搜档网
当前位置:搜档网 › 1588V2时间同步信号解决方案

1588V2时间同步信号解决方案

广东移动-上海贝尔 基于PTN网络的1588时间同步技术
上海贝尔股份有限公司 2010年11月

TD基站对于同步的要求和现状分析
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

TD基站频率和时间同步要求
对于TD-SCDMA同步性能的要求 TD-SCDMA 的同步需求由3GPP TR 25.836定义。TD-SCDMA基站需要的频率 精度为±50 ppb(0.05ppm)。 此外,还需要相邻基站间的相位同步,误差要求在3 μs 以内,即基站和RNC (或PGW)之间的相位误差应该不超过1.5 μs。
TD-SCDMA空口时间同步精度要求: ∣△T1+ △T2+ △T3 ∣<±1.5us
GPS
Master Clock
Iub Backhaul Node B
△T2
按照最坏情况,精度分配如下: ∣△T1∣< 200 ns ∣△T3∣1 BBU+1 RRU情况下为300ns,1 BBU+6 RRU情况下为500ns 因此要求∣△T2∣的范围:800~1000ns
△T1
△T3
△T1:时间源精度
△T2:回传网络偏差
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX
△T3:基站偏差

目前 GPS 定时存在问题及替代方案
目前基站通过GPS保证空口同步:
GPS
n n n
对基站安装提出一定的要求 基站成本 安全性问题
GPS替代方案:
n n n
单星方案 北斗 时间同步网 传输分配
Node B
Iub Backhaul
RNC
n
传输分配方案 (借助IEEE 1588):
n n n
通过MSTP开销 通过MSTP净荷 通过PTN
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

1588v2地面时间同步 vs GPS时间分配方案
TD-SCDMA Node B
IEEE 1588v2-Synch
<1.5us <800ns (1PPS+ToD)
GPS/北斗接收机
(IEEE1588v2) TD-SCDMA Node B (IEEE1588v2) (1PPS+ToD)
(1PPS+ToD)
GPS/北斗接收机
PTN
PTN (Sync Eth) (Sync Eth) (1PPS+ToD)
n 1588v2方案成本仅为GPS方案的10%左右
成本
(GPS方案中考虑100米左右的GPS馈线) n 1588v2方案避免了GPS方案所要求的安装 条件(120度净空角等)
成本
8000 6000 4000 2000 0 GPS 1588v2
n 1588v2方案确保了较高的安全性
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

基于PTN网络的1588 V2时间同步技术
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

基站回传时钟同步需求:G.8261同步以太网 (频率同步)
概念 § 采用以太网物理层来传送高质量的参考频率(类似 SDH) § 要采用类似于SDH的SSM同步算法进行时钟分发。 § 传送频率,不支持传送时间。 § 时钟性能满足G.813(or Stratum3)的要求,精度高 于1588v2,是新建网络。 同步以太网特性 § 从同步以太网物理层提取时钟送到EEC。 § EEC时钟reference从以太网端口分发 § 所有在同步分配链上的节点必须都是同步以太网节 点,需要硬件支持时钟提取和分发。
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

IEEE 1588 - 精确时间协议
n IEEE 1588又被称作PTP协议(精确时间协议);全称为“Precision Clock Synchronization Protocol for Networked Measurement and Control Systems” n 提供一种低成本的高精度(sub-us)的基于分组的时间同步技术,可以作为现 有的时间同步技术的改进技术,(例如,NTP和IRIG-B) n IEEE1588v1,发布于2002年,已经广泛应用于工业自动化,自动化测试测量和 测试,航空航天,以及AV(Audio & Video network) n IEEE1588v2 (IEEE 1588-2008 ),发布于2008年,已具备应用于较大网络以 及电信特性
n 更短的Sync报文,更高的帧速 n 支持PTP over Ethernet n 提高了时戳的表示精度(1ns->15fs) n 支持透明钟,减少误差累积 n 支持单播MAC地址 n 支持基于TLV的协议扩展 …
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

IEEE 1588v2名词术语
IEEE 1588v2可以用于在分组网络中分配时钟(频率,相位,时间)。其时钟具有以下一些基本概念:
按主次分:
§ Grandmaster:全网最高级时钟(比如来自GPS),必须作为Master,不能同步于任何其他时钟。 § 主时钟Master :一个PTP同步域内只能同时有一个Master Clock(对应一个PTP端口),所有Slave Clock同步于此时钟。 § 从时钟Slave: 对应一个PTP端口,同步于其域内的Master Clock。
按模式分:
§ 普通钟 Ordinary Clock(OC):只具有一个PTP端口,只能同时作为Master或Slave § 透明钟 Transparent Clock (TC):中间节点,不必同步于Master Clock,只需要计算Syn message通 过该节点的时间,并在Syn Message中累计该时间,用于Slave时钟的offset计算。 § 边界钟 Boundary Clock (BC):同时具有多个PTP端口,不同端口可作为Master或Slave. ,不同的同步 域靠边界钟分割。
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

1588v2主从同步的基本原理(1)
MASTER t1 d1 SLAVE Sync Follow_up t2 t1, t2
Switch/Router Layer
Time stamp known by slave
FUNCTION-1: t2 – t1 = d1 + Offset t4 – t3 = d2 - Offset Delay=d1+d2;
* d1=d2
Offset=[(t2-t1)-(t4-t3)]/2 Delay_Req Delay_Resp
t1, t2, t3, t4
t3
t1, t2, t3
Delay=[(t2-t1)+(t4-t3)]/2
d2 t4
1588协议中对于 Delay的计算方式 决定了它对于网 络的基本前提: 主从之间双向时 延相等
1588协议属于通信协议,(而 非网络协议),它运行在 Ethernet或IP协议之上
10 | Presentation Title | Month 2009 All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

1588v2主从同步的基本原理 (2)
Master Clock Slave Clock Master Clock Slave Clock
PTP UDP IP
Time Stamp
PTP UDP IP
Time Stamp
PTP UDP IP
Time Stamp
PTP UDP IP
Time Stamp
MAC PHY
MAC PHY
MAC PHY
MAC PHY
传送网(PTN/OTN)
PTP message flow Switching Function Synchronization
通信的两个对等1588实体之间并不关心,也无法获知1588报文的具体承载技术 和物理层信息
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

