搜档网
当前位置:搜档网 › 中考数学复习专题讲座精编含详细参考答案数学思想方法

中考数学复习专题讲座精编含详细参考答案数学思想方法

中考数学复习专题讲座精编含详细参考答案数学思想方法
中考数学复习专题讲座精编含详细参考答案数学思想方法

2018年中考数学复习专题讲座:数学思想方法<2)

一、中考专题诠释

数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。

抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试卷中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.

二、解题策略和解法精讲

数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。

三、中考考点精讲

考点四:方程思想

从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组>。这种思想在代数、几何及生活实际中有着广泛的应用。

例1 <2018?广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2018年公民出境旅游总人数约7200万人次,若2018年、2018年公民出境旅游总人数逐年递增,请解答下列问题:

<1)求这两年我国公民出境旅游总人数的年平均增长率;

<2)如果2018年仍保持相同的年平均增长率,请你预测2018年我国公民出境旅游总人数约多少万人次?

考点:一元二次方程的应用。专题:增长率问题。

分析:<1)设年平均增长率为x.根据题意2018年公民出境旅游总人数为 5000<1+x)万人次,

2018年公民出 2

境旅游总人数 5000<1+x)万人次.根据题意得方程求解;

<2)2018年我国公民出境旅游总人数约7200<1+x)万人次.

2

解答:解:<1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000<1+x)=7200.

解得 x=0.2=20%,x=﹣2.2 <不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为 2 1

20%.

<2)如果2018年仍保持相同的年平均增长率,则2018年我国公民出境旅游总人数为 7200<1+x)=7200×120%=8640万人次.答:预测2018年我国公民出境旅游总人数约8640万人次.

点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。很多数学问题,特别是有未知数的几何问题,就需要用方程或方程组的知识来解决。具有方程思想就能够很好地求得问题中的未知元素或未知量,这对解决和计算有关的数学问题,特别是综合题,是非常需要的。

例2 <2018?桂林)李明到离家2.1千M的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即匀速步行回家,在家拿道具用了1分钟,然后立即匀速骑自行车返回学校.已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.

<1)李明步行的速度<单位:M/分)是多少?<2)李明能否在联欢会开始前赶到学校?

考点:分式方程的应用。专题:应用题。

分析:<1)设步行速度为xM/分,则自行车的速度为3xM/分,根据等量关系:骑自行车到学校比他从学校步行到家用时少20分钟可得出方程,解出即可;

<2)计算出步行、骑车及在家拿道具的时间和,然后与42比较即可作出判断.

分,根据题意得:,3xM/ xM/解答:解:<1)设步行速度为分,则自行车的速度为是原方程的解,

即李明步行的速度是70M/分.x=70x=70解得:,经检验 <2)根据题意得,李明总共需要:.即李明能在联欢会开始前赶到.- 1 - / 12

答:李明步行的速度为70M/分,能在联欢会开始前赶到学校.点评:此题考查了分式方程的应用,设出步行的速度,根据等量关系得出方程是解答本题的关键,注意分式方程一定要检验.考点五:函数思想

函数思想是用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决。

所谓函数思想的运用,就是对于一个实际问题或数学问题,构建一个相应的函数,从而更快更好地解决问题。构造函数是函数思想的重要体现,运用函数思想要善于抓住事物在运动过程中那些保持不变的规律和性质。

例3<2018?十堰)某工厂计划生产A、B两种产品共50件,需购买甲、乙两种材料.生产一件A 产品需甲种材料30千克、乙种材料10千克;生产一件B产品需甲、乙两种材料各20千克.经测算,购买甲、乙两种材料各1千克共需资金40元,购买甲种材料2千克和乙种材料3千克共需资金105元.

<1)甲、乙两种材料每千克分别是多少元?<2)现工厂用于购买甲、乙两种材料的资金不超过38000元,且生产B产品不少于28件,问符合条件的生产方案有哪几种?

<3)在<2)的条件下,若生产一件A产品需加工费200元,生产一件B产品需加工费300元,应选择哪种生产方案,使生产这50件产品的成本最低?<成本=材料费+加工费)

考点:一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用。

专题:应用题。

分析:<1)设甲材料每千克x元,乙材料每千克y元,根据购买甲、乙两种材料各1千克共需资

金40元,购买元,可列出方程组105,解方程组即可得到甲材料每2千克和乙

种材料3千克共需资金甲种材料千克15元,乙材料每千克25元;

<2)设生产A产品m件,生产B产品<50﹣m)件,先表示出生产这50件产品的材料费为15×30m+25×10m+15×20<50﹣m)+25×20<50﹣m)=﹣100m+40000,根据购买甲、乙两种材料的资金不超过38000元得到﹣100m+40000≤38000,根据生产B产品不少于28件得到50﹣m≥28,然后解两个不等式求出其公共部分得到20≤m≤22,而m为整数,则m的值为20,21,22,易得符合条件的生产方案;

<3)设总生产成本为W元,加工费为:200m+300<50﹣m),根据成本=材料费+加工费得到W=﹣

100m+40000+200m+300<50﹣m)=﹣200m+55000,根据一次函数的性质得到W 随m的增大而减小,

然后把m=22代入计算,即可得到最低成本.

,解得,所以甲材料每千克元,则<1)设甲材料每千克x元,乙材料每千克y解答:解:15元,乙材料每千克25元;<2)设生产A产品m件,生产B产品<50﹣m)件,则生产这50件产品的材料费为15×30m+25×10m+15×20<50﹣m)+25×20<50﹣m)=﹣100m+40000,由题意:﹣100m+40000≤38000,解得m≥20,又∵50﹣m≥28,解得m≤22,∴20≤m≤22,∴m的值为20,21,22,共有三种方案,如下表:

A<件) 20 21 22

B<件) 30 29 28

<3)设总生产成本为W元,加工费为:200m+300<50﹣m),则W=﹣100m+40000+200m+300<50﹣m)=﹣200m+55000,

∵W 随m的增大而减小,而m=20,21,22,∴当m=22时,总成本最低,此时W=﹣200×

22+55000=50600元.

点评:函数思想是函数概念、性质等知识更高层次的提炼和概括,是一种策略性的指导方法。运用函数思想通常是这样进行的:将问题转化为函数问题,建立函数关系,研究这个函数,得出相应的结论。

4.<2018?广元)某乡镇要在生活垃圾存放区建一个老年活动中心,这样必须把1200m的生3例

活垃圾运走.

