土的碱度,对碳化速度有重要影响。一般而言,水泥中熟料越多,则混凝土的碳化速度越慢。外加剂(减水剂、引气剂)一般均能提高抗渗性,减弱碳化速度,但含氯盐的防冻、早强剂则会严重加速钢筋锈蚀,应严格控制其用量。集料品种和级配不同,其内部孔隙结构差别很大,直接影响着混凝土的密实性。材质致密坚实,级配较好的集料的混凝土,其碳化的速度较慢。 增加水泥用量,一方面可以改变混凝土的和易性,提高混凝土的密实性;另一方面还可以增加混凝土的碱性储备,使其抗碳化性能增强,碳化速度随水泥用量的增大而减少。 在水泥用量一定的条件下,增大水灰比,混凝土的孔隙率增加,密实度降低,渗透性增大,空气中的水分及有害化学物质较多的浸入混凝土体内,加快混凝土碳化。 施工质量差表现为振捣不密实,造成混凝土强度低,蜂窝、麻面、空洞多,为大气中的二氧化碳和水分的渗入创造了条件,加速了混凝土的碳化。

混凝土成型后,必须在适宜的环境中进行养护。养护好的混凝土,具有胶凝好、强度高、内实外光和抗侵蚀能力强,能阻止大气中的水分和二氧化碳侵入其内,延缓碳化速度。 2.2影响混凝土碳化的外界因素 酸性气体(如CO2)渗入混凝土孔隙溶解在混凝土的液相中形成酸,与水泥石中的氢氧化钙、硅酸盐、铝酸盐及其他化合物发生中和反应,导致水泥石逐渐变质,混凝土的碱度降低,这是引起混凝土碳化的直接原因。试验研究已证明,混凝土的碳化速度与二氧化碳浓度的平方根成正比,即混凝土碳化速度系数随二氧化碳浓度的增加而加快。 在混凝土浸水饱和或水位变化部位,由于温度交替变化,使混凝土内部孔隙水交替地冻结膨胀和融解松弛,造成混凝土大面积疏松剥落或产生裂缝,导致混凝土碳化。渗漏水会使混凝土中的氢氧化钙流失,在混凝土表面结成碳酸钙结晶,引起混凝土水化产物的分解,其结果是严重降低混凝土强度和碱度,恶化钢筋锈蚀条件。混凝土温度骤降,其表面收缩产生拉力,一旦超过混凝土的抗拉强度,混凝土表面便开裂,导致形成裂缝或逐渐脱落,为二氧化碳和水分渗入创造了条件,加速混凝土碳化。

混凝土碳化深度检测

1、影响混凝土碳化的因素 影响混凝土碳化的因素有环境因素、原材料因素、施工操作因素等。 铜陵地区空气污染较重,空气中二氧化硫含量较多,酸雨也较多,是影响混凝土质量的主要原因,另外影响混凝土碳化的因素还有如下几点。 ①水泥品种。水泥品种是影响混凝土碳化的主要因素。矿渣水泥和粉煤灰水泥中的掺合料含有活性氧化硅和活性氧化铝,它们和氢氧化钙结合形成具有胶凝性的活性物质,降低了碱度,因而加速了混凝土表面形成碳酸钙的过程,固而碳化速度较快。普通水泥碳化速度慢。 ②粗、细骨料。铜陵地区使用的是江砂,细骨料及粉料过多,则碳化速度加快。 ③水灰比。水灰比小的混凝土由于水泥浆的组织密实,透气性小,碳化速度较慢。 ④外加剂。混凝土外加剂的种类较多,但不可使用含有氯化物的外加剂,因为氯化物会加剧钢筋的腐蚀。 ⑤浇筑和养护质量。混凝土浇筑时,振捣不密实、养护方法不当、养护时间不足会造成混凝土内部毛细孔道粗大,使水、空气、侵蚀性化学物质进入混凝土内部,加速混凝土的碳化和钢筋腐蚀。 混凝土结构工程施工质量验收规范中规定:在混凝土试件强度评定不合格及结构实体检验中,可采用非破损或局部破损的检测方法,按国家现行有关标准的规定对结构构件中的混凝土强度进行推定。常用的有回弹法、超声回弹综合法、钻芯法、后装拔出法等,其中最常用的是回弹法。而回弹法中碳化深度对混凝土强度的推定值影响很大。碳化是一个缓慢发展的过程,在进行混凝土结构及构件强度的检验时,为取得比较准确的混凝土的实际强度,应在28d后尽早进行,即在未碳化或碳化程度很小时进行。