BMC算法
BMC算法- 最佳时钟算法(Best Master Clock Algorithm), 简称BMC算法, 本地时钟通过BMC算法来决策哪个时钟是最好的,并据此来决定端口的下一 个状态值。在PTP子域中每个时钟独立运行BMC算法。 BMC算法由两个部分组成: § 数据集比较算法 ,(决定两个时钟端口中哪个更好 ) § 端口状态决策算法(提供每个端口的状态建议) BMC可用于判决最佳的时钟,也可以用来新发现时钟源 BMC可用于从网络通信中断以及时钟源失效中自动恢复,恢复的速度取决于 Announce报文的发送间隔和网络拓扑 BMC算法是在每个时钟的每个端口本地运行的,他规定数据比较的顺序和判 据,所使用的数据包括时钟级、时钟标识符、时钟变量、路径长度,是否边 界时钟等,通过比较可以得到每个时钟的每个端口当时应取的状态。
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

影响PTP1588时间恢复精度的主要因素
1,时延变化 (DELAY VARIATION)
2,双向不对称(ASYMMETRY)
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

时延变化
n
在分组网络中,胶片所给出的公式中Delay和Offset并不是固定值,而是时间的 函数: § Delay =Delay(t) § Offset =Offset(t)
n
由于分组网络中,各个中间节点对分组的排队(Queue),整形(Shaping)等 处理,以及分组业务流量的波动特性,照成了时延变化。通过各种设计方案以及 算法,例如采用透明钟(TC),本地的高稳晶振,伺服算法,锁相环技术, “Lucky Packet”等,努力克服由于时延变化带来的误差。
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

双向不对称
n n
1588PTP协议的最重要的前提是双向的对称。 但是,在实际网络中会带来各种不对称因素。例如,光纤链路的不对称,双向 流量不对称造成的处理时延的不对称,某些网络保护倒换机制形成的双向路径 的不一致造成的不对称。 随着网络覆盖范围的扩大和传输距离的增加,这种不对称的严重性会增加。 (PTP1588协议初衷不是一个广域网协议,这个和基于NTP协议和基于GPS的 同步方案不同)
n n
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

上海贝尔时间同步解决方案
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

PTN中的同步 (TD-SCDMA)
对于TD-SCDMA同步性能的要求 § 不同基站间空口同步信号相对时间误差小于3us (3GPP TR 25.836) § 基站空口载波频率稳定度优于+/-0.05ppm,输入抖动容限不小于±300ns § 承载端到端时间精确度小于800ns
对于PTN承载网同步功能的要求 §通过同步以太网实现基于GPS信号的地面频率同步。 §通过1588 v2实现 基于GPS信号的地面时间同步 § 1pps+ToD时间接口 § 频率同步接口(2Mbit/s)及线路定时 § 承载设备可作为普通钟,边界钟或p2p透明钟,构成端到端时钟分配网。
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

GPS传输替代方案对无线基站的要求
总体要求
§ § BBU+6级RRU级联时空口相对传输输出接口的时间精度小于±500ns,3级以下级联时 小于±300ns; 基站输入抖动容限小于± 100ns
现阶段1PPS+TOD方式的时间同步功能要求
§ § § 1PPS和TOD接口支持1+1保护 能够对上一级的长距离线路传输有时延修正功能 1PPS和TOD信息传送采用422电平方式,线序符合互通要求,接头采用RJ45或DB9。
IP化基站的以太网接口的时间同步功能要求
§ § § § Node B的以太网时钟同步支持Slave模式 Hub Node B的以太网时钟同步支持Master Node B的以太网时钟同步支持边界时钟 (Boundary Clock) 从Iub接口获取的时间同步信号精度与网络负荷轻重无关
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

GPS的传输替代对传输网络的要求
通用要求
§ § 全网设备都支持1588V2时间传送,路径延迟对称或者可以测量并补偿 要求全网频率同步,单站同步性能满足G.813 SEC标准, 单节点输出频率精度 <4.6ppm,网络同步性能满足G.823同步接口标准,网络输出频率精度<4.6ppm
PTN
§ § § § 经过边界时钟背靠背的相位精度指标:16ns(GE) 50ns(FE) 测试时间不小于24小时 经过不少于30边界时钟单节点输出相位精度不大于1us,输出抖动:±100ns,测试 时间不小于24小时 在BC模式下基于BMC算法实现1路时间的传送和网络保护 在TC模式下可实现多路时间的传递和保护
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

TD-SCDMA同步传输路标
现阶段,Node B 须支持GPS、北斗、GLONASS、BITS 等外接时钟源同步接口,2Mbit和 2Mhz的频率同步信号接口或线路定时(E1/STM-1)
n n
要求传输能够通过PTN网络,结合1588v2实现GPS信号的分配。基站侧和RNC侧传输设备分 别承担普通钟,或边界钟的功能。RNC和Node B提供GPS接口,至少需要支持1PPS +ToD。
随着无线设备IP化演进,Node B应支持1588v2同步功能,至少能配置为边界时钟 (Boundary Clock) 模式和支持Slave状态。在这种场景下,传输设备成为边界时钟或P2P的透明钟,和 Node B采用同一业务的FE/GE接口。
n
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

matlab实现:常见的离散时间信号

1. 单位抽样序列,或称为离散时间冲激,单位冲激: ? ??=01)(n δ 00≠=n n 如果)(n δ在时间轴上延迟了k 个单位,得到)(k n -δ即: ???=-01)(k n δ 0≠=n k n 2.单位阶跃序列 ? ??01)(n u 00<≥n n 在MATLAB 中可以利用ones( )函数实现。 );,1(N ones x = 3.正弦序列 )(cos )(0φω+=n A n x 这里, ,,0ωA 和φ都是实数,它们分别称为本正弦信号)(n x 的振幅,角频率和初始相位。 πω200=f 为频率。 4.复正弦序列 n j e n x ω=)( 5.实指数序列 n A n x α=)( 6. 随机序列 长度为N 的随机序列 基本数学函数参考教材P69页以及随后的使用说明。 注意使用行向量,特别是冒号运算符。 举例,长度为N 的实指数序列在MATLAB 中实现: n a x N n .^1 :0=-= 1. 单位采样 长度为N 的单位采样序列u(n)可以通过下面的MATLAB 命令获得:

u=[1 )1,1(-N zeros ]; 延迟M 个采样点的长度为N 的单位采样序列ud(n)(M

胸痛中心时钟统一方案

丹阳市人民医院胸痛中心的时间管理方案 一、时钟同步系统 时钟同步系统对于医院系统可以说是一个不可缺少的重要组成部分,其主要作用是为相关医医疗机构工作人员提供一个标准统一的时间信息,同时为各相关单位科室提供统一的标准时间系统同步,从而实现各相关单位及相关设备的时间标准统一。这对医院的服务质量起到了重要的作用。时钟同步系统工作原理是相关责任人手持移动终端接收3G基站时间信息来实现统一;所有相关设备均以此为标准校对,从而实现全系统统一的时间标准。并每周校对一次。 二、计时点及方法 1.发病时间:患者出现胸痛、胸闷、上腹不适等系列症状开始的时间 ·计时方法:主要是通过问诊方式获得 2.呼救时间:首次拨打120呼救或拨打医院急救电话求救 ·计时方法:120记录、本院胸痛中心记录或其他急救机构记录,已接听电话的时刻为准。 3.到达现场时间:院前急救人员、社区医生或其他医疗机构到达现场时间 计时方法:要求院前人员、网络医院、其他医疗机构准确计时 4.首份心电图时间:完成第一份12或18导联心电图的时间 计时方法:开始接触医疗人员到完成第一份心电图最后一个导联记录为准。在完成心电图操作后,应将准确时间记录在心电图上,包括年、月、日、时、分5.确诊STEMl时问:完成首份心电图后,由受过胸痛专科培训的医生或分诊护士确认为STEMI时间;或由我院医师使用胸痛中心微信群诊断为STEMI的时间。 6.抽血时间:首次抽血查Tnl、CKMB等的时间 计时方法:以抽血护士完成标本采集时刻为计时点。 7.开始转运时间:在确诊为ACS并离开现场/医院的时间。 . 计时方法:由转运医护人员在接到病人启动车辆时计时 8. 给药时间:在确定为ACS患者,排除各类用药禁忌症后,给予服用肠溶阿司

IEEE1588V2时钟同步方案

IEEE1588V2 PTP时钟同步方案介绍 一实现原理 1.1 PTP系统概述 PTP为Precise Time Protocol的简称,遵循IEEE 1588协议标准,1588协议是解决IP传输的基站之间同步问题的协议。以前的NODEB基站从GPS获取同步信号1PPS和时间信息TOD,为保证时间同步,每个NODEB都需要一个GPS。而1588协议提出通过PTP消息进行时钟信息的传递,NODEB接受到同样的时钟信息作为本NODEB的同步时间信息,从而实现整个系统时钟的同步。 如1.1,PTP系统的同步时钟系统。同一个通路上(Path A, Path B , Path C和PathD)获取相同的时钟信息,这样只需要边界时钟(NODEB13和NODEB14;NODEB13和NODEB15;)实现同步即可以实现系统时钟的同步。 图1.1 PTP同步时钟系统示意图 在PTP系统中分为主/从两种时钟提取的方式。当本NODEB为主时钟方式,需要有GPS,通过GPS获取TOD时间消息和1PPS同步信号。然后将TOD消息和1PPS封装在UDP数据包中通过以太网连路进行传输。当本NODEB为从时钟方式,需要从以太网接受的数据中,解析出该UDP数据包,获取时间信息和同步信息。 另外PTP系统之间的时间信息是通过MAC地址进行寻址传输的。 NodeB支持主从两种模式,选用SEMTECH的ACS9510时钟芯片,PTP系统的实现方式如图1.2。

图1.2 PTP系统的实现方式 1.2 PTP时钟提取模块框图 BBU1324A设备支持IEEE1588 PTP HOST&SLAVE的功能, BBU1327A设备支持IEEE1588 PTP SLAVE,都采用SEMTECH的ACS9510。ACS9510支持IEEE1588 V2.0协议,PTP时钟提取模块 的功能框图如图1.3。 图1.3 PTP时钟提取模块的功能框图 当PTP模块工作在slave模式时,时钟信息通过iub口接受到NP,NP根据MAC地址 进行转发,把包含时钟信息的数据通过MII接口转发给时钟提取芯片ACS9510,ACS9510

用MATL新编实现常用的离散时间信号及其时域运算

用M A T L新编实现常用的离散时间信号及其 时域运算 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

实验四用MATLAB实现常用的离散时间信号及其时域运算 —— 摘要:在MATLAB中,只能用向量来表示离散时间信号。与连续信号不同,离散时 间信号无法用符号运算来表示。用适当的MATLAB语句表示出信号后,就可以利用MATLAB的绘图命令stem来绘出直观的信号波形图,stem是专门用于绘制离散时 间信号的。在MATLAB中离散序列的时域运算和变换不能用符号运算来实现,而必 须用向量表示的方法,即在MATLAB中离散序列的相加、相乘需表示成两个向量的 相加、相乘,因而参加运算的两序列向量必须有相同的维数。 一、实验目的:(1)学习MATLAB语言及其常用指令; (2)学习和掌握用MATLAB语言产生离散时间信号的编程方法; (3)通过编程绘制出离散时间信号的波形,加深理解信号的时域运 算。 二、实验内容:(1)运用MATLAB的绘图指令绘制离散时间信号; (2)用MATLAB语言实现离散时间信号的时域运算。 三、实验原理:(1)单位阶跃序列和单位样值序列。 离散时间信号只在某些离散的瞬时给出信号的值,因此,它是时间上不连续的 序列。单位阶跃序列和单位样值序列在离散时间信号与系统的分析中是两个非 常典型的序列,分别记为u(n)和δ(n)。它们的定义分别如下: 1 n≥0 1 n≥0 u(n)= δ(n)= 0 n<0 0 n≠0

