搜档网
当前位置:搜档网 › 苯乙烯聚合的综合实验

苯乙烯聚合的综合实验

苯乙烯聚合的综合实验
苯乙烯聚合的综合实验

苯乙烯聚合的综合实验

实验目的:

1,了解苯乙烯聚合的反应原理

2.通过对聚苯乙烯的表征掌握对红外光谱,粘度仪、DSC等的使用方法。

实验原理:聚苯乙烯一般由单体苯乙烯通过自由基聚合获得。要获得分子量分布较窄的聚苯乙烯,则须通过阴离子聚合反应的方法。自由基聚合的实施方法有本体聚合、溶液聚合、悬浮聚合和乳液聚合。本体聚合和溶液聚合也适合于阴离子聚合。

阴离子聚合是活性聚合和化学聚合,其特点是无终止聚合。在反应条件控制得当的情况下,阴离子聚合体系可以长时间保持链增长活性。活性聚合技术是目前合成单分散特定分子量的聚合物的一种方法。阴离子活性聚合物的分子量可通过单体浓度和引发剂的浓度来控制:错误!未找到引用源。(双阴离子引发n=2,单离子引发n=1),其分子量分布指数接近1。

反应部分试剂与仪器

试剂:苯乙烯,正丁基锂,环己烷,无水氯化钙,甲醇,氢氧化钠.

仪器:250 mL分液漏斗,100 mL烧杯,量筒(10 mL、50 mL),注射器及针头,无水无氧操作系统,玻璃棒,反应管,抽滤瓶,布氏漏斗,注射器,试管。表征部分:红外光谱仪、DSC、粘度仪

实验步骤:

1试剂的预处理

取苯乙烯50mL于250mL分液漏斗,用5%NaOH洗至水层变为无色,再用水洗至pH约为7,得到淡黄色液体。向所得液体中加入无水氯化钙,于100mL锥形瓶中保存。

2苯乙烯的阴离子聚合

取干燥试管一支,配上单孔橡皮塞和短玻璃管及一段橡皮管,接上无水无氧干燥系统,以油泵抽真空,通氮气,反复三次。持续通入氮气作为保护气,由注射器从橡皮管依次且连续注入4mL无水环己烷、1.5mL干燥苯乙烯和0.8mL正丁基锂溶液。放置10分钟后,以注射器从橡皮管注射加入甲醇。

3 正丁基锂的制备

在氮气保护下,在5000ml的三口瓶中加入3L正己烷(或60-90℃石油醚),将140g(20mol)金属锂片用正己烷(或60-90℃石油醚)洗涤干净,戴上一次性手套,将金属锂片快速撕成小片,加入到5000ml的三口瓶中,装上机械搅拌,冰盐浴冷

却至0度左右(注意温度别太低,否则引发比较慢),往其中滴加925g(10mol)氯丁烷,控温在15度以下(注意反应引发后为紫灰色,开始时应该滴加较慢,反应放热比较厉害,特别注意别冲料),加完后,冰盐浴控温15度以下继续搅拌2小时,然后撤去冰盐浴,室温搅拌1小时,然后改为回流装置,逐渐升温回流4-5小时,冷却至室温,静置沉降过夜,上清液为丁基锂溶液,用氮气压至储存瓶中,残渣加入2L溶剂搅拌,沉降过夜,上清液合并到丁基锂溶液中备用。

4 在苯乙烯的阴离子聚合中正丁基锂溶液加入时,局部立即变为橙红色(基本透明),将试管中溶液摇匀,溶液均变为橙红色(快速出现浑浊)。刚刚摇匀后,试管底部有少量深红色物质,且与上层溶液分层。放置10分钟后,试管中溶液明显放热,底部有1cm左右高的不明红色分层,上部溶液呈橙红色浑浊。以注射器从橡皮管注射加入甲醇后,上部溶液颜色立即消失,呈乳白色浑浊,沉淀出白色固体;下层分层呈红色没有变化。最后弃去溶液,发现下层红色分层为橡胶状固化物,有些许弹性。