)假如每天能运xm,所需时间为y天,写出y与x之间的函数关系式;

3<1

)若每辆拖拉机一天能运12m,则5辆这样的拖拉机要用多少天才能运完?

3<2

<3)在<2)的情况下,运了8天后,剩下的任务要在不超过6天的时间完成,那么至少需要增加多少辆这样的拖拉机才能按时完成任务?

考点:反比例函数的应用。

分析:<1)根据每天能运xm3,所需时间为y天的积就是1200m3,即可写出函数关系式;

- 2 - / 12

<2)把x=12×5=60代入,即可求得天数;

<3)首先算出8天以后剩余的数量,然后计算出6天运完所需的拖拉机数,即可求解.

y==20<)x=12×5=60,代入函数解读式得;天);<1) y=;<2解答:解:<3)运了8天后剩余的垃圾是1200﹣8×60=720m3.务要在不超过6天的时间完成则每天至少运720÷6=120m3,

则需要的拖拉机数是:120÷12=10<辆),则至少需要增加10﹣5=5辆这样的拖拉机才能按时完成任务.

点评:本题考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义求解.

考点六:数形结合思想

数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数>,或利用数量关系来研究几何图形的性质,解决几何问题(以数助形>的一种数学

思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

y=相交于A<1,2)、B

)求直线和双曲线的解读式;<1,请直接<x<x<0y),A

请直接写出不等式1考点:反比例函数与一次函数的交点问题。专题:计算题。的值,再用待m,﹣B

研究;<2x的范围,从图象上看:直线在双曲线上方,>时自变量的>的解集,就是求

kx+b<3)求不等式kx+b11点的横坐标结合图象进行解答.、B这是“以形助数”.根据A)在双曲1B

解:2,上,得)在直线y=kx+b1,2),B<﹣2,A<1线2y=上,∴m=﹣,则

B<﹣2,﹣1).由点1 y=x+1.解得,∴直线的解读式为:.<y>y0,∴y<y<y<2)∵在第三象限内随x的增大而减小,故y<y0,又∵y是正数,故31321320.2<x<1<3)由图可知,x>或﹣点评:数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关系的精确刻划与几何图形的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。四、中考真题训练一、选择题的不等式),则关于x,P<﹣11相交于点=kx=x+m1.<2018?贵港)如图,已知直

线y与y﹣121

< )﹣x+m>kx1的解集在数轴上表示正确的是

A .B.C.D.- 3 - / 12

考点:一次函数与一元一次不等式;在数轴上表示不等式的解集。

分析:根据图象和交点坐标得出关于x的不等式x+m>kx﹣1的解集是x>﹣1,即可得出答案.解答:解:∵直线y=x+m与y=kx﹣1相交于点P<﹣1,1),∴根据图象可知:关于x的不等式x+m

>kx﹣1的21,在数轴上表示为:,故选B. 1解集是x>﹣点评:本题考查了一次函数与一元一次不等式,在数轴上表示不等式的解集,主要培养学生的

观察图象的能力和理解能力.

的分式方程=2的解是< y=的图象如图,那么关于x) 2.<2018?柳州)小兰画了一个函数x=4 A.x=1 B. x=2

C. x=3

D.

的分式方程分析:关于=2的解就是函数x考点:反比例函数的图象。的值,

据此即可求解.y=2时的横坐标xy=中,纵坐标的分式方程时的横解答:解:关于的解就是函数xy=中,纵坐标y=2=2 ..故选Ax的值.根据图象可以得到:当y=2时,x=1坐标

y=2中,纵坐标xy=的分式方程=2的解,就是函数点评:本题考查了函数的图象,

正确理解:关于 x的值是关键.时的横坐标

,=kx和反比例函数yA<=的图象交于﹣13.<2018?广州)如图,正比例函数y211),则x

的取值范围是< 2)、B<1,﹣2)两点,若y<y21 1 0<x<>1 B. x<﹣1或<﹣ A.x1或x1 >0或x.﹣<1 D1<x<C.﹣1<x<0或0<x 考点:反比例函数与一次函数的交点问题。专题:数形结合。的取值范围即可.分析:根据图象找出直线在双曲线下方的x .故选yD.x>1时,

y<解答:解:由图象可得,﹣1<x<0或21点评:本题考查了反比例函数与一次函数的交点问

题,数形结合是解题的关键.

、上,将AB、F分别在边BC、CD4.<2018?南平)如图,正方形纸片ABCD的边长为3,点E ),

则EF的长为< G分别和AE、AF折叠,点B、D恰好都将在点处,已知BE=1AD 3

B..D C. A.折叠问题)。考点:翻折变换<,由根据折叠的性质得:的边长为3,可

得∠C=90°,BC=CD=3分析:由正方形纸片ABCD222=EC+FC,即可得方程,解方程即可求得答案.DF=x,GF=DF,然后设,在Rt△EFC中,由勾股定理EFEG=BE=1 GF=DF,EG=BE=1的边长为3,∴∠C=90°,BC=CD=3,根据折叠的性质得:,解答:解:∵正方形纸片ABCD222,中,EF=EC+FC,在﹣﹣DF=3x,

EC=BC﹣BE=3﹣1=2Rt△EFC,设DF=x,则EF=EG+GF=1+xFC=DC222B.EF=1+,解得:+<3即

长为< ).8.4..

考点:翻折变换<折叠问题)。- 4 - / 12 2,即可求得其边长为2,然后由折叠的性质,

可得A′M=AM,分析:首先由正方形ABCD的对角线长为D′N=DN,A′D′=AD,则可得图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD,继而求得答案.

BD=2,∠A=90°,AB=AD的对角线长为解答:解:∵正方形ABCD,∠ABD=45°,2,即×=2∴AB=BD?cos∠ABD=BD?cos45°=2,∴AB=BC=CD=AD=2,由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,

∴图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′

=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8.故选C.

点评:此题考查了折叠的性质与正方形的性质.此题难度适中,注意数形结合思想与整体思想的应用.

