搜档网
当前位置:搜档网 › 组合导航姿态解算学习笔记

组合导航姿态解算学习笔记

组合导航姿态解算学习笔记
组合导航姿态解算学习笔记

2015-3-9

1.参考丁君《AHRS航姿解算中的两种滤波方法的比较研究》,发现使用加速度的数据可以解算横滚角(roll)和俯仰角(pitch).

2.因开发板上单片机无ADC,无法对购买模块进行处理,故仅仅参考附带的程序。希望可以将adxl335模块的示例程序转移到mpu6050中,陀螺仪的数据暂时不用,仅仅使用加速度计的数据进行两个角度的解算。

3.老师想让我研究载体做圆周运动时加速度的解算,但是我想先从静态的开始,我觉得静态下的测试是基础,上来就研究最难的我接受不了。所以我想先用三轴的加速度数据先把静态下的姿态解算出来。

4.我发现如果我仅仅可以解算静态下的姿态,无法解决载体做回转运动下的姿态我还是完不成本科生的任务。因为本科生的任务是汽车姿态测量,所以光静止是不够的。

2015-3-11

5.校正这一环节是我所没有考虑到的,因为有偏差还有灵敏度不匹配。但前提是我要先解算出来。

6.论文不应该是最后完成的,论文是边做边写的,最后应该是是复制粘贴修改格式和布局而已。

7.

8.可以尝试将adxl335的示例程序(淘宝模块)移植到MPU6050中去解算横滚角和俯仰角。2015-3-12

1.为什么示例程序产生的六轴数据跟我想象的不一样那呢?加速度计的数据不是9.8,没有小数点。但是我发现买的arm模块数据也不是9.8,而且我用手机里的磁铁去干扰磁强计时,

发现磁强计的数据发生了很大的变化,如果真的要使用磁强计一定要注意周围的磁场干扰。

看来加速度计的数据是可以用的,因为别人都可以做到。

为什么示例程序中减去偏移量,而我却不能减去偏移量,比如+x 的加速度最大值是16000,减去之后,在+x 该等于零时,又出现了-16000,这是我更不想看到的。

2.extern float atan2 (float y, float x);程序格式又搞错了,人家不是atan2 (float y/float x),否则很容易出现错误too many actual parameters.

3.现在的状态是不能进行全姿态解算,x 轴的显示范围是(90o~270o),和我想要的范围(-90o~+90o)正好差了180o,但是减去还不行,减去后串口上只显示一个负号。还好汽车达不到那个角度±90o,哪怕是在汽车测试中,但是飞机能达到啊。所以这个问题最终还是要解决的。我想先把一个角度解算出来,然后去推广。

我在主函数里改动pitch=(int)(((atan(ratio)*180)/3.1415926)+180);这一句不行,后来我改动void lcd_printf(char *s,int temp_data)函数里面,在第一句我加上了temp_data-=180;然后俯仰角就输出正常了,也不知道为什么。

4.uchar 是一个8位无符号数,表示范围0到255,而uint 是十六位无符号数,表示范围0到6553

5.但是要注意的是8位单片机。(摘自网络)

5.现在能解一个俯仰角,下一个是横滚角。我想这两个角的性质应该是比较接近的。但是论文不是这么写的。横滚角也解算出来了,但是航向角好像不能通过加速度计解算。 2015-3-13

1.因为航向角解算不出,所以找出MPU9150,希望采用其中的磁强计来解算磁航向角。接下来下载相关datasheet 并阅读。

2.现在的解算方法还不涉及迭代,所以现在还没出现那种随着时间的推移,误差累积越来越严重的情况。当前的解算与值与当前的采集数据有关。

2015年3月15日

1.为什么不直接搞DSP 直接跳过ARM 那一关,害怕,害怕就去学。

2.老师可能需要我做一个松耦合组合导航,先让我去研究一下算法。然后再去用硬件实现。该整理资料了,整理完给老师一份,然后再说设计硬件编程的事。等我把航向角结算出来后后立马去研究组合导航算法。方向错了,停止就是前进,否则以后都不能和老师交流了。这是很危险的。我是否应该听老师的,先搞算法,然后再去考虑接下来的实现。