若单位阶跃序列的起始点为n0,单位样值序列出现在n0时刻,则表达式分别为: 1 n≥n0 1 n=n0 u(n-n0)= δ(n-n0)= 0 n

GPS时钟同步系统在网络系统中的技术方案

前言 随着计算机和网络通信技术的飞速发展,火电厂热工自动化系统数字化、网络化的时代已经到来。这一方面为各控制和信息系统之间的数据交换、分析和应用提供了更好的平台、另一方面对各种实时和历史数据时间标签的准确性也提出了更高的要求。 使用价格并不昂贵的GPS时钟来统一全厂各种系统的时钟,已是目前火电厂设计中采用的标准做法。电厂内的机组分散控制系统(DCS)、辅助系统可编程控制器(PLC)、厂级监控信息系统(SIS)、电厂管理信息系统(MIS)等的主时钟通过合适的GPS时钟信号接口,得到标准的TOD(年月日时分秒)时间,然后按各自的时钟同步机制,将系统内的从时钟偏差限定在足够小的范围内,从而达到全厂的时钟同步。 一、GPS时钟及输出 1.1 GPS时钟 全球定位系统(Global Positioning System,GPS)由一组美国国防部在1978年开始陆续发射的卫星所组成,共有24颗卫星运行在6个地心轨道平面内,根据时间和地点,地球上可见的卫星数量一直在4颗至11颗之间变化。 GPS时钟是一种接受GPS卫星发射的低功率无线电信号,通过计算得出GPS时间的接受装置。为获得准确的GPS时间,GPS时钟必须先接受到至少4颗GPS 卫星的信号,计算出自己所在的三维位置。在已经得出具体位置后,GPS时钟只要接受到1颗GPS卫星信号就能保证时钟的走时准确性。 作为火电厂的标准时钟,我们对GPS时钟的基本要求是:至少能同时跟踪8颗

卫星,有尽可能短的冷、热启动时间,配有后备电池,有高精度、可灵活配置的时钟输出信号。 1.2 GPS时钟信号输出 目前,电厂用到的GPS时钟输出信号主要有以下三种类型: 1.2.1 1PPS/1PPM输出 此格式时间信号每秒或每分时输出一个脉冲。显然,时钟脉冲输出不含具体时间信息。 1.2.2 IRIG-B输出 IRIG(美国the Inter-Range Instrumentation Group)共有A、B、D、E、G、H几种编码标准(IRIG Standard 200-98)。其中在时钟同步应用中使用最多的是IRIG-B编码,有bc电平偏移(DC码)、1kHz正弦载波调幅(AC码)等格式。IRIG-B 信号每秒输出一帧(1fps),每帧长为一秒。一帧共有100个码元(100pps),每个码元宽10ms,由不同正脉冲宽度的码元来代表二进制0、1和位置标志位(P),见图1.2.2-1。 为便于理解,图1.2.2-2给出了某个IRIG-B时间帧的输出例子。其中的秒、分、时、天(自当年1月1日起天数)用BCD码表示,控制功能码(Control Functions,CF)和标准二进制当天秒数码(Straight Binary Seconds Time of Day,SBS)则以一串二进制“0”填充(CF和SBS可选用,本例未采用)。 1.2.3 RS-232/RS-422/RS-485输出 此时钟输出通过EIA标准串行接口发送一串以ASCII码表示的日期和时间报文,每秒输出一次。时间报文中可插入奇偶校验、时钟状态、诊断信息等。此输出目前无标准格式,下图为一个用17个字节发送标准时间的实例:

1588V2时间同步信号解决方案

广东移动-上海贝尔 基于PTN网络的1588时间同步技术
上海贝尔股份有限公司 2010年11月

TD基站对于同步的要求和现状分析
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

TD基站频率和时间同步要求
对于TD-SCDMA同步性能的要求 TD-SCDMA 的同步需求由3GPP TR 25.836定义。TD-SCDMA基站需要的频率 精度为±50 ppb(0.05ppm)。 此外,还需要相邻基站间的相位同步,误差要求在3 μs 以内,即基站和RNC (或PGW)之间的相位误差应该不超过1.5 μs。
TD-SCDMA空口时间同步精度要求: ∣△T1+ △T2+ △T3 ∣<±1.5us
GPS
Master Clock
Iub Backhaul Node B
△T2
按照最坏情况,精度分配如下: ∣△T1∣< 200 ns ∣△T3∣1 BBU+1 RRU情况下为300ns,1 BBU+6 RRU情况下为500ns 因此要求∣△T2∣的范围:800~1000ns
△T1
△T3
△T1:时间源精度
△T2:回传网络偏差
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX
△T3:基站偏差

目前 GPS 定时存在问题及替代方案
目前基站通过GPS保证空口同步:
GPS
n n n
对基站安装提出一定的要求 基站成本 安全性问题
GPS替代方案:
n n n
单星方案 北斗 时间同步网 传输分配
Node B
Iub Backhaul
RNC
n
传输分配方案 (借助IEEE 1588):
n n n
通过MSTP开销 通过MSTP净荷 通过PTN
All Rights Reserved ? Alcatel-Lucent 2008, XXXXX