6.<2018?河北)如图,在平行四边形ABCD中,∠A=70°,将平行四边形折叠,使点D、C分别落在点F、E处<点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于< )A.70°B.40°C.30° D.20°

考点:翻折变换<折叠问题)。

CD∥MN∥AB,然后根据平行线的性质,即可求得分析:由平行四边形与折叠的性质,易得∠DMN=∠FMN=∠A=70°,又由平角的定义,即可求得∠AMF的度数.是平行四边形,∴AB∥CD,根据折叠的性质可得:MN∥AE,解答:解:∵四边形ABCD∠FMN=∠DMN,∴AB∥CD∥MN,∵∠A=70°,∴∠FMN=∠DMN=∠A=70°,∴∠AMF=180°﹣ B.∠DMN﹣∠FMN=180°﹣70°﹣70°=40°.故选点评:此题考查了平行四边形的性质、平行线的性质与折叠的性质.此题难度不大,注意数形结合思想的应用,注意折叠中的对应关系.90°到C顺时针旋转且含有30°角的直角三角板ABC 绕直角顶点7.<2018?佛山)如图,把一个斜边长为2 )BC,则在旋转过程中这个三角板扫过

的图形的面积是< △A11

D. C. A.π B.

考点:旋转的性质;扇形面积的计算。的交点为B扫过的路线与ABAC分析:根据直角三角形的性质求出BC、的长度,设点的是AB的中点,所以△ACDD,连接CD,可以证明△BCD是等边三角形,然后求出点D,然后根=S+S+S面积等于△ABC的面积的一半,然后根据△ABC扫过的面积△ACD

,∠B=90°﹣∠BAC=60°,,扇形ACA1BCD扇形据扇形的面积公式与三角形的面积公式列式计算即可得解.

∴BC=AB=2解答:解:在△ABC中,∠ACB=90°,∠BAC=30°,AB=1 CD,

∵BC=DC,AB的交点为∴AC=D=,∴S,连接=B×BC×AC=,设点扫过的路线与△ABC×

S是=S∴△BCD是等边三角形,∴BD=CD=1,∴点DAB的中点,∴S===,∴△ABC扫过的面积△ABC△ACD

.×1×π+=π+=π+π.故选+S+S=×π×<)++△ACDBCD

22 D

扇形ACA1扇形点评:此题考查了旋转的性质、直角三角形的性质以及等边三角形的性质,注意掌握旋转前后图形的对应关系,利用数形结合思想把扫过的面积分成两个扇形的面积与一个三角形面积是解题的关键,也是本题的难点.2).<2018?威海)已知二次函数y=ax+bx+c

初中数学思想方法大全

一、宏观型思想方法 数学思想是数学基础知识、基本技能的本质体现,是形成数学能力、数学意识的桥梁,是灵活应用数学知识、技能的灵魂。 (一)、转化(化归)思想 解决数学问题就是一个不断转化的过程,把问题进行变换,使之化繁为简、化难为易、化生疏为熟悉,变未知为已知,从而使问题得以解决。 不是对原来的问题直接解答,而是想方设法对它进行变形,直到把它转化成某个(某几个)已经解决了的问题为止。通过转化可使原条件中隐含的因素显露出来,从而缩短已知条件和结论之间的距离,找出它们之间内在的联系,以便应用有关方法将问题解决。 “转化”的思想是一种最基本的数学思想。数学解题过程的实质就是转化过程,具体的说,就是把“新知识”转化为“旧知识”,把“未知”转化为“已知”,把“抽象”转化为“具体”,把“复杂问题”转化为“简单问题”,把“高次”转化为“低次”,在不断的相互转化中使问题得到解决。 可运用联想类比实现转化、利用“换元”、“添线”、消元法,配方法,进行构造变形实现转化、数形结合,实现转化。一般转化为特殊,有些代数问题,通过构造图形,化抽象为具体,借助直观启发思维,转化为易解的几何问题。有些不易解决的几何题通过辅助线转化为代数三角的知识来证明,有些结构比较复杂的问题,可以简化题中某一条件,甚至暂时撇开不顾,先考虑一个简化的问题,这种简化题对于证明原题常常能起到引路的作用。把实际问题转化为数学问题。结合解题进行化归思想方法的训练的做法:a、化繁为简;b、化高维为低维;c、化抽象为具体;d、化非规范性问题为规范性问题;e、化数为形;f、化实际问题为数学问题; g、化综合为单一;h、化一般为特殊。 有加减法的转化,乘除法的转化,乘方与开方的转化,添辅助线,设辅助元等等都是实现转化的具体手段。因此,首先要认识到常用的很多数学方法实质就是转化的方法 应用:A将未知向已知转化;B将陌生向熟知转化;C方程之间的转化;D平面图形间的转化;E空间图形与平面图形的转化;F统计图之间的相互转化。 例子:减法转化成加法(减去一个数等于加上这个数的相反数);除法转化成乘法(除以一个不等于零的数等于乘以这个数的倒数);多项式的先化简再代入求值;单项式乘单项式可化归为有理数乘法和同底数幂的乘法运算;单项式乘多项式和多项式乘多项式都可以化归为单项式乘单项式的运算;将求负数的立方根转化为求正数的立方根的相反数;实数近似运算中据问题需要取近似值,从而转化为有理数计算;将异分母分式的加减转化为同分母分式的加减;将分式的除法转化成分式的乘法;将分式方程转化为整式方程求解;将分子的次数不低于分母次数的分式用带余除法转化为整式部分和分式部分的和;将方程的复杂形式化为最简形式;通过立方程把实际问题转化为数学问题;通过解方程把未知转化为已知;把一元二次方程转化为一元一次方程求解;把二元二次方程组转化为二元一次方程组,再转化为一元一次方程从而求解;通过转化为解方程实现实数范围内二次三项式的分解、方程中字母系数的确定;角度关系的证明和计算;平行线的性质和判定;把几何问题向平行线等简单的熟悉的基本图形转化;特殊化(特殊值法、特殊位置、设项、几何中添辅助线等);图形的变换(轴对称、平移、旋转、相似变换);解斜三角形(多边形)时将其转化为解直角三角形; (二)、数形结合思想 数学的研究对象是现实世界中的数量关系(“数”)和空间形式(“形”),而“数”和“形”是相互联系、相互渗透的,一定条件下也是可以互相转化的,因此,在解决问题时,常需把同一问题的数量关系与空间形式结合起来考查,利用数的抽象严谨和形的直观表意,把抽象思维和形象思维结合起来,把数量关系问题通过图形性质进行研究,或者把图形性质问题通过数量关