正丁基锂以离子对的形式引发苯乙烯的聚合。阴离子聚合快引发,慢增长,无终止,无转移。

5 阴离子聚合因为聚苯乙烯沉积,下层底部固体无法接触甲醇,故不褪色。

反应装置图

聚合物表征:

粘度法测相对分子量:高聚物稀溶液的粘度是液体流动时内摩擦力大小的反映。

纯溶剂粘度反映了溶剂分子间的内摩擦力,记作η

,高聚物溶液的粘度则是高

聚物分子间的内摩擦、高聚物分子与溶剂分子间的内摩擦以及η

三者之和。在

相同温度下,通常η>η

,相对于溶剂,溶液粘度增加的分数称为增比粘度,记

作η

sp

,即

(1)

而溶液粘度与纯溶剂粘度的比值称作相对粘度,记作η

r

,即

(2)

ηr反映的也是溶液的粘度行为,而ηsp则意味着已扣除了溶剂分子间的内摩擦效应,仅反映了高聚物分子与溶剂分子间和高聚物分子间的内摩擦效应。

高聚物溶液的增比粘度η

sp

往往随质量浓度c的增加而增加。为了便于比较,

将单位浓度下所显示的增比粘度η

sp /c称为比浓粘度,而lnη

r

/c则称为比浓

对数粘度。当溶液无限稀释时,高聚物分子彼此相隔甚远,它们的相互作用可以忽略,此时有关系式

(3)

[η]称为特性粘度,它反映的是无限稀释溶液中高聚物分子与溶剂分子间的

内摩擦,其值取决于溶剂的性质及高聚物分子的大小和形态。由于η

r 和η

sp

均是

无因次量,所以他们的单位是浓度c单位的倒数。

在足够稀的高聚物溶液里,η

sp /c与C和lnη

r

/c与c之间分别符合下述

经验关系式:

(4)

(5)上两式中κ和β分别称为Huggins和Kramer常数。这是两直线方程,通过ηsp/c对c或lnηr/c对c作图,外推至C=0时所得截矩即为[η]。显然,对于同一高聚物,由两线性方程作图外推所得截矩交于同一点,如图1。

图1:外推法求[η] 图2:乌氏粘度计

高聚物溶液的特性粘度[η]与高聚物摩尔质量之间的关系,通常用带有两个参数的Mark —Houwink 经验方程式来表示:

(6)

式中是粘均相对分子量,K 为比例常数,α是与分子形状有关的经验参数。K 和α的值与温度、高聚物及溶剂的性质有关,也和分子量大小有关。K 值受温度影响较明显,α值主要取决于高分子线团在某温度下,某溶剂中舒展的程度。K 与α可通过一些绝对实验方法(如膜渗透压法、光散射法等)确定。

本实验采用毛细管法测定粘度,通过测定一定体积的液体流经一定长度和半径的毛细管所需时间而获得。本实验使用的乌氏粘度计如图所示。当液体在重力作用下流经毛细管时,其遵守Poiseuille 定律:

lt V m lV t hgr ππρη884-= (7)

式中η(kg ·m -1·s -1)为液体的粘度;ρ为液体的密度;l 是毛细管长度;r 是毛细管半径;t 是流出时间;h 是流经毛细管液体的平均液柱高度;g

为重力加

速度;V 是流经毛细管的液体体积;m 是与仪器的几何形状有关的常数,在

1<

对某一支指定的粘度计而言,许多参数是一定的,令

lV hgr 84πα=,l V

m πβ8=,则(7)式可改写为 t t βαρ

η-= (8) 式中1<β,当s t 100>时,等式右边第二项可以忽略。通常是在稀溶液中测定,溶液的密度ρ与溶剂密度

0ρ近似相等。这样,通过测定溶液和溶剂的流出

时间t 和t 0,就可求算r η: 00t t r ==ηηη (9)

所以只需测定溶液和溶剂在毛细管中的流出时间就可得到ηr 。

红外光谱法确定丙烯酸共聚酯的分子结够:

红外光 谱 特 征 峰 在 2500 —3600cm - 1之 间 , 这 是 代 表 COO H 中 缔 合 O H 的 特 征 与 2800 —3000cm - 1 的烷基特征峰形成山峰形状 。1700cm - 1 是 COO H 中 C = O 峰 , 1240 —12 60cm - 1 ,1160 —1180cm - 1 这一对峰是 C —O 反对称和对称伸展振动特征峰 。两者区别是甲基丙烯酸还丙烯酸的聚合物就在于这对峰 。前者两峰明显分开 ,且 1170cm - 1 峰的强度大于 1250cm - 1 。或者该两峰连在一起 ,两峰强度几乎相等 ,形成 1160cm - 1到 1260cm - 1 一个宽峰 。丙烯酸酯及甲基丙烯酸酯型的聚合物 丙烯酸酯聚合物及甲基丙烯酸酯型的聚合物红外光谱特征有相同的地方即都有羰基 C = O1730cm - 1的强峰及 1250cm - 1,1170cm - 1 处分别是 C —O ) 的反对称和对称伸展振动的特征

峰 ,且 1170cm- 1峰大于 1250cm- 1的峰。两者的明显区别是甲基丙烯酸的酯在 1170cm- 1 处分裂成 1160cm- 1和 1180cm- 1两个峰 ,而 1250cm- 1 处峰也分裂成 1240cm- 1 和 1260cm- 1个峰。这样 ,甲基丙烯酸酯聚合物在1170cm- 1和 1250cm- 1处分别出现两个双峰。

DSC分析聚合物测定Tg :

差热分析(Differential Thermal Analysis)是在温度程序控制下测量试样与参比物之间的温度差随温度变化的一种技术,简称DTA。在DTA基础上发展起来的是差示扫描量热法(Differential Scanning Calorimetry),简称DSC。差示扫描量热法是在温度程序控制下,测量试样与参比物在单位时间内能量差随温度变化的一种技术。

DTA,DSC在高分子方面的应用特别广泛,试样在受热或冷却过程中,由于发生物理变化或化学变化而产生热效应,在差热曲线上就会出现吸热或放热峰。试样发生力学状态变化时(例如由玻璃态转变为高弹态),虽无吸热或放热现象,但比热有突变,表现在差热曲线上是基线的突然变动。试样内部这些热效应均可用DTA,DSC进行检测,发生的热效应大致可归纳为:

①吸热反应:如结晶、蒸发、升华、化学吸附、脱结晶水、二次相变(如高聚物的玻璃化转变)、气态还原等。

②放热反应:如气体吸附、氧化降解、气态氧化(燃烧)、爆炸、再结晶等。

③可能发生的放热或吸热反应:结晶形态的转变、化学分解、氧化还原反应、固态反应等。

DTA、DSC在高分子方面的主要用途是:一是研究聚合物的相转变过程,测定结晶温度T f、熔点T m、结晶度X c、等温结晶动力学参数;二是测定玻璃化转变温度T g;三是研究聚合、固化、交联、氧化、分解等反应,测定反应温度或反应温区、反应热、反应动力学参数等。

结论:通过进行苯乙烯单体的阴离子聚合实验,加深了对阴离子聚合反应的低重现性,无终止反应特点的认识;对聚合物形态与分子量之间的关系有了初步的了解。将所得物质做红外分析测量分子基团,做DSC测量TG,通过粘度仪测量分子量。来表征所得聚合物的各项指标。