华东电网时钟统一(同步)系统技术规范标准

华东电网时间同步系统技术规范 Technical Specification for Time Synchronism System of EastChina Electric Power Network 前言 华东电网已初步建成以超高压输电、大机组和自动化为主要特征的现代化大电网。它的运行实行分层控制,设备的运行往往要靠数百公里外的调度员指挥;电网运行瞬息万变,发生事故后更要及时处理,这些都需要统一的时间基准。为保证电网安全、经济运行,各种以计算机技术和通信技术为基础的自动化装置广泛应用,如调度自动化系统、故障录波器、微机继电保护装置、事件顺序记录装置、变电站计算机监控系统、火电厂机组自动控制系统、雷电定位系统等等。这些装置的正常工作和作用的发挥,同样离不开统一的全网时间基准。 自动化装置内部都带有实时时钟,其固有误差难以避免,随着运行时间的增加,积累误差越来越大,会失去正确的时间计量作用,因此,如何对实时时钟实现时间同步,达到全网的时间统一,长期来一直是电力系统追求的目标。目前,这些装置内部的实时时钟一般都带有时间同步接口,可以由某一种与外部输入的时间基准同步或自带高稳定时间基准的标准时钟源,如GPS标准时间同步钟对其实现时间同步,这为建立时间同步系统,实现时间统一,提供了基础。有越来越多的单位已经建立或将要建立这样的时间同步系统。为了规范、指导时间同步系统的管理、设计、安装、测试和运行,特制订《华东电网时间同步系统技术规范》(以下简称《规范》)。 本《规范》根据国内外涉及时间、时间统一技术的有关标准、建议、规范或规约,结合华东电网“统一时钟系统技术研究”的实践和有关时间同步的具体情况制订的。本《规范》的贯彻、实施,对提高华东电网全网时间统一准确度和改进系统运行、管理质量将起推动作用。 本标准由国家电力公司华东公司提出。 本标准由国家电力公司华东公司归口。 本标准由国家电力公司华东公司生产科技部负责起草并解释。 本标准主要起草人:朱缵震陈洪卿宋金安

离散时间信号表与运算

离散时间信号表与运算

————————————————————————————————作者:————————————————————————————————日期:

实验一 离散时间信号的表示与运算 一 实验目的 1、熟悉MATLAB 的绘图函数; 2、掌握单位取样序列、单位阶跃序列、矩形序列和正余弦序列的产生方法; 3、掌握离散时间信号基本运算的MATLAB 实现; 4、掌握离散时间信号线性卷积和运算的MATLAB 实现。 二 实验设备 1、计算机 2、MA TLAB R2007a 仿真软件 三 实验原理 1)序列相加和相乘 设有序列)(1n x 和)(2n x ,它们相加和相乘如下: ) ()()()()()(2121n x n x n x n x n x n x ?=+= 注意,序列相加(相乘)是对应序列值之间的相加(相乘),因此参加运算的两个序列必须具有相同的长度,并且保证位置相对应。如果不相同,在运算前应采用zeros 函数将序列左右补零使其长度相等并且位置相对应。在MATLAB 中,设序列用x1和x2表示,序列相加的语句为:x=x1+x2;然而要注意,序列相乘不能直接用x=x1*x2,该式表示两个矩阵的相乘,而不是对应项的相乘。对应项之间相乘的实现形式是点乘“.*”,实现语句为:x=x1.*x2。 2)序列翻转 设有序列:)()(n x n y -=,在翻转运算中,序列的每个值以n=0为中心进行翻转,需要注意的是翻转过程中序列的样值向量翻转的同时,位置向量翻转并取反。MATLAB 中,翻转运算用fliplr 函数实现。设序列)(n x 用样值向量x 和位置向量nx 表述,翻转后的序列 )(n y 用样值向量y 和位置向量ny 描述。 3)序列的移位 移位序列)(n x 的移位序列可表示为:)()(0n n x n y -=,其中,00>n 时代表序列右移 0n 个单位;00

大楼工程弱电时钟系统解决方案

大楼工程弱电系统 时钟系统 解决方案 西安同步电子科技有限公司二零一四年

大楼工程弱电时钟系统解决方案 时钟系统概述 概述 根据大楼建设工程弱电系统设计要求,本工程设置时钟系统用于统一区域内的时间信息。 标准时钟系统是为工作人员准确、标准的时间,同时也可以为其它智能化系统提供标准的时间源。标准时钟系统的设计将结合实际需要,保证相关人员都能清晰地看到的时钟,并掌握准确时间。 本工程时钟系统主要由网络时间服务器、网络数字式子钟组成。 本系统从GPS地球同步卫星上获取标准时钟信号信息,将这些信息TCP/IP网络传输,传输到各个壁挂网络数字时钟,实现整个子母钟系统的时间统一。 系统特点 精确度高 本系统能够接收来自GPS的标准时间信号,通过网络授时协议NTP/SNTP发送至系统的各个部分,实现无累积误差运行。 可靠性高(系统冗余) 本系统对时间服务器的关键设备都采用无风扇设计,具有四个独立的网络授时接口,当某个网络授时单元发生故障时,能够切换到另外一个单元,实现冗余备份的目的。 兼容性好 系统采用分布式结构,由标准化的软件及硬件组成,用户可按照需要灵活配置和扩容。 根据将来发展的需要,可以将子钟接口分别扩展到128个或256个以满足系统扩容要求。 维护方便 本系统所有主控板、信号板、接口板均采用了目前国际上流行的模块化设计,使相同规格的设备和接口板具有可互换性;积木式结构还为业主未来系统的增容和扩展提供极大的便利。 时钟系统设计与制造技术规范 系统设计规范 采用标准 电气装置安装工程施工及验收规范GBJ/232-92 设备可靠性试验规范GB50807-86 国际电气与电子工程师协会(IEEE) 国际电子学会(IEC)

用MATLAB实现常用的离散时间信号及其时域运算

实验四用MATLAB实现常用的离散时间信号及其时域运算 —— 摘要:在MATLAB中,只能用向量来表示离散时间信号。与连续信号不同,离散时间信号无法用符号运算来表示。用适当的MATLAB语句表示出信号后,就可以利用MATLAB的绘图命令stem来绘出直观的信号波形图,stem是专门用于绘制离散时间信号的。在MATLAB中离散序列的时域运算和变换不能用符号运算来实现,而必须用向量表示的方法,即在MATLAB中离散序列的相加、相乘需表示成两个向量的相加、相乘,因而参加运算的两序列向量必须有相同的维数。 一、实验目的:(1)学习MATLAB语言及其常用指令; (2)学习和掌握用MATLAB语言产生离散时间信号的编程方法; (3)通过编程绘制出离散时间信号的波形,加深理解信号的时域运算。 二、实验内容:(1)运用MATLAB的绘图指令绘制离散时间信号; (2)用MATLAB语言实现离散时间信号的时域运算。 三、实验原理:(1)单位阶跃序列和单位样值序列。 离散时间信号只在某些离散的瞬时给出信号的值,因此,它是时间上不连续的序列。单位阶跃序列和单位样值序列在离散时间信号与系统的分析中是两个非常典型的序列,分别记为u(n)和δ(n)。它们的定义分别如下: 1 n≥0 1 n≥0 u(n)= δ(n)= 0 n<0 0 n≠0 若单位阶跃序列的起始点为n0,单位样值序列出现在n0时刻,则表达式分别为: 1 n≥n0 1 n=n0 u(n-n0)= δ(n-n0)= 0 n