3.网上的GPS 模块没见有遵守I2C 通信协议的,都是一个收一个发送,这样我还真得考虑数据同步的问题。

2015年3月16日

1.我终于知道为什么用示例程序在串口上显示的数据为什么和我想象的那么不一样了,因为你在初始化MPU6050的时候会对陀螺仪和加速度进行一些配置,其中包括一个叫做full scale range 的配置,就拿陀螺仪来说如果你将这个范围配置在s ?±2000,那么这个范围所对应的sensitivity scale factor 就是16.4()s LSB ?。感谢唐朔飞老师的《计算机组成原理》,感谢日本Asahi Kasei 的数据手册,让我在看补数、补码的过程中,让我在看到日本磁强计的测量数据与磁通密度的对比中让我想到了陀螺仪和加速度计也是这样的。谢谢你们。一个好的数据手册就应该让user 看明白。

2.怎样才能在陀螺仪的寄存器中的16bit 数据中看出那个表示小数点?都不表示小数点,只有通过sensitivity scale factor 之后才会产生小数点,这时的数据才是精确地。好了,这下可以全身心地投入到算法研究中去了,传感器输出的就是,加速度数据和角速度数据,接下来你要做的就是研究一个适合车辆检测的算法了。

3.MPU6050的程序迁移到9150中没有发现问题,接下来采集磁强计的数据。仅仅修改了取数据的顺序,加入了磁强计各个轴数据寄存器地址,没有使用WIA(Device ID)。采集成功后开始解算航向角,接下来需要考虑的是磁强计的三轴正方向与GYRO&ACC是不同的,所以在解算时提前要考虑好,GYRO&ACC的俯仰角和横滚角是什么,方向是怎么定义的,然后考虑相对于磁强计这些角度和方向又是如何。

4.定义绕x轴旋转为横滚角,绕y轴为俯仰角,绕z轴为航向角。

5.Mpu9150显示9轴原始数据时出现问题,磁强计的数据不发生改变。我怀疑是磁强计的CNTL寄存器没有配置,导致传感器处于掉电模式。问题依然没有解决。

6.现在的问题是和陀螺仪加速计在一起采集时,数据能采集出来,但是值一直保持不变,单独被采集时压根采集不出来。显示-00001,这个值哪怕不连接传感器都能做到。

2015年3月17日

1.磁强计与GYRO&ACC使用的slaveaddress好像是一样的,这样读出的数据虽然不变但是不是-00001了,三轴读出的数据分别是24354,-01549,00336。数据是一直往上传的。难道是现在磁强计现在运行在单次测量模式?

2.我觉得自己得好好处理一下磁强计的数据,因为磁强计的数据拥有四个符号位。

H=(Single_ReadI2C(REG_Address))&0x8f;与上0x8f后4位符号位只保留一位,值依然没有改变,处理后的数据为03874,-30221,00336。但是这不能保证都是正数的补码,所以我决定建立一个数组,长度为13.

3.如何舍弃一个二进制数的前三位?不过我又发现多个符号位不影响从二进制转换为十进制。

4. IICwriteByte(0xd0,0x37,0x02); //0xd0是mpu9150的slaveaddress,0x37是旁路使能配置寄存器55,配置为0x02说明处理器能够直接读取辅助I2C的数据。

IICwriteByte(0xD0,0x6A,0x00);

//0x6a是用户配置寄存器106,配置为辅助总线的逻辑由主I2C总线决定。

IICwriteByte(0x18,0x0A,0x01); //0x18是磁强计的slaveaddress,0x0a是磁强计的控制寄存器CNTL,配置为单次测量模式。

阿莫电子论坛上网友出的招数。

5.

针对这一句话,每次读完数据我再配置为单次读写模式。

int GetData(uchar REG_Address)

{

uchar H,L;

H=(Single_ReadI2C(MAGADD,REG_Address));

Single_WriteI2C(MAGADD,CNTL, 0x01);

L=Single_ReadI2C(MAGADD,REG_Address-1);

Single_WriteI2C(MAGADD,CNTL, 0x01);

return (H<<8)+L; //合成数据

}

6.现在求解出来的航向角波动很大,非常不稳定,变化范围在-180o~180o之间。也许航向角的解算与俯仰角和横滚角的取值范围也有关系。二者的取值范围均为-90o~90o。

7.现在航向角还是没有求出来,我想这可能是磁强计的数据有问题

2015年3月18日

1.现在的数据还是没有换算成真实数据,而且带小数点的数据通过串口往上传我还没试过。

2.另外提一点,我的俯仰角解算和横滚角解算用的方法和上面论文提到的有差异。

[AN1057]

而且φ解出来的值也不是我想要的航向角,而且我怀疑上面两个角度也不是我想要的航向角和横滚角。

3.到现在我才明白采样时间间隔内的角增量就是角速度,速度增量就是加速度,当时我竟然还给老师说,用的数据不是加速度和角速度,太愚蠢了,没听老师的话真是太失败了。

4.()?Φ=???