淄博地区2018中考数学总复习专题四整体思想试题

整体思想 1.(2017·淄博)若a +b =3,a 2+b 2 =7,则ab 等于( ) A .2 B .1 C .-2 D .-1 2.已知抛物线y =x 2-x -1与x 轴的一个交点是(m ,0),则代数式m 2-m +2 017的值为( ) A .2 015 B .2 016 C .2 017 D .2 018 3.(2016·济宁)已知x -2y =3,那么代数式3-2x +4y 的值是( ) A .-3 B .0 C .6 D .9 4.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是( ) A .-2a +b B .2a -b C .-b D .b 5.如图,边长为a 的正六边形内有两个三角形(数据如图),则S 阴影S 空白 =( ) A .3 B .4 C .5 D .6 6.(2017·淄博)已知α,β是方程x 2-3x -4=0的两个实数根,则α2+αβ-3α的值为______. 7.(2016·烟台)已知|x -y +2|+x +y -2=0,则x 2-y 2 的值为________. 8.(2017·烟台)如图1,将一圆形纸片向右、向上两次对折后得到如图2所示的扇形AOB.已知OA =6,取 OA 的中点C ,过点C 作CD⊥OA 交AB ︵于点D ,点F 是AB ︵上一点,若将扇形BOD 沿OD 翻折,点B 恰好与点F 重合.用剪刀沿着线段BD ,DF ,FA 依次剪下,则剪下的纸片(形状同阴影图形)面积之和为____________. 9.已知当x =3时,代数式ax 5+bx 3 +cx +1的值是5,求当x =-3时,代数式ax 5+bx 3+cx -1的值. 10.已知x 2+x -1=0,求代数式2x 3+4x 2+3的值.

最新中考数学中的“新定义”

中考数学中的“新定义” 近年来的中考试题中,“新定义”的题目频频出现.此类题目的解决,可以很好地体现学生的临场发挥能力和知识的迁移能力.现结合具体题目加以分析. 一、定义新符号 例l (2014·新疆维吾尔自治区)规定用符号[ ]表示一个实数的整数部分,例如[3.69]=3, ]=l ,按此规定1]= 分析及解答本题涉及到无理数的估算,∵9<13<16,∴3<<4,∴1<3, ∴1]=2.故应填2. 二、定义新数 例2 (2010·杭州市)定义[,,a b c ]为函数2y ax bx c =++的特征数.下面给出特征数为 [2m ,1一m ,一1一m ]的函数的一些结论: ①当m = 一3时,函数图象的顶点坐标是(18,33 ); ②当m >0时,函数图象截x 轴所得线段的长度大于 32; ③当m <0时,函数在x > 14 时,y 随x 的增大而减小; ④当m ≠O 时,函数图象经过同一个点.其中正确的结论是 ( ). A .①②③④ B .①②④ C .①③④ D .②④ 分析及解答不妨把m = 一3代入知道,a = 一6,b =4,C =2, 22186426()33y x x x =-++=--+ ,所以函数图象的顶点坐标是(18,33 ).①正确排除选项D ;由于当m <0时,对称轴124b m x a m -=-=-大于14 ,所以③错误,排除A 、C .综上可知,故选B . 三、定义新图形 (1)定义新点 例3 (2014·北京市)在平面直角坐标系xOy 中,对于点P (,)x y ,我们把点P (1,1)y x -++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…

数学的转化思想

中考数学专题复习之三:数学的转化思想 【中考题特点】: 转化思想要求我们居高临下地抓住问题的实质,在遇到较复杂的问题时,能够辩证地分析问题,通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。具体地说,比如把隐含的数量关系转化为明显的数量关系;把从这一个角度提供的信息转化为从另一个角度提供的信息。转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机..。 【范例讲析】: 例1:已知:n m ,满足13,132 2 =-=-n n m m , 求 n m m n +的值。 例2:已知:一元二次方程x 2+x+m=0,x 2-(m -1)x+4 1 =0中至少有一个方程有实数根,求m 的取值范围。 例3:已知:如图,平行四边形ABCD 中,DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F ,AB ∶BC=6∶5,平行四边形ABCD 的周长为110,面积为600。 求:cos ∠EDF 的值。 A B C D E F

例4:已知方程组 kx 2-x -y+ 2 1=0 y=k(2x -1) (x 、y 为未知数) 有两个不同的实数解 x=x 1 或 x=x 2 y=y 1 y=y 2 ⑴求实数k 的取值范围;⑵如果3x 1 x 1y y 2 121=++,求实数k 的值。 例5:如图,AB 是⊙O 的直径,PB 切⊙O 于点B ,PA 交⊙O 于点C ,∠APB 的平分线分别交BC 、AB 于点D 、E ,交⊙O 于点F ,∠A=60°,并且线段AE 、BD 的长是一元二次方程x 2-kx+23=0的两个根(k 为正的常数)。 ⑴求证:PA ·BD=PB ·AE ; ⑵求证:⊙O 的直径为常数k ; ⑶求tan ∠FPA 的值。 【练习】: 1.已知:m, n 是方程x 2-3x+1=0的两根,求代数式2m 2+4n 2-6n+1999的值。 2.已知:ab ≠1,且5a 2+1995a+8=0,8b 2+1995b+5=0。求 b a 的值。 3.如图,在直角坐标系中,点B 、C 在x 轴的负半轴上,点A 在y 轴的负半轴上,以AC 为直径的圆与AB 的延长线交于点D ,弧CD =弧AO ,如果AB=10AO>BO ,且AO 、BO 是关于x 的二次方程x 2+kx+48=0的两个根。 ⑴求点D 的坐标;⑵若点P 在直径AC 上,且AC=4AP ,判断点 (-2,-10)是否在过D 、P 两点的直线上,并说明理由。 A B C D E F P

中考数学复习专题讲座

中考数学专题讲座一:选择题解题方法 一、中考专题诠释 选择题是各地中考必考题型之一,这说明选择题有它不可替代的重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效. 三、中考典例剖析 考点一:直接法 从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础. 例1 方程的解是() A.x=±1 B.x=1 C.x=﹣1 D.x=0 思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解:方程的两边同乘(x+1),得 x2﹣1=0, 即(x+1)(x﹣1)=0, 解得:x1=﹣1,x2=1. 检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解; 把x=1代入(x+1)=2≠0,即x=1是原分式方程的解. 则原方程的解为:x=1. 故选B. 点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根. 对应训练 1.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有() A.7队B.6队C.5队D.4队 考点二:特例法 运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好.