高分子化学实验 苯乙烯的悬浮聚合

实验名称苯乙烯的悬浮聚合2013级高分子2班 覃秋桦 1314171027 林夏洁 1314171014

一、实验目的 1. 了解悬浮聚合的反应原理及配方中各组分的作用。 2. 了解珠状聚合实验操作及聚合工艺的特点。 3. 通过实验,了解苯乙烯单体在聚合反应上的特性。 二、实验原理 悬浮聚合是指在较强的机械搅拌下,借悬浮剂的作用,将溶有引 发剂的单体分散在另一与单体不溶的介质中(一般为水)所进行的聚合。根据聚合物在单体中溶解与否,可得透明状聚合物或不透明不 规整的颗粒状聚合物。像苯乙烯、甲基丙烯酸酯,其悬浮聚合物多 是透明珠状物,故又称珠状聚合;而聚氯乙烯因不溶于其单体中, 故为不透明、不规整的乳白色小颗粒(称为颗粒状聚合)。 悬浮聚合实质上是单体小液滴内的本体聚合,在每一个单体小液 滴内单体的聚合过程与本体聚合是相类似的,但由于单体在体系中 被分散成细小的液滴,因此,悬浮聚合又具有它自己的特点。由于 单体以小液滴形式分散在水中,散热表面积大,水的比热大,因而 解决了散热问题,保证了反应温度的均一性,有利于反应的控制。 悬浮聚合的另一优点是由于采用悬浮稳定剂,所以最后得到易分离、易清洗、纯度高的颗粒状聚合产物,便于直接成型加工。 可作为悬浮剂的有两类物质:一类是可以溶于水的高分子化合物, 如聚乙烯醇、明胶、聚甲基丙烯酸钠等。另一类是不溶于水的无机 盐粉末,如硅藻土、钙镁的碳酸盐、硫酸盐和磷酸盐等。悬浮剂的 性能和用量对聚合物颗粒大小和分布有很大影响。一般来讲,悬浮 剂用量越大,所得聚合物颗粒越细,如果悬浮剂为水溶性高分子化 合物,悬浮剂相对分子质量越小,所得的树脂颗粒就越大,因此悬 浮剂相对分子质量的不均一会造成树脂颗粒分布变宽。如果是固体 悬浮剂,用量一定时,悬浮剂粒度越细,所得树脂的粒度也越小, 因此,悬浮剂粒度的不均匀也会导致树脂颗粒大小的不均匀。 为了得到颗粒度合格的珠状聚合物,除加入悬浮剂外,严格控制 搅拌速度是一个相当关键的问题。随着聚合转化率的增加,小液滴 变得很粘,如果搅拌速度太慢,则珠状不规则,且颗粒易发生粘结 现象。但搅拌太快时,又易使颗粒太细,因此,悬浮聚合产品的粒 度分布的控制是悬浮聚合中的一个很重要的问题。掌握悬浮聚合的

苯乙烯悬浮聚合及性能

苯乙烯悬浮聚合及性能 一、实验目的 1.学习悬浮聚合的实验方法,了解悬浮聚合的配方及各组分的作用。 2.了解控制粒径的成珠条件及不同类型悬浮剂的分散机理。 二、实验原理 悬浮聚合是由烯类单体制备高聚物的重要方法之一。由于水为分散介质,聚合热可以迅速排除,因而反应温度容易控制;生产工艺简单;制成的成品呈均匀颗粒状,故又称为珠状聚合;产品不经造粒即可直接成型加工。 悬浮聚合是将单体以微珠形式分散于介质中进行的聚合。从动力学的观点来看,悬浮聚合与本体聚合完全一样,每一个微珠相当于一个小的本体。悬浮聚合克服了本体聚合中散热困难的问题,但因珠粒表面附有分散剂,使纯度降低。当微珠聚合到一定程度时,珠子内粒度迅速增大,珠与珠之间很容易碰撞粘结,不易成珠子,甚至粘成一团,为此必须加入适量分散剂,选择适当的搅拌器和搅拌速率。由于分散剂的作用机理不同,在选择分散剂的种类和确定分散剂用量时,要随聚合物种类和颗粒要求而决定,如颗粒大小、形状、树脂的透明性和成膜性能等。同时也要注意合适的搅拌强度的转速,水与单体比等。 实验要求聚合物体具有一定的粒度。粒度的大小通过调节悬浮聚合的条件来实现。苯乙烯(ST)通过聚合反应生成聚苯乙烯(PS),反应式如下: 通常的聚苯乙烯为非晶太无规聚合物,具有优良的绝热、绝缘和透明性,长期使用温度0-70℃,胆脆,低温易开裂。此外还有全同和间同立构聚苯乙烯。全同聚合物有高度结晶性,聚苯乙烯材料包括普通聚苯乙烯、发泡聚苯乙烯(EPS)、高抗冲聚苯乙烯(HIPS)及间规聚苯乙烯(SPS)。普通聚苯乙烯树脂属于无定型高分子聚合物,聚苯乙烯大分子链的侧基为苯环,大体积侧基为苯环的无规排列决定了聚苯乙烯的物理化学性质,如透明度高、刚度大、玻璃化温度高、性脆等。其制品具有极高的透明度,透光率可达90%以上,电绝缘性能好,易着色,加工流动性好,刚性好及耐化学腐蚀性好等;不足之处在于性脆,抗冲击性能的低,易出现应力开裂,耐热性差及不耐沸水等。可发泡聚苯乙烯未在普通聚苯乙烯中浸渍低沸点的物理发泡剂制成,加工过程中受热发泡,专用于制作泡沫塑料产品。高抗冲聚苯乙烯为苯乙烯和丁二烯的共聚物,丁二烯为分散相,提高了材料的抗冲击强度,但产品不透明。间规聚苯乙烯为间同结构,采用茂金属催化剂生产,是近年来发展的聚苯乙烯新品种,性能好,属于工程塑料。聚苯乙烯经常被用来制作泡沫塑料制品。聚苯乙烯还可以和其他橡胶类型高分子材料共聚生成各类不同力学性能的产品。日常生活中常见的应用有各种一次性塑料餐具,透明C盒等。 三、仪器及试剂