? ???Φφφφφsin sin ?[秦永元惯性导航第二版P253]

答:()?Φ表示Φ的各分量构造成的叉乘斜对称矩阵,Φ=φ。

()()()z

y x z y x

x y y x z x x z y z z y z y x z y x z y x b b b a a a k

j i k

b a b a j b a b a i b a b a b a

c k

c j c i c c k b j b i b b k a j a i a a =-+-+-=?=++=++=++=()()??????????---=??=?=??????

??????????????---=??????????000000x y x z

y z z y x x y x z

y z z y x a a a a a a a b

a b a c b b b a a a a a a c c c

5.汽车测试中存在划桨效应吗?需要划桨效应补偿量sculm V ?吗?划桨效应补偿项的优化算法以划桨运动为环境条件,那么在汽车测试中,尤其是做稳态回转时的环境条件又是什么,这里可以分析一下,这里可以具体环境具体分析,这里可以出现创新点,就是将工作条件修改,这里就是研究生工作量的体现之处。

6.汽车在做等半径稳态回转时,我觉得俯仰角和横滚角是不变的,只有航向角在发生变化。我觉得汽车在做稳态回转运动中角速度和比力分别是 ()()t

C k t f t B j t Ω=ΩΩ=sin cos ω 因为我觉得在车辆做稳态回转运动时,横滚角存在摆动,z 轴上加速度波动较大。但只是感性的猜测,没有理性的数据支持。

还有就是我希望自己的程序能够做到自适应,根据测试环境自动切换姿态解算算法。因为不同的环境条件下假设是不一样的,不能一概而论。

7.[QIN2P296]又出了一个恶心的名词直流分量,细节,但就是卡着你让你过不去,想了半天了,搁置一下吧。

2015年3月24日10:46

1.将坐标系理解成为刚体,引入四元数描述刚体的转动,并建立四元数0q 、1q 、2q 、3

q 与坐标变换矩阵R b C 也就是姿态矩阵n b C 之间的关系。一旦有了姿态矩阵就可以解算三个角

度。四元数Q 包含了所有的姿态信息,捷联惯导中的姿态更新实质是如何计算四元数Q 。

2.我想尝试编写采用定时采样增量法解四元数微分方程解算姿态的程序。我觉得通过编程可以更加深入的了解四元数算法。

3.一直在困惑GPS 在姿态解算中到底起什么作用,今天终于释然了,在(QIN2P255)

这里虽然没有提到GPS ,但是GPS 的信息可以从这里引入,引入到位置速率和地球自转速率,但是只能用用纬度信息L ,但是GPS 输出的速度信息,而不是东北天方向的各个分量,所以E V 和N V 还是得不到。

证据:(1)

(2)

(3)

(4)

(5)

(6)

我只想说我缺少完整的速度信息(即三个方向),但是低成本的传感器不提供。

而且如果真要做组合导航就得需要经度、纬度、高度三个信息都需要。

还有就是我以前不知道所谓位置解算,结果就是经度、纬度和高度,得到的就是地球上的位置。

从上图最后一句话知道,要想解算姿态必须把速度和位置解算出来。也许下图中可能有缺陷,但是他说明姿态速度位置解算是一个整体。

3.在惯性导航和GPS组合导航系统中各子系统的误差源和量测中引入的误差都是随机的,而卡尔曼滤波从概率统计最优的角度估算出系统误差并消除之。当然也可以使用经典的回路反馈法。

这句话有力的说明了使用卡尔曼滤波的原因,就是为了消除误差。

4.想问问老师GPS提供的信息是位置信息(经度、纬度和高度)和速度(东向、北向和天向)吗?