中考数学思想方法专题之整体思想

初中数学思想之整体思想 整体思想,就是在研究和解决有关数学问题时,通过研究问题的整体形式、整体结构、整体特征,从而对问题进行整体处理的解题方法.从整体上去认识问题、思考问题,常常能化繁为简、变难为易,同时又能培养学生思维的灵活性、敏捷性.整体思想的主要表现形式有:整体代入、整体加减、整体代换、整体联想、整体补形、整体改造等等.在初中数学中的数与式、方程与不等式、函数与图象、几何与图形等方面,整体思想都有很好的应用,因此,每年的中考中涌现了许多别具创意、独特新颖的涉及整体思想的问题,尤其在考查高层次思维能力和创新意识方面具有独特的作用. 一.数与式中的整体思想 【例1】 已知代数式3x 2-4x+6的值为9,则2463x x -+的值为 ( ) A .18 B .12 C .9 D .7 【例2】.已知114a b -=,则2227a ab b a b ab ---+的值等于( ) A.6 B.6- C. 125 D.27- 【例3】已知2002007a x =+,2002008b x =+,2002009c x =+,求多项式222a b c ab bc ac ++---的值. 二.方程(组)与不等式(组)中的整体思想 【例4】已知24122x y k x y k +=+?? +=+? ,且03x y <+<,则k 的取值范围是 【例5】已知关于x ,y 的二元一次方程组3511x ay x by -=??+=?的解为56 x y =??=?,那么关于x , y 的二元一次方程组3()()5()11x y a x y x y b x y +--=??++-=? 的解为为 【例6】.解方程 22523423x x x x +-=+ 三.函数与图象中的整体思想 【例7】已知y m +和x n -成正比例(其中m 、n 是常数)(1)求证:y 是x 的一次函数;(2)如果y =-15时,x =-1;x =7时,y =1,求这个函数的解析式 四.几何与图形中的整体思想

中考数学专题一 整体思想复习题及答案

第四部分 中考专题突破 专题一 整体思想 1.(2011年江苏盐城)已知a -b =1,则代数式2a -2b -3的值是( ) A .-1 B .1 C .-5 D .5 2.(2012年江苏无锡)分解因式(x -1)2-2(x -1)+1的结果是( ) A .(x -1)(x -2) B .x 2 C .(x +1)2 D .(x -2)2 3.(2012年山东济南)化简5(2x -3)+4(3-2x )结果为( ) A .2x -3 B .2x +9 C .8x -3 D .18x -3 4.(2011年浙江杭州)当x =-7时,代数式(2x +5)(x +1)-(x -3)(x +1)的值为________. 5.(2012年江苏苏州)若a =2,a +b =3,则 a 2+ab =______. 6.已知? ???? x +2y =4k +1,2x +y =k +2,且0

初中数学中的“转化思想”

初中数学中的“转化思想” [摘要]:随着课程改革的深入展开,培养学生的能力越来越重要,数学学习更应重视数学思想方法的渗透和培养。本文从几方面论述了转化思想在数学学习中的重要作用:转化思想可以使学生经历探索的学习过程,改变学生的学习方式,转化思想能培养学生创新思维能力及逻辑思维能力,是一种很重要的思维方法;转化思想可以增强学生的数学应用意识,提高解决问题的能力,从而,大大加强学生学习数学的兴趣。 [关键词]:转化思想数学学习逻辑思维应用意识学习兴趣 [引言]:人们在长期的数学实践中总结了许多解决数学问题的方法,形成了许多光辉的数学思想,每种数学思想都有它一定的应用范围,但笔者在数学实践中体会到,在学生的数学学习过程中,决不能忽视转化数学思想所起的重要作用,在教学中必须重视转化思想的渗透和培养。 转化是解数学题的一种重要的思维方法,转化思想是分析问题和解决问题的一个重要的基本思想,不少数学思想都是转化思想的体现。就解题的本质而言,解题既意味着转化,既把生疏问题转化为熟习问题,把抽象问题转化为具体问题,把复杂问题转化为简单问题,把一般问题转化为特殊问题,把高次问题转化为低次问题;把未知条件转化为已知条件,把一个综合问题转化为几个基本问题,把顺向思维转化为逆向思维等,因此学生学会数学转化,有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力。 数学转化思想、方法无处不在,它是分析问题、解决问题有效途径,它包含了数学特有的数、式、形的相互转换,又包含了心理达标的转换。转化的目的是不断发现问题,分析问题和最终解决问题。在数学中,很多问题能化复杂为简单,化未知为已知,化部分为整体,化一般为特殊,……等等,下面就“转化思想”在初中数学的应用通过举例作个简单归纳。