2、混凝土碳化的防治 ①在使用时合理选用水泥品种。对于水位变化区以及干湿交替作用的部位或较严寒地区 选用抗硫酸盐普通水泥;对矿渣水泥和粉煤灰水泥要控制掺量,普通水泥掺粉煤灰,可以在 水泥用量不变的情况下,再外掺粉煤灰取代部分砂子,或同时掺用粉煤灰的减水剂,即采用 “双掺”的技术措施,这样可以提高混凝土的抗碳化能力。 ②选好合适的配合比,适量的外加剂,控制细骨料、粉料用量。分析骨料的性质,如抗 酸性骨料与水,水泥的作用对混凝土的碳化有一定的延缓作用。对于使用江砂的地方,砂的 级配不合理,粉料较多,更应选择合适的配合比,控制水灰比。科学地搅拌和运输,及时地 养护,以减少渗流水量和其它有害物的侵蚀,确保混凝土的密实性。混凝土的密实度也是保 证工程质量的关键因素。 ③碳化后的混凝土构件还可采用涂刷环氧基液的方法,对建筑物地下部分在其周围设置 保护层;用各种溶注液浸注混凝土,如用溶化的沥青涂抹。对碳化深度较大的,可凿除混凝 土松散部分,洗净进入的有害物质,将混凝土衔接面凿毛,用环氧砂浆或细石混凝土填补, 最后以环氧基液做涂基保护。 8 结构混凝土碳化深度的检测与评定 8.1 检测方法 8.1.1 钢筋锈蚀电位测试结果表明钢筋可能锈蚀活动的区域,应进行混凝土碳化深度测量。 8.1.2 混凝土碳化状况的检测通常采用在混凝上新鲜断面喷洒酸碱指示剂;通过观察酸碱指示剂颜色变化来确定混凝土的碳化深度。 8.2 检测步骤 8.2.1 测区位置的选择原则可参照钢筋锈蚀自然电位测试的要求,若在同一测区,应先进行保护层和锈蚀电位、电阻率的测量,再进行碳化深度及氯离子含量的测量。 8.2.2 测区及测孔布置 (1)测区应包括锈蚀电位测量结果有代表性的区域,也能反映不同条件及不同混凝土质量的部位,结构外侧面应布置测区。 (2)测区数不应小于3个,测区应均匀布置。 (3)每一测区应布置三个测孔,三个测孔应呈“品”字排列,孔距根据构件尺寸大小确定,但应大于2倍孔径。 (4)测孔距构什边角的距离应大于2.5倍保护层厚度。 8.2.3 使用酸碱指示剂喷在混凝土的新鲜破损面,根据指示剂颜色的变化,测量混凝土的碳化深度,量测值准确至毫米。

混凝土碳化深度检测方案

焦作大学科研实训楼混凝土 碳化深度检测方案 工程概况: 焦作大学科研实训楼工程项目位于焦作大学科研实训楼工程位于焦作大学新校区院内东南部,南距丰收路约为100m,是一座集办公、住宅综合大楼,建筑占地面积2641.23m2,总建筑面积24552.83m2(其中地上建筑面积20828.27m2,地下建筑面积3724.56m2),钢筋混凝土框架-剪力墙结构,平面形状大致呈矩形,地下2层,地上17层2层裙房和15层主楼组成,总建筑高度64.3m,东西总长度为88m,南北总宽度为36 .8m,其中主楼东西长56m,南北宽18.8m,地下室顶板为上部结构的嵌固端。地下室人防按常6级平战结合设计,人防设置在地下一层,人防建筑面积为2491.16m2,建筑场地类型Ⅲ类检测依据:根据5月5日甲方,设计单位,监理单位,施工单位针对地下室问题处理会议纪要,提出工程停工时间较长,地下室部分混凝土,表面碳化较深,设计院对本工程地下室提出碳化深度检测。 具体检测部位如下: 地下一层: 剪力墙、梁、柱,/板、部分:每个轴线的结构部位都需进行碳化检测。 外剪力墙: 1轴交B轴与H轴,共取4个点。B/E,E/F,F/G,G/H 12轴交B轴与H轴,共取4个点。B/E,E/F,F/G,G/H 1轴至12轴交B轴,共取11个点。1/2,2/3,3/4,4/5,5/6,6/7,7/8,8/9,9/10,10/11,11/12 1轴至12轴交H轴,共取11个点。1/2,2/3,3/4,4/5,5/6,6/7,7/8,8/9,9/10,10/11,11/12 小计30个点。