5.因为我处理的信号都是随机信号,没有确定的频谱,所以就不能使用处理确定性信号的常规的滤波了,比如低通、高通、带通等。

2015年3月25日16:54:23

1.想买原子的mini开发板,自己板子上的arm不能用。按照光盘的资料提示操作

串口打不开。程序下载不进去,不过放上arm芯片后,里面有运行的流水灯程序。

2.不论如何,组合导航是一定要研究的,在硬件方面,我需要至少两个I2C口,当

然也可以用IO口模拟,但是我想至少需要两个串口。一个接GPS一个接电脑。

3.3D显示是给论文添彩的,但是一定要有数据的曲线实时显示曲线。突然一想,

曲线也是添彩的,我需要的是数据,曲线和3d图形做的都是数据的可视化,直观化,看起来更炫。最重要的是把数据给算出来,然后继续去利用这些数据。

4.国防科大的论文给了我更大的自信,这让我知道速度信号现在是不能用的,国防

科大的论文只采用了位置组合。

5.

MEMS仪表惯性组合导航系统发展现状与趋势_蔡春龙

DOI:10.13695/https://www.sodocs.net/doc/116394464.html,ki.12-1222/o3.2009.05.006 第17卷第5期中国惯性技术学报V ol.17 No.5 2009年10月 Journal of Chinese Inertial Technology Oct. 2009 文章编号:1005-6734(2009)05-0562-06 MEMS仪表惯性组合导航系统发展现状与趋势 蔡春龙1, 刘 翼1,刘一薇2 (1. 北京航天时代光电科技有限公司,北京100854;2. 航天东方红卫星有限公司,北京100094) 摘要:基于MEMS仪表的惯性组合导航系统是飞行器实现轻小型化的关键配套设备之一。针对国外MEMS惯性组 合导航系统产品的实现方案与性能指标进行了综述;介绍我国在该领域的研究现状,简要分析当前存在的问题 与技术瓶颈,指出我国应结合现有硅微惯性器件加工水平与理论研究成果展开有针对性的研究工作。最后,对 该领域的技术发展方向进行了分析。 关键词:微机械系统;组合导航系统;信息融合 中图分类号:U666.1 文献标志码:A Status quo and trend of inertial integrated navigation system based on MEMS CAI Chun-long1, LIU Yi1, LIU Yi-wei2 (1. Beijing Aerospace Times Optical-Electronic Technology Co., Ltd., Beijing 100854, China; 2. China Spacesat Co., Ltd., Beijing 100094, China) Abstract: As one of the core equipments of the miniaturization of vehicle, the inertial integrated navigation system based on MEMS has significant meaning to both the aerospace industry and the construction of national defense. Firstly, the system solution and performance specification of foreign latest products are summarized. Then the status quo of Chinese development is introduced. The problems and technological bottlenecks at present are analyzed. It is also pointed out that some pertinent research should be made based on the present manufacturing level of Chinese micro-silicon inertial sensors and existing theoretical achievements. Finally, the future development direction of the techniques in this field is analyzed. Key words: MEMS; inertial integrated navigation system; filter; information fusion 微机械惯性测量单元(Micro-Electronic Mechanical System Inertial Measurement Unit,MEMS-IMU)作为第三代惯性测量组件,与第一代机械转子陀螺惯性测量组件、第二代光电陀螺惯性测量组件相比,具有体积小、重量轻、功耗少、成本低、集成化程度高等优点,拥有更广阔的工程应用前景,尤其对于微小型运载体的导航、制导与姿态控制具有重要意义,已被多个国家列为未来惯性导航系统的重点发展方向之一。但从目前国内外微机械惯性测量器件的研制现状来看,由于受到加工工艺、选材等因素的限制,MEMS-IMU在精度以及稳定性等方面与前两代惯性测量组件相比仍然存在较大差距,同时受限于惯导系统固有的导航误差随时间积累问题,微惯性导航系统尚不具备独立完成导航定位任务的能力。 因此,基于MEMS-IMU的组合导航方案是解决上述问题的一条有效途径。 目前,MEMS-IMU组合导航系统已经在民用和军用领域得到了广泛认可。民用方面,具有导航定位功能的汽车、精细农业用机械与车辆、用于农药喷洒与林区防火的无人飞机等已部分装配该类型组合导航系统;军用方面,欧美发达国家已成功将其应用于战术制导武器、微小型无人侦查飞机、卫星探测、航天器导航等领域。我国在该领域的研究工作起步较晚,目前正处于从原理样机研制向工程应用过渡阶段,国内各科研院所与高校正在加紧进行该领域的技术攻关工作。 收稿日期:2009-07-24;修回日期:2009-09-03 作者简介:蔡春龙(1967—),男,研究员,研究方向为光纤陀螺捷联惯性导航系统。E-mail:cai_chun_long@https://www.sodocs.net/doc/116394464.html,