实验一 苯乙烯-丙烯酸酯乳液聚合及性能测定

实验一苯乙烯-丙烯酸酯乳液聚合及性能测定 一.实验目的 1.了解乳液聚合的工艺特点和配方。 2.掌握乳液聚合的操作方法。 3.掌握乳液性能测定的方法。 二.实验原理 乳液聚合是连锁聚合反应的一种实施方法,具有十分重要的工业价值。乳液聚合是指单体在水介质,由乳化剂分散成乳液状态进行的聚合。乳液聚合最简单的配方是由单体、水、水溶性引发剂和乳化剂四部分所组成的。工业上的实际配方可能要复杂得多。乳液聚合在工业上有十分广泛的应用,合成橡胶中产量最大的丁苯橡胶和丁腈橡胶就是采用乳液聚合法生产的,聚氯乙烯糊状树脂、丙烯酸酯乳液等也都是乳液聚合的产品。 乳液聚合有许多优点,如聚合热容易排除;聚合速度快,同时可获得较高的分于量;在直接使用乳液的场合,可避免重新溶解、配料等工艺操作等等;乳液聚合的缺点是产品纯度较低;在需要获得固体产品时,存在凝聚、洗涤、干燥等复杂的后处理问题等。乳液聚合产物的颗粒粒径约为0.05-1μm,比悬浮聚合产物的粒径〔50—200μm)要小得多。 在丙烯酸酯乳液中,苯丙乳液是较重要的品种之一。苯丙乳液是由苯乙烯和丙烯酸酯(通常为丙烯酸丁酯)通过乳液聚合法共聚而成,具有成膜性能好、耐老化、耐酸碱、耐水、价格低廉等特点,是建筑涂料、粘合剂、造纸助剂、皮革助剂、织物处理剂等产品的重要原料。 苯丙乳液的主要用途是制备建筑乳胶漆,这类乳液通常由苯乙烯和丙烯酸丁酯共聚而成。丙烯酸丁酯的聚合物具有良好的成膜性和耐老化性,但其玻璃化转化温度仅-58℃,不能单独用作涂料的基料。将丙烯酸丁酯与苯乙烯共聚后,涂层表面硬度大大增加,生产成本也有所下降。为了提高乳液的稳定性,共聚单体中通常还加人少量丙烯酸,丙烯酸是一种水溶性单体,参加共聚后主要存在于乳胶颗粒表面,羧基指向水相,因此颗粒表面呈负电性,使得颗粒不容易凝聚结块,同时适当比例的丙烯酸有利于提高涂料的附着力。 用于建筑乳胶漆的苯丙乳液的固体含量为48±2%,最低成膜温度为16℃,成膜后,涂层无色透明。为了使建筑乳胶漆在冬天也能使用,通常还需加入成膜助剂,如苯甲醇等,使涂料的最低成膜温度达到5℃。 三.实验仪器与药品 3.1 实验仪器 四口瓶(250ml)—只;球形冷凝器一支;温度计一支;量筒(100ml)—只;电动搅拌器一套;水浴锅一只;滴液漏斗一只 3.2 实验药品 苯乙烯;丙烯酸丁酯;丙烯酸;过硫酸钾;十二烷基硫酸钠;司班60; 四.实验步骤