内剪力墙: 4至5轴交G轴、4至5轴交F轴、4轴交G轴与F轴、5轴交G轴与F轴, 8至9轴交G轴、8至9轴交F轴、8轴交G轴与F轴、9轴交G轴与F轴, 小计8个。 柱: 1轴交B轴KZ5a,1轴交E轴KZ8,1轴交F轴KZ8,1轴交G轴KZ11, 1轴交H轴KZ5,2轴交B轴KZ6,2轴交E轴KZ7a,2轴交F轴KZ7,2轴交G轴KZ9,2轴交H轴KZ10,3轴交B轴KZ6,3轴交E轴KZ12,3轴交F 轴KZ13,3轴交G轴KZ14,3轴交H轴KZ5a,4轴交B轴KZ5,4轴交C轴KZ3,4轴交D轴KZ15,5轴交A轴KZ5b,5轴交C轴KZ3,5轴交D轴KZ15a,6轴交A轴KZ1,6轴交C轴KZ2,6轴交D轴KZ16,6轴交F轴KZ17,6轴交G轴KZ18,7轴交A轴KZ1,7轴交C轴KZ2,7轴交D轴KZ16,7轴交F 轴KZ17,7轴交G轴KZ18,8轴交A轴KZ5b,8轴交C轴KZ3,8轴交D轴KZ15a,9轴交B轴KZ5,9轴交C轴KZ3,9轴交D轴KZ15,10轴交B轴KZ6,10轴交E轴KZ12,10轴交F轴KZ13,10轴交G轴KZ14,10轴交H 轴KZ5a,11轴交B轴KZ6,11轴交E轴KZ7a,11轴交F轴KZ7,11轴交G 轴KZ9,11轴交H轴KZ10,12轴交B轴KZ5a,12轴交E轴KZ8,12轴交F 轴KZ8,12轴交G轴KZ11,12轴交H轴KZ5。 小计52个。 梁: 1、1轴2轴交B与E轴,1/1轴L111、2/1 L111。1轴2轴交E与F轴,1/1轴L111、2/1 L111。1轴2轴交F与G轴,1/1轴L111、2/1 L111。1轴2轴交G 与H轴,1/1轴L108。

混凝土碳化深度与处理措施

目录 一、碳化作用机理 (2) 二、影响商品混凝土碳化的因素 (2) 三、商品混凝土碳化的预防措施 (5) 四、混凝土碳化处理措施 (6)

混凝土碳化的影响因素及其预防措施 商品混凝土碳化是影响商品混凝土耐久性的一个重要因素。本文对商品混凝土碳化的影响因素及其预防措施进行了总结。从商品混凝土本身的密实度和碱性大小的角度考虑,商品混凝土的碳化受材料、环境和施工等因素的影响。降低水灰比、优化配合比设计、加强养护和增加保护层厚度可以提高商品混凝土的抗碳化能力。 一、碳化作用机理 空气中CO2渗透到商品混凝土内,与其碱性物质发生化学反应生成碳酸盐和水,使商品混凝土碱度降低的过程称为商品混凝土碳化,也可称为中性化,其化学反应为: Ca(OH)2 + CO2 = CaCO3 + H2O 水泥在水化过程中生成大量的氢氧化钙,使商品混凝土空隙中充满了饱和C a(OH)2溶液,其碱性介质对钢筋有良好的保护作用,使钢筋表面生成难溶的Fe 2O3和Fe3O4,称为钝化膜。 碳化本身对商品混凝土没有破坏作用,其主要危害是由于碳化会降低商品混凝土的碱度。当碳化超过商品混凝土的保护层时,在水与空气同时存在的条件下,钢筋开始生锈。钢筋锈蚀产生的体积膨胀将导致钢筋长度方向出现纵向裂缝,并使保护层脱落,进而使得构件的截面减小、承载能力降低,最终将使结构构件破损或者失效。 二、影响商品混凝土碳化的因素 影响商品混凝土碳化最主要的因素是商品混凝土本身的密实度和碱性大小,即商品混凝土的渗透性及其Ca(OH)2含量。影响商品混凝土碳化的因素主要分为三个方面:材料因素、环境因素和施工因素。 2.1 材料因素 材料因素包括水灰比、水泥品种与用量、掺合料、外加剂、骨料品种与级配、商品混凝土表面覆盖层等等,主要通过影响商品混凝土的碱度和密实性来影响商品混凝土的碳化速度。 2.1.1 水灰比 水灰比是决定混凝土性能的重要参数,对混凝土碳化速度影响极大。众所周知,水灰比基本上决定了混凝土的孔结构,水灰比越大,混凝土内部的孔隙率就越大。混凝土中的气孔主要有胶孔、气孔和毛细孔。胶孔的半径很小,CO2分子很难自由进出;CO2扩散均在内部的气孔和毛细孔中进行。因此水灰比一定程度上决定了CO2在混凝土中的扩散速度,水灰比越大,孔隙率越高,CO2的扩散越容易,混凝土碳化速度越快。另外,水灰比大会使商品混凝土孔隙中的游离水增多,一定程度上也有利于碳化反应。研究结果表明:当水灰比大于0.65时,碳化深度会急剧加大。国内外进行了大量的快速碳化试验和长期暴露试验来研究水灰比与混凝土碳化速度的关系。得到碳化速度与水灰比的关系,暴露试验给出了碳化速度系数与水灰比的表达式:

混凝土碳化研究现状_武俊曦

四川建筑科学研究Sichuan Building Science 第37卷第6期2011年12月 收稿日期:2010-06-10作者简介:武俊曦(1977-),男,陕西西安人,工程师,主要从事建筑施工工作。 E -mail :wujunxi1977@126.com 混凝土碳化研究现状 武俊曦1 ,王 艳 2 (1.陕西建工集团第三建筑工程有限公司,陕西西安710054;2.西安建筑科技大学土木工程学院,陕西西安710055) 摘要:混凝土碳化是一个非常复杂的物理化学过程,国内外众多学者分别从碳化机理、影响碳化的因素、碳化深度预测模型 等方面, 对这个问题进行了深入研究。本文对这些成果进行了总结与分类,在此基础上提出了尚存在的问题,并对混凝土碳化研究发展方向进行了展望。 关键词:混凝土;碳化;碳化速度;碳化深度中图分类号:TU528文献标识码:B 文章编号:1008-1933(2011)06-202-03 0前言 Mahta 教授在题为《混凝土耐久性———50年进 展》的主旨报告中指出:“当今世界,混凝土破坏原 因,按重要性递减顺序排列是钢筋腐蚀、寒冷气候下 的冻害、侵蚀环境的物理化学作用”。因此,钢筋锈 蚀是影响混凝土耐久性的主要因素之一。而混凝土碳化又是引起钢筋锈蚀最主要的原因。20世纪60年代,国际上一些发达国家就开始重视混凝土结构的耐久性问题,对混凝土碳化进行了大量的试验研究及理论分析。国内从20世纪80年代开始研究混凝土碳化与钢筋锈蚀问题,通过快速碳化实验、长期暴露实验及实际工程调查,研究混凝土碳化的影响因素与碳化深度预测模型。经过40多年的研究,国内外对混凝土碳化机理与影响因素已经有了深刻的 认识, 并提出了很多种碳化深度的计算模型。1混凝土碳化机理的研究 混凝土碳化是一个非常复杂的物理化学过程, 国内外很多学者从不同的角度对这个问题进行了深入研究。 普通水泥混凝土水泥熟料的主要矿物成分是硅酸三钙C 3S (3CaO ·SiO 2)、硅酸二钙C 2S (2CaO ·SiO 2)、铁铝酸四钙C 4AF (4CaO ·Al 2O 3·Fe 2O 3)和 铝酸三钙C 3A (3CaO ·Al 2O 3), 另外,还有少量的石膏C SH 2(CaSO 4·2H 2O )等。其水化产物为氢氧化钙(约占25%)、水化硅酸钙(约占60%)、水化铝酸钙、水化硫铝酸钙等,充分水化后,混凝土孔隙水溶液为氢氧化钙饱和溶液,其pH 值约为12 13,呈强碱性。在水泥水化过程中,由于化学收缩、自由水蒸发等多种原因,在混凝土内部存在大小不同的毛细 管、 孔隙、气泡等,大气中的二氧化碳通过这些孔隙向混凝土内部扩散,并溶解于孔隙内的液相,在孔隙溶液中与水泥水化过程中产生的可碳化物质发生碳 化反应, 生成碳酸钙。混凝土碳化的主要化学反应式如下[1] :Ca (OH )2+CO 2→CaCO 3+H 2O 3CaO ·2SiO 2·3H 2O +3CO 2→3CaCO 3·2SiO 2 ·3H 2O 3CaO ·SiO 2+3CO 2+γH 2O →SiO 2·γH 2O +3CaCO 3 2CaO ·SiO 2+2CO 2+γH 2O →SiO 2·γH 2O +2CaCO 3 文献[2]研究表明,混凝土孔溶液中绝大多数组分为Na + , K +和与其保持电性平衡的OH –,Ca 2+含量微乎其微, Ca (OH )2大部分是以晶体存在的。当CO 2扩散到混凝土孔溶液,并分别与Na + , K +,Ca 2+反应生成Na 2CO 3,K 2CO 3,CaCO 3。由于Na 2CO 3,K 2CO 3溶解度大,孔溶液中的Na + ,K +浓度不会发生变化,除非这些溶液干燥时达到过饱和析 出晶体;而孔溶液中的Ca 2+与CO 2- 3发生反应生成溶解度极低的CaCO 3,并沉积在孔壁表面,导致孔溶 液中Ca 2+ 浓度降低,因此Ca (OH )2晶体继续溶解,并补充孔溶液中失去的Ca 2+ 浓度。Ca (OH )2晶体逐渐溶解而碳化反应过程中CaCO 3晶体逐渐增多,这种循环反应一直进行到Ca (OH )2晶体完全溶解和消耗为止,此时混凝土pH 值降低,混凝土发生中性化现象。 混凝土孔溶液的pH 值越高,CaCO 3溶解度越小,孔溶液中发生中性化反应之后Ca 2+ 的浓度减少 得也越多, Ca (OH )2晶体的溶解速度也越快。随着中性化过程的继续,孔溶液的pH 不断降低, Ca (OH )2晶体的溶解速度也会减慢,碳化速度相应会有一些降低。 另外,由于碳化反应的主要产物碳酸钙属非溶 解性钙盐,比原反应物的体积膨胀约11.6%[3] ,因 2 02