单位样值序列与连续时间的单位冲激信号的异同。 (2)离散时间信号的时域运算。 与连续时间系统的研究类似,在离散系统分析中,经常遇到离散时间信号的运算,包括两信号的相加、相乘以及序列自身的移位、反褶、尺度等等,也需要了解在运算过程中序列的表达式以及对应的波形的变化。 序列x(n)的移位:x(n-n0) 序列x(n)的反褶:x(-n) 序列x(n)的尺度变换:x(an) 两序列x1(n)与x2(n)的相加减:x1(n) ±x2(n) 两序列与的相乘:x1(n) ·x2(n) (3)学习如何使用MATLAB语言产生离散时间信号并对离散时间信号进行时域运算。四、实验任务: (1)编制用于产生下列信号的通用程序,要求对于任意给定的参数都能实现所要求的信号。调试并运行这些通用的程序。 ①x(n)=Aδ(n-n0) 程序:function un(t1,t2,t0) t=t1:t2; n=length(t); tt=t1:t2; n1=length(tt); f=zeros(1,n); f(1,t0-t1+1)=3; stem(t,f),grid on title('μ¥??3??÷D?o?') axis([t1,t2 -0.2 4])

电力时钟同步系统解决方案

电力GPS时钟同步系统解决方案 北京创想京典科技发展有限公司 科 技 领先铸就最佳

什么是时间? 时间是一个较为抽象的概念,爱因斯坦在相对论中提出:不能把时间、空间、物质三者分开解释,"时"是对物质运动过程的描述,"间"是指人为的划分。时间是思维对物质运动过程的分割、划分。 在相对论中,时间与空间一起组成四维时空,构成宇宙的基本结构。时间与空间都不是绝对的,观察者在不同的相对速度或不同时空结构的测量点,所测量到时间的流逝是不同的。广义相对论预测质量产生的重力场将造成扭曲的时空结构,并且在大质量(例如:黑洞)附近的时钟之时间流逝比在距离大质量较远的地方的时钟之时间流逝要慢。现有的仪器已经证实了这些相对论关于时间所做精确的预测,并且其成果已经应用于全球定位系统。另外,狭义相对论中有“时间膨胀”效应:在观察者看来,一个具有相对运动的时钟之时间流逝比自己参考系的(静止的)时钟之时间流逝慢。 就今天的物理理论来说时间是连续的,不间断的,也没有量子特性。但一些至今还没有被证实的,试图将相对论与量子力学结合起来的理论,如量子重力理论,弦理论,M理论,预言时间是间断的,有量子特性的。一些理论猜测普朗克时间可能是时间的最小单位。

什么是时间? 根据斯蒂芬·威廉·霍金(Stephen William Hawking)所解出广义相对论中的爱因斯坦方程式,显示宇宙的时间是有一个起始点,由大霹雳(或称大爆炸)开始的,在此之前的时间是毫无意义的。而物质与时空必须一起并存,没有物质存在,时间也无意义。

卫星时钟系统为什么含有精确的时间信息? 地球本身是一个不规则的圆,加上地球自转和公转的误差,如果仅仅依靠经度、纬度、海拔高度三个参数来定位的偏差会很大,所以 引入了一个时间参数,每个卫星都内置了一个高稳定度的原子钟!

IEEE1588精密网络同步协议(PTP)-v2.0协议浅析

IEEE1588精密网络同步协议(PTP)-v2.0协议浅析 (2010-06-27 19:27:51) https://www.sodocs.net/doc/1c6258476.html,/s/blog_4b0cdab70100k4fv.html 1 引言 以太网技术由于其开放性好、价格低廉和使用方便等特点,已经广泛应用于电信级别的 网络中,以太网的数据传输速度也从早期的10M提高到100M,GE,10GE。40GE,100GE 正式产品也于2009年推出。 以太网技术是“即插即用”的,也就是将以太网终端接到IP网络上就可以随时使用其提 供的业务。但是,只有“同步的”的IP网络才是一个真正的电信级网络,才能够为IP网络传 送各种实时业务与数据业务的多重播放业务提供保障。目前,电信级网络对时间同步要求十 分严格,对于一个全国范围的IP网络来说,骨干网络时延一般要求控制在50ms之内,现 行的互联网网络时间协议NTP(Network Time Protocol),简单网络时间协议SNTP(Simple Network Time Protocol)等不能达到所要求的同步精度或收敛速度。基于以太网的时分复用 通道仿真技术(TDM over Ethernet)作为一种过渡技术,具有一定的以太网时钟同步概念, 可以部分解决现有终端设备用于以太网的无缝连接问题。IEEE 1588标准则特别适合于以太 网,可以在一个地域分散的IP网络中实现微秒级高精度的时钟同步。本文重点介绍IEEE 1588技术及其测试实现。 2 IEEE 1588PTP介绍 IEEE 1588PTP协议借鉴了NTP技术,具有容易配置、快速收敛以及对网络带宽和资源 消耗少等特点。IEEE1588标准的全称是“网络测量和控制系统的精密时钟同步协议标准 (IEEE 1588 Precision Clock Synchronization Protocol)”,简称PTP(Precision Timing Protocol),它的主要原理是通过一个同步信号周期性的对网络中所有节点的时钟进行校正 同步,可以使基于以太网的分布式系统达到精确同步,IEEE 1588PTP时钟同步技术也可以 应用于任何组播网络中。 IEEE 1588将整个网络内的时钟分为两种,即普通时钟(Ordinary Clock,OC)和边界 时钟(Boundary Clock,BC),只有一个PTP通信端口的时钟是普通时钟,有一个以上PTP