苯乙烯与顺丁烯二酸酐共聚合

苯乙烯一顺丁烯二酸酐共聚反应 目的: 1.本实验要求掌握共聚合的基本基本原理和操作手段,了解基本的影响因素。 2.初步掌握高聚物中官能团的测定方法。 原理: 苯乙烯一顺丁烯二酸酐共聚反应及其组成测定 苯乙烯一顺丁烯二酸酐共聚反应是用甲苯为溶剂,偶氮二异丁腈(AIBN)为引发剂进行的溶液聚合,由于生成的聚合物不溶于溶剂而沉淀析出,因而又称沉淀聚合。 其反应方程如下: HC 2 + HC CH C C O O O H C H2 C H C CH C C O O O n 顺丁烯二酸酐由于结构对称,极化度低一般不能自聚。但是它能与苯乙烯相好地共聚,这是因为顺丁烯二酸酐上有强吸电子基,使双键上电子云密度降低,因而具有正电性,而苯乙烯具有共扼体系的结构,当带正电性的单体进攻时,双键上显负电性,因而电性相反的两种烯类单体容易交替地进入聚合链生成交替共聚物。其反应过程如下: 苯乙烯(M1)和顺丁烯二酸酐(M2)共聚的竞聚率r1=0.04,r2=0.015,r1·r2=0.006若两种单体以1比1(mol)投料,则得到的接近交替共聚的产物。这种聚合物是悬浮聚合的良好外散剂,如双加入少量二烯单体并取得低交联的聚合物,可以制备水溶性增稠剂。 通过共聚物在计量的碱中水溶液中溶解,剩余的碱用标准酸滴定,共聚物的组成。 实验方案:

主要实验仪器和试剂: 搅拌器三口瓶球形冷凝管温度计布氏漏斗吸滤瓶锥形瓶滴定管烧杯滴液漏斗。 苯乙烯顺丁烯二酸酐甲苯 AIBN(重结晶) KOH水溶液(0.2mol/L) 标准盐酸溶液(0.2mol/L)酚酞指示剂 参考实验步骤: 共聚物的制备 1.在250m1的三口烧瓶上装上温度计、搅拌器、球形冷凝管及氮气导管 2. 将25.75g(29.5m1,0.25mol)苯乙烯及2.95g(0.03m01)顺丁烯二酸酐加入三口瓶中,水浴加热,体系温度升至50℃后,在搅拌下,顺丁烯二酸酐溶解。 3.将苯乙烯3.2g(0.03mo1)及AIBN0.007g(单体重的0.l%),与25ml甲苯混合后,放入滴液漏斗中。升温至75—77℃,搅拌下,将苯乙烯溶液在30min内滴加完,再在80℃左右反应1h至1.5h。 4. 反应过程中注意观察现象。在反应物渐渐变稠,搅拌困难时停止加热。冷却至室温,用布氏漏斗过滤。 5. 得到的白色粉末状团体产物,用石油醚洗涤(可用60℃热水再洗3次),产品置于培养皿巾,在真空烘箱中40℃下干燥至恒重。计算产率。