混凝土回弹仪回弹值以及碳化深度的测量方法

混凝土回弹仪回弹值以及碳化深度的测量方法 在我国的建筑工程里,混凝土结构是我们最常见的一种建筑结构。我们的楼房、桥梁、公路等都是混凝土结构,而我们想要去测试这些混凝土结构的抗压强度,那么我们就要用到混凝土回弹仪了。因为混凝土回弹仪是现场检测用的最广泛的混凝土抗压强度无损检测仪器。接下来我们来了解下混凝土回弹仪回弹值以及碳化深度的测量方法。 混凝土回弹仪回弹值以及碳化深度的测量方法 一、混凝土回弹仪回弹值的测量 1、检测时,回弹仪的轴线应始终垂直于结构或构件的检测面,缓慢施压,准确度数,快速复位。 2、测点宜在测区内均匀分布,相邻两点的净距离不宜小于2cm;测点距外露钢筋、预埋件的距离不宜小于3cm。测点不应分布在气孔或外露石子上,同一点只能弹一次。每一测区记录16个回弹值,每一测点的回弹值精确到 1。" 二、混凝土回弹仪碳化xx的测量 1、回弹值测量完毕后,在有代表性的位置上测量混凝土的碳化深度值,测点数不应小于构件测区数的30%,取其平均值为该构件每测区的碳化深度值。当碳化深度极差大于2时,应在每一测区测量碳化深度值。 2、碳化深度的测量,可采用适当的工具在测区表面形成直径15mm的孔洞,其深度应大于混凝土的碳化深度。孔洞中的粉末和碎屑应清除干净,并不能使用水清洗。用1%的酚酞酒精溶液滴在孔内壁边缘处,已碳化的混凝土颜色不变,未碳化的混凝土变为红色,当已碳化和未碳化界线清楚时,用深度测量工具测量已碳化混凝土的深度,测量不应小于3次,取平均值,精确至 0."5mm。

以上的内容就是混凝土回弹仪回弹值以及碳化深度的测量方法,混凝土回弹仪的使用是获取混凝土质量和强度的最快速、最简单和最经济的测试方法。这也很大测度上提高了建筑物的质量。

混凝土回弹与碳化深度

混凝土回弹与碳化深度

综述:碳化深度过深会降低混凝土的碱性,影响结构的耐久度。碳化就是混凝土中的Ca(OH)2和空气中的CO2反应生成CaCO3和水的过程。 碳化深度主要与水灰比和周围环境有关。一般说来,水泥用量一定的时候,水灰比越大,碳化越快。当水灰比一定的时候,水泥用量越少,碳化越快。从碳化的定义我们可以看出如果水泥用量多的话,混凝土中的Ca(OH)2就多碱性就越强,越不容易碳化。还有就是周围的环境,CO2的浓度及湿度。非常潮湿和非常干燥的时候,混凝土都不易碳化。太湿可以隔离CO2与Ca(OH)2的反映,太干CO2无法结合到水生成H2CO3(碳酸),混凝土也不会碳化。 回弹检测混凝土强度是以混凝土的表面硬度来推断混凝土强度的.碳化会增大混凝土表面硬度,所以回弹判定其强度时需要检测碳化深度进行修正。 一、混凝土碳化机理及原因 1、混凝土碳化机理 拌和混凝土时,硅酸盐水泥的主要成份CaO水化作用后生成Ca(OH)2,它在水中的溶解度低,除少量溶于孔隙液中,使孔隙液成为饱和碱性溶液外,大部分以结晶状态存在,成为孔隙液保持高碱性的储备,它的PH值为12.5~13.5。空气中的CO2气体不断地透过混凝土中未完全充水的粗毛细孔道,气相扩散到混凝土中部分充水的毛细孔中,与其中的孔隙液所溶解的Ca(OH)2进行中和反应。反应产物为CaCO3和H2O,CaCO3溶解度低,沉积于毛细孔中。

该反应式为:Ca(OH)2+CO2→CaCO3↓+H2O 反应后,毛细孔周围水泥石中的羟钙石补充溶解为Ca2+和OH-,反向扩散到孔隙液中,与继续扩散进来的CO2反应,一直到孔隙液的PH值降为8.5~9.0时,这层混凝土的毛细孔中才不再进行这种中和反应,此时即所谓“已碳化”。确切地说,碳化应称为碳酸盐化。另外,凡是能与Ca(OH)2进行中和反应的一切酸性气体,如SO2、SO3、H2S以至于气相HCI等,均能进行上述中和反应,使混凝土碱度降低,故混凝土碳化应广义地称为“中性化”。混凝土表层碳化后,大气中的CO2继续沿混凝土中未完全充水的毛细孔道向混凝土深处气相扩散,更深入地进行碳化反应。 2、混凝土碳化原因 混凝土的主要成分有水泥、粗细骨料、水以及外加剂。水泥掺与混凝土的拌合中,水泥中主要成分是CaO,经水化作用后生成Ca(OH)2 ,混凝土的碳化,是指混凝土中的Ca(OH)2与空气中的CO2起化学反应,生成中性的碳酸盐CaCO3 。未碳化的混凝土呈碱性,混凝土中钢筋保持钝化状态的最低(临界)碱度是PH 值为11.5,碳化后的混凝土PH值为8.5~9.5。碳化使混凝土的碱度降低,同时,增加混凝土孔溶液中氢离子数量,使混凝土对钢筋的保护作用减弱。当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。钢筋锈蚀后,锈蚀产生的体积比原来膨胀2~4倍,从而对周围混凝土产生膨胀应力,锈蚀越严重,铁锈越多,膨胀力越大,最后导致混凝土开裂形