常见的数学思想方法

x y 2= 常见的数学思想方法 一、中考考点: 1.方程(组)是解决应用题、实际问题和许多方面数学问题的重要基础知识。在解决问题时,把某个未知量设为未知数,根据有关的性质、定理或公式,建立起未知数和已知数间的等量关系,列出方程(组)来解决,这就是方程思想。 2. 数形结合思想是一种重要的数学思想方法。通过图形,探究数量关系,再由数量关系研究图形特征,使问题化难为易,由数想形、由形知数,这就是一种数形结合思想。 3. 所谓化归思想就是化未知为已知、化繁为简、化难为易.通过一定的策略和手段,使复杂的问题简单化,陌生的问题熟悉化,抽象的问题具体化。转化的内涵非常丰富,已知与未知、数量与图形、概念与概念之间、图形与图形之间都可以通过转化,来获得解决问题的转机。 二、基础练习: (一)整体思想 1.如果代数式 1322+-x x 的值为2, 那么代数式x x 322 -的值等于( )A .2 1 B .3 C .6 D .9 2.某公园计划砌一个形状如图(1)所示的喷水池,后来有人建议改为图(2)的形状,且外圆的直径不变,喷水池边沿的宽度、高度不变,你认为砌喷水池的边沿( ) A .图(1)需要的材料多 B .图(2)需要的材料多 C .图(1)、图(2)需要的材料一样多 D .无法确定 (二)方程思想 的图象在第一象限内的交点, 3.如图,已知点A 是一次函数x y =的图象与反比例函数 点B 在x 轴的负半轴上,且OA=OB ,那么△AOB 的面积为( )A .2 B .2 2 C .2 D .22 (三)数形结合思想 4.如图,A 是硬币圆周上一点,硬币与数轴相切于原点OA (A 与O 点重合).假设硬币的直径为1个单位长度,若将硬币沿数轴正方向滚动一周,点A 恰好与数轴上点A′重合,则点A′对应的实数是___________. 5.函数)0(≠= k x k y 的图象如图所示,那么函数k kx y -=的图象大致是( ) (四)化归思想 6.如图,当半径为30cm 的转动轮转过60°角时,传送带上的物体A 移动的距离为________cm .(计算结果不取近似值) 7.将边长为8cm 的正方形ABCD 的四边沿直线l 向右滚动(不滑动),当正方形滚动两面三刀周时,正方形的顶点A 所经过的路线的长是__________cm . 8.在图中,所有多边形的每条边的长都大于2,每个扇形的半径都是1.则第n 个多边形中,所有扇形的面积之和是__________. (五)数学建模思想 9.如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角.在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长.(结果保留根号) (六)函数思想 10.某公司以每吨200元的价格购进某种矿石原料300吨,用于生产甲、乙两种产品.生产1吨甲产品或1吨乙产品所需该矿石和煤原料的吨数如下表: 煤的价格为400元/吨.生产1吨甲产品除原料费用外,还需其他费用400元,甲产品每吨售价4600元;生产1吨乙产品除原料费用外,还需其他费用500元,乙产品每吨售价5500元.现将该矿石原料全部用完,设生 产甲产品x 吨,乙产品m 吨,公司获得的总利润为y 元.(1)写出m 与x 之间的关第式; (2)写出y 与x 的函数表达式(不要求写自变量的范围); (3)若用煤不超过200吨,生产甲产品多少吨时,公司获得的总利润最大最大利润是多少 (七)统计思想 11.某地区有一条长100千米,宽千米的防护林.有关部门为统计该防护林的树木量,从中选出5块防护林(每块长1千米,宽0.5千米)进行统计,每块防护林的树木树量如下(单位:棵):65100、63200、64600、64700、67400.那么根据以上数据估算这一防护林总共约有_________棵树. 12.甲袋中放着19只红球和6只黑球、乙袋则放着170只红球、67只黑球和13只白球,这些球

2020中考数学复习突破与提升专题提升练习(五类常用数学思想分类汇编)(无答案)

2020中考数学复习突破与提升专题提升练习 (五类常用数学思想分类汇编) 类型一整体思想 1. (2019·宁波)小慧去花店购买鲜花,若买5枝玫瑰和3枝百合,则她所带的钱还剩下10元;若买3枝玫瑰和5枝百合,则她所带的钱还缺4元.若只买8枝玫瑰,则她所带的钱还剩下( ) A.31元 B.30元 C.25元 D.19元 2.(2019·内江)若x,y,z为实数,且{x+2y-z=4, x-y+2z=1,则代数式x2-3y2+z2的 最大值是. 3.(2019·厦门思明区模拟)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长的直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为. 4. .(2018·常德)5个人围成一个圆圈做游戏,游戏的规则是:每个人心里都想好一个实数,并把自己想好的数如实地告诉他相邻的两个人,然后每个人将他相邻的两个人告诉他的数的平均数报出来,若报出来的数如图所示,则报4的人心里想的数是.

类型二转化思想 1. (2019·河南开封模拟)运用图形变化的方法研究下列问题:如图,AB是☉O的直径,CD,EF是☉O的弦,且AB∥CD∥EF,AB=10, CD=6,EF=8,则图中阴影部分的面积是( ) A. π B.10π C.24+4π D.24+5π 2. (2018·上海)通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是度. 3.(2019·十堰)如图,AB为半圆的直径,且AB=6,将半圆绕点A顺时针旋转60°,点B旋转到点C的位置,则图中阴影部分的面积为. 4. 如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕点A旋 = . 转,当∠ABF最大时,S △ADE 5.(2019·宝安模拟)如图,已知圆柱的底面周长为6,高AB=3,小虫在圆柱表面爬行,从C点爬到对面的A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为.

中考数学复习专题 转化思想(含答案)

转化思想 一. 选择题:(本题10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得4分;共40分) 1、用换元法解方程x x x x + =++222 1时,若设x 2+x=y, 则原方程可化为( ) A 、y 2+y+2=0 B 、y 2-y -2=0 C 、y 2-y+2=0 D 、y 2+y -2=0 2、如图,已知ABC ?外有一点,P 满足PC PB PA ==,则( ) A 、22 3 1∠= ∠ B 、21∠=∠ C 、221∠=∠ D 、2,1∠∠的大小无法确定 3、小敏在今年的校运动会跳远比赛中跳出了满意一跳,函数2 3.5 4.9h t t =-(t 的单位:s , h 的单位:m )可以描述他跳跃时重心高度的变化,则他起跳后到重心最高时所用的时间是( ) A 、0.71s B 、 0.70s C 、0.63s D 、0.36s 4、已知如图:ΔABC 中,∠C=90°,BC=AC ,以AC 为直 径的圆交AB 于D ,若AD=8cm ,则阴影部分的面积为 ( ) A 、64πcm 2 B 、64 cm 2 C 、32 cm 2 D 、48 πcm 2 5、已知实数x 满足0112 2 =+++ x x x x ,那么x x 1+的值为( ) A 、1或-2 B 、-1或2 C 、1 D 、-2 6、如图,在半圆的直径上作4个正三角形,如这半圆周长为1C ,这4个正三角形的周长和为2C ,则1C 和2C 的大小关系是( ) 第2题 第3题 第4题 第6题