苯乙烯自由基悬浮聚合

高分子化学实验 苯乙烯自由基悬浮聚合 一、实验目的 (1)通过对苯乙烯单体的悬浮聚合实验,了解自由基悬浮聚合的方法和配方中各组分的作用; (2)学习悬浮聚合的操作方法; (3)通过对聚合物颗粒均匀性和大小的控制,了解分散剂、升温速度、搅拌形式与搅拌速度对悬浮聚合的重要性。 二、实验原理 悬浮聚合实质上是借助于较强烈的搅拌和悬浮剂的作用,通常是将不溶于水的单体分散在介质水中,利用机械搅拌,将单体打散成直径为0.01~5mm的小液滴的形式进行本体聚合,在每个小液滴内,单体的聚合过程和机理与本体聚合相似。悬浮聚合解决了本体聚合中不易散热的问题,产物容易分离,清洗可以得到纯度较高的颗粒状聚合物。 其主要组分有四种;单体、分散介质(水)、悬浮剂、引发剂。 1.单体 单体不溶于水,如:苯乙烯(styrene)、醋酸乙烯酯(vinyl acetate)、甲基丙烯酸酯(methyl methacrylate)等。 2.分散介质 分散介质大多为水,作为热传导介质。 3.悬浮剂 调节聚合体系的表面张力、粘度、避免单体液滴在水相中粘结。

(1)水溶性高分子,如天然物:明胶(gelatin),淀粉(starch);合成物:聚乙烯醇(PVA)等。 (2)难溶性无机物,如:BaSO4, BaSO3,CaCO3,滑石粉,粘士等。 (3)可溶液性电介质:NaCl,KCl,Na2SO4等。 4.引发剂 主要为油溶性引发剂,如:过氧化二苯甲酰(BPO),偶氮二异丁腈(AIBN)等。 三、主要仪器和试剂 1.实验仪器名称及数量: 三口瓶(250ml)×1,球形冷凝管×1,电热锅×1,搅拌马达与搅拌棒各×1,温度计(100℃)×1,量筒(100ml)×1,布氏漏斗×1,抽滤瓶×1。 2.实验试剂 苯乙烯单体,过氧化二苯甲酰(BPO),聚乙烯醇(PVA),去离子水。 四、实验步骤 (1)架好带有冷凝管、温度计、三口烧瓶的搅拌装置,如下图所示; (2)分别将0.3gBPO和16ml苯乙烯加入100ml锥形瓶中,轻轻摇动至溶解后加入250ml三口烧瓶中; (3)再将7~8ml,0.3%PVA溶液加入250ml三口烧瓶中; (4)130ml去离子水冲洗锥形瓶及量简后,加入250ml三口烧

高分子化学实验(2015级)

实验1 脲醛树脂的制备 一、目的要求 1.了解脲醛树脂的反应原理及PH 值对反应过程的影响 2.掌握脲醛树脂的制备方法 二、原理 脲醛树脂是尿素与甲醛在催化剂(碱性或酸性)作用下缩聚而成的初期树脂、以及在固化剂或助剂作用下形成的不溶不熔的末期树脂的总称。 脲醛树脂胶粘剂具有较高的粘合强度,较好的耐热性、腐蚀性和一定的耐水性。树脂呈无色透明粘稠液体或乳白色液体,不污染胶合制品。加之制造简单、使用方便、成本低廉,已成为人造板生产的主要胶种。脲醛胶粘剂的缺点是,胶合制品中常存在游离甲醛,污染空气,胶层易老化,耐水性不如酚醛树脂。 一般认为,脲醛树脂是经过两类化学反应形成的。一类是尿素与甲醛在中性或弱碱性介质中进行加成,生成一羟甲脲或二羟甲脲的反应: C O NH 2NH 2 + HCHO C O NH 2NHCH 2OH C O NHCH 2OH NHCH 2OH + 一羟甲脲 二羟甲脲 另一类反应是在酸性介质中脱水缩聚形成线型结构脲醛树脂的反应,包括羟甲基与胺基之间脱水生成亚甲基的反应,羟甲基与羟甲基之间脱水生成二亚甲基醚键(-CH 2-O -CH 2-)的反应,后者可能进一步脱甲醛仍生成亚甲基,最后生成线型或环化低聚体。 低聚体分子中存在大量的羟甲基,易反应,应在中性条件下保存。在使用时,将介质调至酸性,脲醛树脂的羟甲基在酸性条件下会进一步缩聚,发生三维交联,形成不溶不熔的体型结构。 三、主要试剂和仪器 尿素 甲醛(37%) 氢氧化钠 盐酸 氯化铵 pH 试纸 三颈瓶 搅拌器 回流冷凝管 烧杯 吸管 四、实验步骤 在装有搅拌棒、回流冷凝管和温度计的三颈瓶中,装入130 mL 浓度为37%的甲醛水溶液,用5%的NaOH 溶液调节pH 为7.0-7.5。然后加入50 g 尿素,搅拌溶解。加热升温至90-92℃,并在此温度下反应30 min 。此时,体系的pH 值下降到6.0-6.5。