应力状态下混凝土的碳化试验研究

第33卷第5期2003年9月  东南大学学报(自然科学版) JOUR NAL OF SOUTHEAST UNIVER SITY (Natural Science Edition )   Vol .33No .5 Sept .2003 应力状态下混凝土的碳化试验研究 涂永明 吕志涛 (东南大学混凝土与预应力混凝土结构教育部重点实验室,南京210096) 摘要:进行了碳化环境下预应力混凝土试件的耐久性试验研究,阐述了在应力和碳化共同作用下的混凝土结构破损机理及规律.试件为无应力、弯曲受拉和直接受压的应力状态,采用加速碳化的试验方案.分别引进k wc 和χσ反映碳化深度与混凝土质量、强度和应力水平的关系,建立了应力状态下的混凝土碳化深度的多因素预测模型.结果表明:拉、压应力分别加快和减缓了混凝土的碳化速率,且应力越大;碳化速率的改变越大;χσ可以反映碳化速率的变化趋势.施加预应力能够控制混凝土裂缝的发展、消除或限制裂缝的宽度,因此,预应力混凝土结构的耐久性比普通混凝土结构的耐久性更好. 关键词:预应力混凝土结构;耐久性;应力;碳化;腐蚀 中图分类号:TU37 文献标识码:A 文章编号:1001-0505(2003)05-0573-04 Experiment and research of presteressed concrete structure in carbonation corrosive environments T u Yongming L ǜZhitao (Key Lab of R C &PC Structures of Minis try of Education ,Southeas t Universit y ,Nanjing 210096,China ) A bstract : The durability experiments of prestr essed concrete specimens in carbonation corrosive environ -ments were carried out .The corrosion mechanism of c oncrete under the coactions of stress and carbonation c or -rosion was discussed .The specimens were categor ized into three types :non -stressed ,bend -tensile stress and c ompressive str ess .Carbonation of the specimens was acc elerate d .A multi -factor m odel forecasting th e car -bonation depth o f pr estressed concr ete was constructed ,introducin g k wc and χσ,whic h describe the r elation -ships between carbonation depth and concrete quality or strength or stress levels .The r esults sho w that the tensile str ess and compressive str ess are able to accelerate or slow do wn the concrete carbonation ,respective -ly ,and the larger the changes in stresses ,the lar ger the changes in carbonation degrees .χσreflects the changes well .The compressive str ess can control the development of c oncrete cracks ,and eliminate the crack width ,so the durability of the prestressed concrete str ucture is better than that of an ordinar y c oncrete struc -ture . Key words : prestressed concrete str ucture ;durability ;stress ;carbonation ;corrosion 收稿日期:2003-04-25.  基金项目:国家自然科学基金资助项目(59978008).  作者简介:涂永明(1978—),男,博士生;吕志涛(联系人),教 授,博士生导师,中国工程院院士,luzhitao @seu .edu .cn . 自20世纪六、七十年代开始,混凝土的碳化研究已成为结构耐久性研究的重点,但迄今为止,应力状态下混凝土的碳化试验研究仍很少见.本文研究 了预应力混凝土结构在碳化环境下的耐久性能,并对此进行了试验与研究. 1 应力状态下的混凝土碳化试验 1.1 试验方案 试验研究了在碳化侵蚀环境下,应力状态、水灰比(指质量比,下同)、保护层厚度等因素对混凝土碳