《离散时间信号的表示及运算》

实验一 离散时间信号的表示及运算 一、实验目的 1.掌握离散时间信号的时域表示; 2.掌握离散时间信号的基本运算; 3.用MA TLAB 表示的常用离散时间信号及其运算; 4.掌握用MA TLAB 描绘二维图形的方法。 二、实验原理 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。离散时间信号的波形绘制在MATLAB 中一般用stem 函数。 对离散时间序列实行基本运算可得到新的序列,这些基本运算主要包括加、减、乘、除、移位、反折等。两个序列的加减乘除是对应离散样点值的加减乘除,因此,可通过MATLAB 的点乘和点除、序列移位和反折来实现。 一些常用序列 1.单位冲激序列(单位抽样))(n δ ?? ?≠==0,00,1)(n n n δ (1) 2.单位阶跃序列)(n u ???=,,01)(n u 00<≥n n (2) 3.矩形序列)(n R N ???=,,01)(n R N 其他10-≤≤N n (3) 4.正弦序列和指数序列 正弦序列 )s i n ()(0?ω+=n A n x (4) 式中:A 为幅度,0ω为数字域的频率,它反映了序列变化的速率,?为起始相位。 实指数序列 )()(n u a n x n = (5)

式中,a 为实数。当1a 时,序列是发散的。a 为负数时,序列是摆动的。 复指数序列 n j e n x )(0)(ωσ+= (6) 它具有实部和虚部,0ω是复正弦的数字域频率。 三、实验内容 1.用Matlab 编制程序分别产生单位抽样序列)(n δ、单位阶跃序列)(n u 、矩形序列)()(5n R n x =、正弦序列)8 sin(2)(n n x π=、复指数序列n j e n x )641()(π+=,并画波形图; 绘制)(n δ波形 绘制n j e n x ][)()2.01.0(π+-=的实部和虚部的波形。

NTP时钟同步方案

NTP时钟同步系统 技术方案

目录 目录 (2) 一、系统技术规范 (3) 二、时钟系统设计 (5) 1、概述 (5) 1.1、系统特点 (5) 1.2、优化后的时钟同步系统具有以下优势 (5) 2、系统设计原则 (5) 2.1、安全性、可靠性 (6) 2.2、经济合理性 (6) 2.3、先进性、成熟性、可持续性 (6) 2.4、标准性、开放性、互联互通性 (6) 2.5、可用性 (6) 2.6、可兼容性和可扩充性 (7) 2.7、抗干扰性 (7) 2.8、环保低功耗 (7) 2.9、制造工艺规范化 (7) 2.10、设备管理集中化 (7) 3、时钟同步系统架构 (7) 3.1、方案优化的必要性 (7) 3.2、时钟同步系统优化方案 (8) 3.3、时钟同步系统原理 (9) 3.4、工作原理 (9) 4、系统设备结构 (10)

一、系统技术规范 系统所遵循的国际、国家、行业及企业标准包括: GBJ42-81《工业企业通信设计规范》 GBJ79-85《工业企业通信接地设计规范》 GB/T 4857.1-92《包装运输包装件试验时各部位的标示方法》 GB 3873-83《通信设备产品包装通用技术条件》 GB 50174-93《电子计算机机房设计规范》 GB50807-86《设备可靠性试验规范》 GB 50254-96《电气装置安装工程施工及验收规范》 GB 50311-2007《综合布线系统工程设计规范》 YD/T 1012-1999《数字同步网节点时钟系列及其定时特性》 JGJ/T 16-92《民用建筑电气设计规范》 YD/T 5089-2005《数字同步网工程设计规范》 YD/T 5027-2005《通信电源集中监控系统工程设计规范》 YD 5098-2005《通信局(站)防雷与接地工程设计规范》 YD/T5120-2005《无线通信系统室内覆盖工程设计规范》 GA/T331-2001《公安移动通信网警用自动级通信系统工程设计技术规范》电磁兼容和防雷设计相关标准包括: IEC61000-6-2《工业环境中发射标准》 IEC61000-6-4《工业环境中抗扰度》 IEC61000-4-2《静电放电抗扰度试验》 IEC61000-4-3《射频电磁场辐射抗扰度试验》 IEC61000-4-4《电快速瞬变脉冲群抗扰度试验》 IEC61000-4-5《浪涌(冲击)抗扰度试验》 IEC61000-4-6《射频场感应的传导骚扰抗扰度》 IEC CISPR 22 1997《信息技术设备的无线电干扰限值和测量方法》 GB50057-94《建筑物防雷设计规范》 IEC61312-95《雷电电磁脉冲的防护》 YD5068-98《移动通信基站防雷与接地设计规范》

IEEE1588和高精度时间同步的方法

IEEE1588和高精度时间同步的方法[作者:阮於东] IEEE1588和高精度时间同步的方法 摘要 本文介绍网络时间同步和最佳时钟算法的概念,介绍用于分散测量和控制的精确时间同步协议IEEE1588的原理。 关键词:时间同步:时间标记:最佳时钟算法: IEEE1588 and Precise Time Synchronization Method Ruan Yu-dong SEARI Abstract:The paper introduce the time synchronization and the best master algorithm concept ,descripts the precise time synchronization principle of IEEE1588 protocol for networked measurement and control system 0引言 控制系统中的时间同步问题早就出现,而随着系统范围的扩大和分散控制的发展,通过网络联系的分散控制节点之间的时间同步变得越来越重要。系统中时间的使用通常有两种不同的应用类型:时间标记性应用和基于频率的应用。如配电应用可代表时间标记应用,在这种系统中绝对时间很重要,因为特定事件的定时不仅需要与本系统内的其他事件的时间作比较,而且由于电力系统的连贯性,经常可能需要与外部相关系统的事件的时间作比较。哪一个事件先发生?是电网A先跳闸,还是电网B先跳闸?这些事件相隔多少时间?在实际应用中这些事件可能发生在不同的地理区域。由于这个原因需要绝对时间值的概念,并且这个时间基准需要校正为世界各地使用的常用时间。由于特定的事件和报警是被打上时间标记的,只要这些时间标记具有相同的基准,就可以在事后进行这些事件的时间顺序的分析。 另一方面,在控制系统中存在大量基于频率的应用,如通过网络连接的多个分布驱动的协调控制,它们需要精确同时执行,因为它们不能过度拉伸或损坏驱动机架之间的织物。在这些应用中当这些驱动器是同步工作时过程最佳。如果每个驱动器精确地在同时采样反馈和执行控制算法,同时执行控制命令,那么作用力的施加是协调的。在这种应用中绝对时间不是很重要,但是控制周期的同步非常重要。 解决这些问题的关键是时间同步,时间同步的目的就是要将时间基准准确地传递到各控制点,传递并不困难,难于达到的是传递的精度。在2002年出现的IEEE1588标准(网络化测量和控制系统的精确时钟同步协议,通常称为Precision Time Protocol[PTP])在这方面取得了重大进展。使用这个方法并不需要很多资源就可以达到100纳秒级的同步精度。 IEEE1588标准出现后得到业界高度重视,在2002年,2004年举办专业会议,2006年将举办第三次专业会议。工业控制的领先厂商Rockwell,Siemens等立即投入产品开发,IEC已将它转化为IEC61588-2004标准,这个标准已为Ethernet/IP,Profinet,PowerLink,EtherCat 等基于以太网的总线采用,成为当前普遍采用的方法。