组合导航技术的发展趋势_曾伟一

技术开发与应用 组合导航技术的发展趋势 曾伟一1 林训超2 曾友州3 贺银平4 (1.2.3.4.成都航空职业技术学院,四川成都610100) 收稿日期:2011-01-10 作者简介:曾伟一(1956 ),男,四川省成都市人,副教授,主要研究方向为电气自动化和微机控制技术。 摘 要:本文揭示了组合导航技术的优越性,论述了组合导航的关键技术,对硅微惯性测量单元的发展和应用情况进行了介绍,指出GNSS/INS 组合中松耦合、紧耦合与深耦合方式的技术特点,展望了耦合技术未来发展方向。 关键词:组合导航 卫星导航 惯性导航 中图分类号:TN967 2 文献标识码:B 文章编号:1671-4024(2011)02-0041-04 Development Tendency of Integrated Navigation Technology ZE NG Weiyi 1,LIN Xunchao 2,ZE NG Youzhou 3,HE Yinping 4 (1.2.3.4.Chengdu Aeronautic Vocational &Technical College,Chengdu,Sichuan 610100,China) Abstract This paper analyzes the advanta ges of integrated navigation technique and the key inte grated navigation technology,presents the development and application of measuring units of silicon micro inertia,points out the techniques of loose coupling,tight coupling and deep c oupling in the combination of GNSS and INS and prospects the development tendenc y of c oupling technology. Key Words integrated navigation,GNSS,I NS 组合导航是采用两种或两种以上导航系统,形成的性能更高、安全性和可靠性更强的导航方式。可与GNSS 进行组合导航的技术有I NS 、多普勒雷达、天文导航、气压高度表、磁力计等。目前世界上应用最为广泛、性能最优、自主性最强的组合导航为卫星导航系统和惯性导航系统的组合,该组合系统主要利用卫星导航系统的长期稳定性与适中精度,来弥补I NS 的误差随时间传播或增大的缺点,同时再利用I NS 的短期高精度来弥补卫星导航接收机在受干扰时误差增大或遮挡时丢失信号等的缺点,提高卫星导航的动态性能和抗干扰能力和卫星的重新捕获能力,从而实现完整的高精度、高可靠性、高稳 定性、高适用性、持续全天候的导航,广泛应用于海、陆、空、天各领域,包括飞机、轮船、车辆、机器人等的 导航。组合导航技术已成为目前世界上最先进的、全天候、自主式制导技术,也是导航技术最具有应用前景的发展方向[1] 。本文针对未来组合导航定位领域的关键技术的发展趋势和面临的挑战进行了论述。 一、惯性器件发展趋势与面临的挑战 惯导系统的误差源包括陀螺和加速度计的器件误差、系统初始对准误差和导航解算中采用的重力场模型误差等,器件误差为大多数系统的主要误差源 [2] 。 41 成都航空职业技术学院学报Journal of Che ngdu Aeronauti c Voc atio na l a nd Te chni cal Col lege 2011年06月第2期(总第87期)Vol.27No.2(Serial No.87)2011