A 、1C >2C B 、1 C <2C C 、1C =2C D 、不能确定 7.如图,点A 、D 、G 、M 在半圆O 上,四边形 ABOC 、DEOF 、HMNO 均为矩形,设BC=aEF=b ,NH=c ,则下列各式中正确的是 A 、a >b >c B 、a=b=c C 、c >a >b D 、b >c >a 8. 如图,梯形ABCD 中,AB//DC ,AB =a ,BD =b ,CD =c , 且a 、b 、c 使方程ax bx c 220-+=有两个相等实数根,则∠DBC 和∠A 的关系是( ) A. ∠=∠DBC A B. ∠≠∠DBC A C. ∠>∠DBC A D. ∠<∠DBC A 9. 如图,圆锥的母线长是3,底面半径是1,A 是底面圆周 上从点A 出发绕侧面一周,再回到点A 的最短的路线长是( ) (A) 36 (B) 2 3 3 (C) 33 (D) 3 10. 已知a 、b 、c 是?ABC 三边的长,b>a =c ,且方程 ax bx c 220-+=两根的差的绝对值等于2,则?ABC 中 最大角的度数是( ) A. 90? B. 120? C. 150? D. 60? 二、填空题:(本大题共4小题,每小题5分,共20分,) 11、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为__________ 12、某同学在电脑中打出如下排列的若干个圆(图中●表示实心圆, ○表示空心圆): ● ○●●○●●●○●●●●○●●●●●○●●●●●●○ 若将上面一组圆依此规律复制得到一系列圆,那么前2007个圆中有 个空心圆; 13、二次函数y=ax 2+bx+c (a ≠0)的部分对应值如下表,则不等式ax 2+bx+c>0的解集为 . H N O F C A D G M c a b E B 第7题 第8题 D C 1 2 A B 第9题 第11题

2014年中考数学复习专题讲座(WORD)1:选择题解题方法(含答案)

课件园https://www.sodocs.net/doc/1516962427.html, - 1 - 2014年中考数学专题讲座一:选择题解题方法 一、中考专题诠释 选择题是各地中考必考题型之一,2012年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性. 选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲 选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效. 三、中考典例剖析 考点一:直接法 从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础. 例1 (2012?白银)方程的解是( ) A .x=±1 B . x =1 C . x =﹣1 D . x =0 思路分析: 观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 解:方程的两边同乘(x+1),得 x 2﹣1=0, 即(x+1)(x ﹣1)=0, 解得:x 1=﹣1,x 2=1. 检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解; 把x=1代入(x+1)=2≠0,即x=1是原分式方程的解. 则原方程的解为:x=1. 故选B . 点评: 此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根. 对应训练 1.(2012?南宁)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有( ) A .7队 B .6队 C .5队 D .4队 考点二:特例法 运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好. 例2 (2012?常州)已知a 、b 、c 、d 都是正实数,且 a c b d ,给出下列四个不等式:

中考专题复习专题五 数学思想方法(一)

2019-2020年中考专题复习专题五数学思想方法(一) 一、中考专题诠释 数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。 抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试题中所体现的数学思想和方法,培养用数学思想方法解决问题的意识. 二、解题策略和解法精讲 数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。 三、中考考点精讲 考点一:整体思想 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。

整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。 例1 (xx?吉林)若a-2b=3,则2a-4b-5= . 思路分析:把所求代数式转化为含有(a-2b)形式的代数式,然后将a-2b=3整体代入并求值即可. 解:2a-4b-5=2(a-2b)-5=2×3-5=1. 故答案是:1. 点评:本题考查了代数式求值.代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式(a-2b)的值,然后利用“整体代入法”求代数式的值. 对应训练 1.(xx?福州)已知实数a,b满足a+b=2,a-b=5,则(a+b)3?(a-b)3的值是.1.1000 考点二:转化思想 转化思想是解决数学问题的一种最基本的数学思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。转化的内涵非常丰富,已知与未知、数量与图形、图形与图形之间都可以通过转化来获得解决问题的转机。 例2 (xx?东营)如图,圆柱形容器中,高为1.2m,底面周长为1m,在容器内壁离容器底部0.3m的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿0.3m与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为m(容器厚度忽略不计).

2018年中考数学方法技巧:专题五-转化思想训练(含答案)

2.[2016·扬州]已知M=a-1,N=a2-a(a为任意实数),则M、N的大小关系为() 方法技巧专题五转化思想训练 转化思想是解决数学问题的根本思想,解数学题的过程其实就是逐渐转化的过程.常见的转化方法有:未知向已知转化,数与形的相互转化,多元向一元转化,高次向低次转化,分散向集中转化,不规则向规则转化,生活问题向数学问题转化等等. 一、选择题 1.[2015·山西]我们解一元二次方程3x2-6x=0时,可以运用因式分解法,将此方程化为3x(x-2)=0,从而 得到两个一元一次方程:3x=0或x-2=0,进而得到原方程的解为x 1 =0,x 2 =2.这种解法体现的数学思想是() A.转化思想B.函数思想 C.数形结合思想D.公理化思想 27 99 A.M<N B.M=N C.M>N D.不能确定 3.[2016·十堰]如图F5-1所示,小华从A点出发,沿直线前进10m后左转24°,再沿直线前进10m,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是() A.140m B.150m C.160m D.240m 图F5-1 4.[2016·徐州]图F5-2是由三个边长分别为6,9,x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是() 图F5-2 A.1或9B.3或5 C.4或6D.3或6 二、填空题 5.[2017·烟台]运行程序如图F5-3所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅进行了一次就停止,则x的取值范围是________. 图F5-3

2.A [解析] ∵N -M =a 2 - a -( a -1)=a 2-a +1=(a - )2+ >0,∴M <N .故选 A . 6.[2016·达州] 如图 F 5-4,P 是等边三角形 ABC 内一点,将线段 AP 绕点 A 顺时针旋转 60°得到线段 AQ ,连结 BQ .若 PA =6,PB =8,PC =10,则四边形 APBQ 的面积为________. 图 F 5-4 7.[2016·宿迁] 如图 F 5-5,在矩形 ABCD 中,AD =4,点 P 是直线 AD 上一动点,若满足△PBC 是等腰三角形的 点 P 有且只有 3 个,则 AB 的长为________. 图 F 5-5 三、解答题 8.如图 F 5-6①,点 O 是正方形 ABCD 两条对角线的交点.分别延长 O D 到点 G ,OC 到点 E ,使 OG =2OD ,OE =2OC , 然后以 OG 、OE 为邻边作正方形 OEFG ,连结 AG ,DE . (1)求证:DE ⊥AG ; (2)正方形 ABCD 固定,将正方形 OEFG 绕点 O 逆时针旋转 α 角(0°<α <360°)得到正方形 OE ′F ′G ′,如图②. ①在旋转过程中,当∠OAG ′是直角时,求 α 的度数; ②若正方形 ABCD 的边长为 1,在旋转过程中,求 AF ′长的最大值和此时 α 的度数,直接写出结果,不必说明理 由. 图 F 5-6 参考答案 1.A 7 2 1 3 9 9 2 4 注:此题把比较两个式子的大小转化为比较两个代数式的差的正负. 3.B [解析] ∵多边形的外角和为 360°,这里每一个外角都为 24°,∴多边形的边数为 360°÷24°=15.