结构混凝土碳化深度的检测、评定

结构混凝土碳化深度的检测、评定 结构混凝土碳化深度的检测、评定提要:测区位置的选择原则可参照钢筋锈蚀自然电位测试的要求,若在同一测区,应先进行保护层和锈蚀电位、电阻率的测量,再进行碳化深度及氯离子含量的测量 更多内容通告 结构混凝土碳化深度的检测、评定 1检测方法 1.1钢筋锈蚀电位测试结果表明钢筋可能锈蚀活动的区域,应进行混凝土碳化深度测量。 1.2混凝土碳化状况的检测通常采用在混凝上新鲜断面喷洒酸碱指示剂;通过观察酸碱指示剂颜色变化来确定混凝土的碳化深度。 2检测步骤 2.1测区位置的选择原则可参照钢筋锈蚀自然电位测试的要求,若在同一测区,应先进行保护层和锈蚀电位、电阻率的测量,再进行碳化深度及氯离子含量的测量。 2.2测区及测孔布置 测区应包括锈蚀电位测量结果有代表性的区域,也能反映不同条件及不同混凝土质量的部位,结构外侧面应布置测区。 测区数不应小于3个,测区应均匀布置。 每一测区应布置三个测孔,三个测孔应呈“品”字排列,孔距根据构件尺寸大小确定,但应大于2倍孔径。 测孔距构什边角的距离应大于2.5倍保护层厚度。 2.3使用酸碱指示剂喷在混凝土的新鲜破损面,根据指示剂颜色的变化,测量混凝土的碳化深度,量测值准确至毫米。 配制指示剂:75%的酒精溶液与白色酚酞粉末配置成酚酞浓度为1%-2%的酚酞溶剂,装入喷雾器备用,溶剂应为无色透明的液体。 用装有20mm直径钻头的冲击钻在测点位置钻孔。 成孔后用圆形毛刷将孔中碎屑、粉末清除,露出混凝土新茬。 将酚酞指示剂喷到测孔壁上。 待酚酞指示剂变色后,用测深卡尺测量混凝土表面至酚酞变色交界处的深度,准确至1mm。酚酞指示剂从五色变为紫色时,混凝上未碳化,酚酞指示剂未改变颜色处的混凝土已经碳化。 将测区、测孔统一编号,并画出示意图,标上测量结果。 测量值的整理应列出最大值、最小值和平均值。 3评定标准 混凝上碳化深度对钢筋锈蚀影响的评定,可取构件的碳化深度平均值与该类构件保护层

混凝土的碳化深度.分析

混凝土的碳化深度 混凝土碳化深度:土碳化是指混凝土中的高碱性物质(主要是氢氧化钙)同大气中的二氧化碳(CO2)发生化学反应的现象。由于混凝土碳化是在混土碳化是在混凝土的构件外表面及表面下形成一个坚硬的碳化表皮,所以又称为混凝土“表面碳化”。 测定混凝土碳化深度值的意义: 检测混凝土碳化深度的目的之一是混凝土碳化深度的大小直接影响采用回弹法检测混凝土强度的测定结果,即(对回弹法检测混凝土强度测定值进行修正)必须考虑混凝土碳化深度。 检测混凝土碳化深度的目的之二是由此可定性地推定混凝土中的钢筋锈蚀情况。下面简述混凝土碳化与钢筋锈蚀的关系分析。 混凝土碳化与钢筋锈蚀的关系: 普通硅盐水泥在水化过程中生成大量的氢氧化钙。混凝土孔隙中充满了饱和氢氧化钙溶液,钢筋在碱性介质中表面生成难溶的Fe2O3和Fe3O4,这层保护膜(或钝化膜)使钢筋难以生锈。 混凝土硬化以后,表面遭受空气中二氧化碳的作用,氢氧化钙慢慢变成碳酸钙而失去碱性,即前述的混凝土碳化。

图c示出混凝土碳化深度达到钢筋表面,碳化部分的钢筋表面使氧化膜破坏而开始生锈,但碱性部分的钢筋表面并不生锈。钢筋一生锈,铁锈的体积增大,破坏了混凝土保护层,沿钢筋产生裂缝,水、空气进入裂缝,加速了钢筋的锈蚀。 因此,一般认为当混凝土保护层厚度大于碳化深度时,钢筋没有锈蚀;保护层厚度与碳化深度接近时,则钢筋表面开始有局部锈点出现,当碳化浓度大于保护层时,锈蚀一般不可避免地要出现。 由于已碳化混凝土中钢筋锈蚀将产生钢筋截面削弱、钢筋与混凝土相互作用能力降低,所以一般也认为当钢筋锈蚀发展到混凝土保护层沿钢筋开裂的程度时,尽管尚不影响构件安全使用,但可认为是开始危及结构安全的前兆,甚至可认为这是构件使用寿命的一种极限状态。 混凝土碳化深度的检测方法: 碳化深度,可用合适的工具(如钻、凿子)在测区表面形成直径约为15mm的孔洞,其深度约等于保护层厚度,然后除去孔洞中的粉末和碎屑,不能用液体冲洗。用浓度为1%的酚酞酒精溶液立即洒在孔洞壁的边缘处,再用钢尺测量自混凝土表面至深处不变色、(未碳化部分呈紫红色)有代表性的交界处垂直距离1~2次,该距离即为混凝土的碳化深度值。每次测读至0.5mm。