惯性导航系统发展应用现状

惯性导航系统发展应用现状 测绘10-2班张智远07103094 摘要:阐述了惯性导航技术的核心技术构成(陀螺定向),总结了惯性导航的发展概况,并列举出陀螺仪的发展历程及发展方向。同时,概括了惯性技术的应用领域及当前应用情况。最后指出,随着新型惯性器件的涌现和完善,以惯性导航为基础的组合导航系统将成为未来导航系统的主要发展方向。 关键词:惯性导航陀螺仪惯性导航技术惯性导航系统 惯性导航(Inertial Navigation)是20 世纪中期发展起来的完自主式的导航技术。通过惯性测量组件(IMU)测量载体相对惯性空间的角速率和加速度信息,利用牛顿运动定律自动推算载体的瞬时速度和位置信息,具有不依赖外界信息、不向外界辐射能量、不受干扰、隐蔽性好的特点,且惯导系统能连续地提供载体的全部导航、制导参数(位置、线速度、角速度、姿态角)。惯性导航技术,包括平台式惯导系统和捷联惯导系统。平台式惯性导航系统将陀螺通过平台稳定回路控制平台跟踪导航坐标系在惯性空间的角速度。捷联惯性导航系统利用相对导航坐标系角速度计算姿态矩阵,把雷体坐标系轴向加速度信息转换到导航坐标系轴向并进行导航计算。惯性导航系统通常由惯性测量装置、计算机、控制显示器等组成。惯性测量装置包括加速度计和陀螺仪,又称惯性导航组合。3个自由度陀螺仪用来测量飞行器的三个转动运动;3个加速度计用来测量飞行器的3个平移运动的加速度。计算机根据测得的加速度信号计算出飞行器的速度和位置数据。控制显示器显示各种导航参数。 陀螺仪是惯性系统的主要元件。陀螺仪通常是指安装在万向支架中高速旋转的转子,转子同时可绕垂直于自转轴的一根轴或两根轴进动,前者称单自由度陀螺仪,后者称二自由度陀螺仪。陀螺仪具有定轴性和进动性,利用这些特性制成了敏感角速度的速率陀螺和敏感角偏差的位置陀螺。由于光学、MEMS 等技术被引入于陀螺仪的研制,现在习惯上把能够完成陀螺功能的装置统称为陀螺。陀螺仪种类多种多样,按陀螺转子主轴所具有的进动自由度数目可分为二自由度陀螺仪和单自由度陀螺仪;按支承系统可分为滚珠轴承支承陀螺,液浮、气浮与磁浮陀螺,挠性陀螺(动力调谐式挠性陀螺仪),静电陀螺;按物理原理分为利用高速旋转体物理特性工作的转子式陀螺,和利用其他物理原理工作的半球谐振陀螺、微机械陀螺、环形激光陀螺和光纤陀螺等。 由于陀螺仪是惯性导航的核心部件,因此,可以按各种类型陀螺出现的先后、理论的建立和新型传感器制造技术的出现,将惯性技术的发展划分为四代,但是惯性技术发展的各阶段之间并无明显界线。 第一代惯性技术指1930年以前的惯性技术。自1687年牛顿三大定律的建立,并成为惯性导航的理论基础;到l852年,傅科(Leon Foucault)提出陀螺的定义、原理及应用设想;再到1908年由安修茨(Hermann Anschütz—Kaempfe)研制出世界上第一台摆式陀螺罗经,以及1910年的舒勒(Max Schuler)调谐原理;第一代惯性技术奠定了整个惯性导航发展的基础。 第二代惯性技术开始于上世纪40年代火箭发展的初期,其研究内容从惯性仪表技术发展扩大到惯性导航系统的应用。首先是惯性技术在德国V-II火箭上的第一次成功应用。到50年代中后期,0.5n mile/h的单自由度液浮陀螺平台惯导系统研制并应用成功。1968年,漂移约为0.005°/h的G6B4型动压陀螺研制成功。这一时期,还出现了另一种惯性传感

车载组合导航系统发展现状

车载组合导航系统发展现状 随着科学技术的不断发展,现代导航系统的种类越来越多,如: INS、全 球定位系统(GPS)、多普勒(Doppler)测速系统、奥米加导航系统(Omega),罗兰系统(Loran),塔康系统(Tacan),还有天文导航(CNS)、地形辅助系统等,这 些导航设备都各有优缺点,精度和成本也不大相同。同时,由于各领域,尤其 是军事领域对导航信息量的要求越来越多,对导航精度的要求也越来越高。要 使系统性能得到提高,靠提高单一导航系统的精度,不仅在技术上难度很大, 而且在实际中效果也不十分明显,无法满足高精度要求的。若将多种导航系统 适当地组合起来,即可大大提高导航精度。 组合导航系统与单一导航系统的性能比较,具有以下优点 1) 组合系统中惯性导航系统的精度比单独使用惯性导航系统时要求的精 度低,能够降低惯性导航系统的成本,还可提高系统的可靠性和容错性能; 2) 组合导航具有余度的导航信息,可利用其余度信息检测出某个导航子 系统的故障,并隔离掉失效的子系统,然后将其余正常子系统重新组合(系统重构),就能够继续完成导航任务。 因而在20世纪70年代,组合导航技术的出现使得这一问题有了完美的解决 方案,使其得到了迅速发展,并取得了令人瞩目的成就。它克服了单个导航系统的缺点,取长补短,使组合后的导航精度高于各个系统单独工作的精度。组合导航系统就是将具有不同特点的导航设备与导航方法进行综合,应 用计算机技术对多种导航信息进行融合处理,以提高整个系统的性能。它是一 种综合工程技术,涉及到各导航信息源相关设备技术、计算机技术、显示技术 以及控制系统、最优估计等理论。 目前,组合导航系统技术在工程实践中还必须解决以下问题: 在导航 信息大量冗余的情况下,计算量过大,实时性不能保证;导航子系统的增加使故障率也随之增加,如果某一子系统出现故障而又没有及时监测出并隔离掉时,故障数据会污染整个系统,使可靠性降低。 针对组合导航系统量测信息量多,数据处理困难这一特定问题,导航信息 的处理技术也从根据单个传感器所获得的数据集来进行的单一信息处理向多传感器获得的多数据集的信息融合方向发展。