初中数学解题思想方法全部内容

初中数学解题思想方法全部内容 1、配方法 所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。 2、因式分解法 因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。 3、换元法 换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。 4、判别式法与韦达定理 一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。 韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。 5、待定系数法 在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。 6、构造法

2021年中考数学总复习:专题43 整体思想运用

2021年中考数学总复习:专题43 整体思想运用 1.整体思想的含义 整体思想是指把研究对象的某一部分(或全部)看成一个整体,通过观察与分析,找出整体与局部的联系,从而在客观上寻求解决问题的新途径。整体是与局部对应的,按常规不容易求某一个(或多个)未知量时,可打破常规,根据题目的结构特征,把一组数或一个代数式看作一个整体,从而使问题得到解决。 2.整体思想方法具体应用范围 (1)在代数式求值中的应用 (2)在因式分解中的应用 (3)在解方程及其方程组中的应用 (4)在解决几何问题中的应用 (5)在解决函数问题中的应用 【例题1】(2020?成都)已知a =7﹣3b ,则代数式a 2+6ab +9b 2 的值为 . 【对点练习】(2019内蒙古呼和浩特)若x 1,x 2是一元二次方程x 2+x ﹣3=0的两个实数根,则x 22﹣4x 12+17的值为( ) A .﹣2 B .6 C .﹣4 D .4 【例题2】(2020?衢州)定义a ※b =a (b +1),例如2※3=2×(3+1)=2×4=8.则(x ﹣1)※x 的结果 为 . 【对点练习】分解因式:a 2﹣2a (b +c )+(b +c )2 【例题3】(2020?天水)已知a +2b =103,3a +4b =163,则a +b 的值为 . 【对点练习】(2019辽宁本溪)先化简,再求值(﹣)÷,其中a 满足a 2 +3a ﹣2=0.

一、选择题 1.(2020?无锡)若x+y=2,z﹣y=﹣3,则x+z的值等于() A.5 B.1 C.﹣1 D.﹣5 2.(2020?泰州)点P(a,b)在函数y=3x+2的图象上,则代数式6a﹣2b+1的值等于() A.5 B.3 C.﹣3 D.﹣1 3.一个六边形ABCDEF的六个内角都是120°,连续四边的长依次为AB=1,BC=3,CD=3,DE=2,那么这个六边形ABCDEF的周长是() A.12 B.13 C.14 D.15 4.如图所示,正方形ABCD的边长为2,H在CD的延长线上,四边形CEFH也为正方形,则△DBF的面积为() A.4 B.√2C.2√2D.2 二、填空题 5.(2020?杭州)设M=x+y,N=x﹣y,P=xy.若M=1,N=2,则P=. 6.(2020?枣庄)若a+b=3,a2+b2=7,则ab=. 7.若+=2,则分式的值为. 8.已知x=2y+3,则代数式4x﹣8y+9的值是___________.

专题二 中考数学转化思想(含答案)-

第2讲 转化思想 概述:在解数学题时,所给条件往往不能直接应用,?此时需要将所给条件进行转化,这种数学思想叫转化思想,在解题中经常用到. 典型例题精析 例1.(2002,上海)如图,直线y= 1 2 x+2分别交x ,y 轴于点A 、C 、P?是该直线上在第一象限内的一点,PB ⊥x 轴,B 为垂足,S △ABP =9. (1)求P 点坐标; (2)设点R 与点P 在同一反比例函数的图象上,且点R 在直线PB 右侧.作RT ⊥x 轴,?T 为垂足,当△BRT 与△AOC 相似时,求点R 的坐标. 分析:(1)求P 点坐标,进而转化为求PB 、OB 的长度,P (m ,n )?再转为方程或方程组解,因此是求未知数m ,n 值. ∵S △ABP =9,∴涉及AO 长,应先求AO 长,由于A 是直线y= 1 2 x+2与x 轴的交点,∴令y=0,得0= 1 2x+2, ∴x=-4, ∴AO=4. ∴(4)2 m n =9…① 又∵点P (m ,n )在直线y=1 2 x+2上, ∴n=1 2 m+2…② 联解①、② 得m=2,n=3, ∴P (2,3).

(2)令x=0,代入y=1 2 x+2中有y=2, ∴OC=2,∴△AOC∽△BRT,设BT=a,RT=b. 分类讨论: ①当2 4 b a =…① 又由P点求出可确定反比例函数y=6 x 又∵R(m+a,b)在反比例函数y=6 x 上 ∴b= 6 m a + ……② 联解①、②可求a,b值,进而求到R点坐标. ②当2 4 a b =时,方法类同于上. 例2.(2002,南京)已知:抛物线y1=a(x-t-1)2+t2(a,t是常数,a≠0,t≠0)?的顶点是A,抛物线y2=x2-2x+1的顶点是B. (1)判断点A是否在抛物线y2=x2-2x+1上,为什么? (2)如果抛物线y1=a(x-t-1)2+t2经过点B, ①求a的值;②这条抛物线与x轴的两个交点和它的顶点A能否构成直角三角形??若能,求出t的值;若不能,请说明理由. 分析:(1)∵y1的顶点为(t+1,t2),代入y2检验 x2-2x+1=(t+1)2-2(t+1)+1=t2+2t+1-2t-2+1=t2, ∴点A在y2=x2-2x+1的抛物线上. (2)①由y2=x2-2x+1=(x-1)2+0, ∴y2顶点B(1,0),因为y1过B点, ∴0=a(1-t-1)2+t 2?at2+t2=0. ∵t≠0,∴t2≠0,∴a=-1. ①当a=-1时,y=-(x-t-1)2+t2, 它与x轴的两个交点纵坐标为零,即y1=0,有0=-(x-t-1)2+t2?x-t-1=±t ∴x1=t+t+1=2t+1, x2=-t+t+1=1. 情况一:两交点为E(2t+1,0),F(1,0).

相关主题