离散时间信号与系统

实验:离散时间信号与系统的时域分析 一、实验目的 1、熟悉和掌握常用的用于信号与系统时域仿真分析的MA TLAB函数; 2、掌握离散时间信号的MATLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程; 3、牢固掌握系统的单位序列响应的概念,掌握MATLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。 基本要求:掌握用MATLAB描述离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换和运算,并且以图形的方式再现各种信号的波形。掌握线性时不变离散系统的时域数学模型用MATLAB描述的方法,掌握线性常系数差分方程的求解编程。 二、实验原理 信号(Signal)一般都是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就是随着海拔高度的变化而变化的。一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴和纵轴,因此,图像信号具有两个或两个以上的独立变量。 在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量是否是时间变量。 在自然界中,大多数信号的时间变量都是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力和声音信号就是连续时间信号的例子。但是,还有一些信号的独立时间变量是离散变化的,这种信号称为离散时间信号。前面提到的股票市场的日收盘指数,由于相邻两个交易日的日收盘指数相隔24小时,这意味着日收盘指数的时间变量是不连续的,因此日收盘指数是离散时间信号。 而系统则用于对信号进行运算或处理,或者从信号中提取有用的信息,或者滤出信号中某些无用的成分,如滤波,从而产生人们所希望的新的信号。系统通常是由若干部件或单元组成的一个整体(Entity)。系统可分为很多不同的类型,例如,根据系统所处理的信号的不同,系统可分为连续时间系统(Continuous-time system)和离散时间系统(Discrete-time system),根据系统所具有的不同性质,系统又可分为因果系统(Causal system)和非因果系统(Noncausal system)、稳定系统(Stable system)和不稳定系统(Unstable system)、线性系统(Linear system)和非线性系统(Nonlinear system)、时变系统(Time-variant system)和时不变系统(Time-invariant system)等等。 然而,在信号与系统和数字信号处理中,我们所分析的系统只是所谓的线性时不变系统,这种系统同时满足两个重要的基本性质,那就是线性性和时不变性,通常称为线性时不变(LTI)系统。 1. 信号的时域表示方法 1.1将信号表示成独立时间变量的函数

离散时间信号的表示及运算

第2章 离散时间信号的表示及运算 2.1 实验目的 ● 学会运用MATLAB 表示的常用离散时间信号; ● 学会运用MATLAB 实现离散时间信号的基本运算。 2.2 实验原理及实例分析 2.2.1 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MATLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 )0()0(01)(≠=???=n n n δ (12-1) 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例2-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1])

PTN 1588v2时间同步技术分析

1 概述 IEEE1588v2有效解决了GPS同步成本高、安装困难等问题,是承载TD-SCDMA/LTE网络的关键技术之一。1588v2有3种时钟模式:普通时钟(OC)、边界时钟(BC)和透明时钟(TC)。OC通常是网络始端或终端设备,该设备只有一个1588端口且只能作为Slave(从端口)或Master(主端口)。BC是网络中间节点时钟设备,该设备有多个1588端口,其中一个端口可作为Slave,设备系统时钟的频率和时间同步于上一级设备,其他端口作为Master,可以实现逐级的时间传递。TC是网络中间节点时钟设备,可分为E2E(EndtoEnd)和P2P (PeertoPeer)两种。 1588v2最重要的技术是BMC算法(BestMasterClockAlgorithm,最佳主时钟算法),其作用为:建立主从同步链,保证时钟路由不成环;支持多个时间源的自由选择和自动切换;主用时钟链路出现故障后,能自动快速倒换到备用时钟链路。本地时钟通过BMC算法来决策哪个时钟是最好的,并据此来决定端口的下一个状态值是Master、Slave还是Passive。在PTN中,1588v2实现时间同步主要有BC和TC两种模式。 2 BC模式 BC模式又可分为带外和带内两种。图1所示为BC带外模式,主时钟是RNC/BTS,与主时钟直接相连的PTN节点A通过外时间同步接口1PPS(PulsePerSecond,秒脉冲)+TOD (TimeofDate)接口同步到RNC/BTS,其后主从同步链上各个节点采用BC模式同步其上一个节点,实现逐级同步。在图1中假设已建立三条主从同步链,即A-D-E、A-D-C-F 和A-D-C-F-G,主从同步链的建立可通过BMC 算法自动生成或通过人工配置完成。 RNC:无线网络控制器 BTS:基站收发器 Node B:3G移动基站 以主从同步链A-D-C-F-G为例分析,可看出BC带外模式特点为: ⑴主从同步链的首尾节点(A、G)运行OC模式,其中节点A运行主PTP模式,节点G运行从PTP模式,其余中间节点运行BC模式,RNC、基站可不用支持1588v2协议处理; ⑵它是一个逐级同步的过程,节点D同步到A,然后节点C再同步到D,依此类推,最终实现NodeB和RNC的时间同步; ⑶PTN中主从端口数量一样,即有一个主端口就有一个从端口; ⑷每条链路上的PTP包流量与网络节点数无关; ⑸同步链的建立需要人为指定或运行PTP中的BMC算法;

相关主题