导航系统的现状、发展与未来

导航系统的现状、发展与未来 [摘要] 简单地讨论了导航技术的发展及其现状,重点介绍了惯性导航系统中的传感器和卫星导航系统的发展及其未来。本文论述了组合导航系统,特别是 INS-GPS 组合导航系统是未来的一个主要发展方向。 关键词:惯性导航;卫星导航;组合导航;多星座导航;GPS;GLONASS;伽利略导航系统 1. 引言 传统导航技术发展至今,已经走过约一个世纪的漫长道路。随着信息技术的发展,从上个世纪 70 年代开始,导航技术得到了迅速的发展,取得了令人瞩目的成就,其应用已由交通运输扩展到工业、农业、林业、渔业、建筑、旅游、公安、救助、电信、物探、测绘、气象等等,涉及到科学研究的众多领域,渗透到国民经济的各个方面。在此情况下,一方面,以 70 年代的信息技术发展为基础而发展的几种新型导航系统,如卫星导航系统、陀螺捷联式惯性导航系统、组合导航系统等得到了极大的发展。而同时,原有的导航系统面临着或将面临着被淘汰的命运,如欧米伽导航系统、罗兰 C 导航系统(我国保留);还有的被保留,不断改进、发展,如陀螺罗经、测深仪、计程仪、雷达等。还有的随着技术的发展,有获得了新生,如天文导航系统的命运与上述导航系统不一样。上个世纪,随着高精度陀螺仪和 GPS 的应用,普遍的看法是天文导航已经过时,将被淘汰,比如,美国 60 年代末在北极星潜艇中拆除了天文导航系统。但现在,随着新型光电器件如 CCD 的发展、计算机、新的数学模型的发展,天文导航的精度得到了很大的提高(可达 30 米左右)、对使用环境的要求大大降低,天文导航作为一种独立的、自主式的、成本低的系统又重新为人们所认识。 纵观 30 年来,导航系统的发展具有三个特点,第一,由于新材料、微电子、集成广学、计算机等的发展,促进了新型惯性器件的发展,从而惯性导航系统的体积越来越小,精度越来越高、成本越来越低;第二,卫星导航技术这 30 年来得到了极大的发展,可以认为,卫星导航给导航技术带来了一次极大的革命;第三、卫星导航、惯性导航以及其他技术之间相互组合,促进了导航技术的进一步发展。 2. 惯性导航技术 惯性导航系统是随着惯性传感器的发展而发展起来的一门导航技术,它完全自主、不受干扰、输出信息量大、输出信息实时性强等优点使其在军用航行载体和民用相关领域获得了广泛应用。惯导系统的精度、成本主要取决于惯性传感器———陀螺仪和加速度计的精度和成本。因此,讨论惯性导航技术首先要研究惯性传感器。 惯性传感器包括陀螺仪和加速度计,加速度计INS的误差影响较小,目前依然是以挠性支承摆式加速度计为主。陀螺仪由于其结构复杂、制造困难且其漂移误差对INS精度影响大,从而成了惯性传感器重点研究对象。 从广义上讲凡是能测量载体相对惯性空间旋转的装置就可以称为陀螺仪,随着技术的发展,相继发现了多种物理效应可以实现这一要求,因而出现了许多不同型号和不同结构的陀螺仪. 从20世纪50年代的液浮陀螺仪到70年代的动力调谐陀螺仪;从80年代的环形激光陀螺仪、光纤陀螺仪到90年代的振动陀螺仪以及目前研究报道较多的微机械电子系统陀螺仪相继出现,从而推动了惯性传感器不断向前发展。

相关主题