混凝土强度现场检测方法

混凝土强度现场检测方法: 非破损法:回弹法 以混凝土强度与某些物理量之间的相关性为基础,测试这些物理量,然后根据相关关系推算被测混凝土的标准强度换算值。 综合法:超声回弹综合法 采用两种或两种以上的非破损检测方法,获取多种物理参量,建立混凝土强度与多项物理参量的综合相关关系,从而综合评价混凝土强度。 半破损法:钻芯法 以不影响结构或构件的承载能力为前提,在结构或构件上直接进行局部破坏性试验,或钻取芯样进行破坏性试验,并推算出强度标准值的推定值或特征强度。 回弹法的特点 回弹法是目前国内应用最为广泛的结构混凝土抗压强度检测方法; 优点1:对结构没有损伤; 优点2:仪器轻巧,使用方便; 优点3:测试速度快; 优点4:测试费用相对较低; 优点5:可以基本反映结构混凝土抗压强度规律; 检测原理 回弹法是利用混凝土表面硬度与强度之间的相关关系来推定混凝土强度的一种方法,即fcu=f ( R, l )。其基本原理是:用一弹簧驱动的重锤,通过弹击杆(传力杆),弹击混凝土表面,并测出重锤被反弹回来的距离,即回弹值(反弹距离与弹簧初始长度之比)作为与强度相关的指标,同时考虑混凝土表面碳化后硬度变化的影响,来推定混凝土强度的一种方法。 表面硬度法、非破损法。 检测依据 中华人民共和国行业标准:JGJ/T 23-2001 《回弹法检测混凝土抗压强度技术规程》 适用范围 适用于工程结构普通混凝土抗压强度的检测。

《混凝土结构工程施工混凝土强度的检验与评定应按现行国家标准注:在正常情况下, 及验收规范》及《混凝土强度检验评定标准》执行。不允许因为有了本规程而不按上述《规、当出现标准养护试件或同条1范》、《标准》制作规定数量的试件供常规检验之用。但是,、当所制作的标准试件或同条件试件与所成型的2件试件数量不足或未按规定制作试件时;、3构件在材 料用量、配合比、水灰比等方面有较大差异,已不能代表构件的混凝土质量时;规范规定的对结构或构件的强度合当标准试件或同条件试件的施压结果,不符合现行标准、格要求,并且对该结果持有怀疑时。当对结构中混凝土实际强度有检测要求时,可按该规程进行检测,检测结果可作为处理 混凝土质量的一个依据。不适用于表层与内部质量有明显差异或内部存在缺陷的混凝土结构或构件的检测。(由于回弹法是通过回弹仪检测混凝土表面硬度从而推算出混凝土强度的方法。就不能直接采用回受化学物质侵蚀或内部有缺陷时,冻伤、当混凝土表面遭受了火灾、)弹法检测。仪器设备及检测环境测定回弹值的仪器,宜采用示值系统为指针直读式的混凝土回弹仪。并应在回弹仪的明显位置上回弹仪必须具有制造厂的产品合格证及检定单位的检定合格证,具有下列标志:名称、型号、制造厂名(或商标)、出厂编号、出厂日期和中国计量器具制造许可证标志CMC及许可证证号等。 (回弹仪是计量仪器。) 回弹仪应符合下列标准状态的要求: 水平弹击时,弹击锤脱钩的瞬间,回弹仪的标准能量应为:小型(0.735J)、中型(2.207J)和大型(29.40J);普通混凝土:中型回弹仪。 注:水平弹击时,弹击锤脱钩的瞬间,回弹仪的标准能量E,即弹击拉簧恢复原始状态所作的功:E=(1/2)KL2= (1/2)*784.532*0.0752=2.207J K——弹击拉簧的刚度; L——弹击拉簧工作时拉伸长度。 弹击锤与弹击杆碰撞的瞬间,弹击拉簧应处于自由状态,此时弹击锤起跳点应相应于指针指示刻度尺上“0”处; 在洛氏硬度HRC为60±2的钢砧上,回弹仪的率定值应为80±2。(作用:检验回弹仪的标准能量是否为2.207J;回弹仪的测试性能是否稳定;机芯的滑动部位有污垢等。) 回弹仪使用时的环境温度应为-4~40℃。 回弹仪具有下列情况之一时应送检定单位检定: (1)新回弹仪启用前; 目前国内外回弹仪生产不能保证每台新回弹仪均为标准状态,特别是一些国外进口仪器不按我国有关标准生产及检定,因此新回弹仪在使用前必须检定。 (2)超过检定有效期限(有效期为半年); (3)累计弹击次数超过6000次; 检定有效期为半年或累计弹击次数6000次,是参照国内外现有试验资料而定的,一般如不超过者一界限,正常质量的弹击拉簧不会产生显著的塑性变形而影响其工作性能。 (4)经常规保养后钢砧率定值不合格; (5)遭受严重撞击或其他损害。 回弹仪在工程检测前后,应在钢砧上作率定试验。 (为了保证在使用过程中及时发现和纠正回弹仪的非标准状态) 回弹仪率定试验宜在干燥、室温为5~35℃的条件下进行。率定时,钢砧应稳固地平放在刚度大的物体上。测定回弹值时,取连续向下弹击三次的稳定回弹平均值。弹击杆应分四次旋转,每次旋转宜为90°。弹击杆每旋转一次的率定平均值应为80±2。

相关主题