苯乙烯的悬浮聚合

苯乙烯的悬浮聚合 一、实验目的 1、学习悬浮聚合的实验方法,了解悬浮聚合的配方及各组份的作用。 2、了解控制粒径的成珠条件及不同类型悬浮剂的分散机理、搅拌速度、搅拌器形 状对悬浮聚合物粒径等的影响,并观察单体在聚合过程中之演变。 二、实验原理 悬浮聚合是将单体以微珠形式分散于介质中进行的聚合。从动力学的观点看,悬浮聚合与本体聚合完全一样,每一个微珠相当于一个小的本体。悬浮聚合克服了本体聚合中散热困难的问题,但因珠粒表面附有分散剂,使纯度降低。当微珠聚合到一定程度,珠子内粒度迅速增大,珠与珠之间很容易碰撞粘结,不易成珠子,甚至粘成一团,为此必须加入适量分散剂,选择适当的搅拌器与搅拌速度。由于分散剂的作用机理不同,在选择分散剂的各类和确定分散剂用量时,要随聚合物种类和颗粒要求而定,如颗粒大小、形状、树脂的透明性和成膜性能等。同时也要注意合适的搅拌强度和转速,水与单体比等。 苯乙烯(St)通过聚合反应生成如下聚合物。反应式如下: 本实验要求聚合物体具有一定的粒度。粒度的大小通过调节悬浮聚合的条件来实现。 三、实验仪器及设备 搅拌电机、调压器、500ml、三口瓶、回流冷凝器、水浴、烧杯、吸滤瓶、抽气管、表面皿四、实验药品 名称试剂规格用量单体苯乙烯除去阻聚剂 15g 油溶性引发剂BPO AR 0.3g 分散剂聚乙烯醇1.5%水溶液20 mL 分散介质水 去离子水130mL 五、实验步骤 1、安装仪器(如图) 2、加料:用分析天平准确称取0.3g过氧化二苯甲酰放入100mL锥形瓶中,再用移液管按配方聚苯乙烯加入锥形瓶中,轻轻振荡,待过氧化二苯甲酰完全溶解后加入三口瓶中。再用量筒取20 mL1.5%的聚乙烯醇溶液加入三口烧瓶,最后用130 mL去离子水分别冲洗锥形瓶和量筒后加入三口烧瓶中。 3、聚合通冷凝水,启动搅拌并控制在一恒定转速,在20~30min内将温度升至85~90oC,开始聚合反应。在反应一个小时以后,体系中分散的颗粒变得发黏,此时一定要注意控制好搅拌速度。在反应后期可将温度升至反应温度上限,以加快反应,提高转化率。当反应1.5~2h后,可用吸管取少量颗粒于表面皿中进行观察,如颗粒变硬发脆,可结束反应。 4、出料及后处理停止加热,一边搅拌一边用冷水将三口烧瓶冷却至室温,然后停止搅拌,

苯乙烯及其聚合物

聚苯乙烯及共聚物概述 2006-10-13 14:16:03 【文章字体:大中小】打印收藏关闭 抗冲聚苯乙烯采用苯乙烯与橡胶进行接枝共聚的方法生产。得到的产品由分散的橡胶相及连续PS相组成,橡胶的引入使PS的韧性和抗冲击性能提高。为了使HIPS 在较宽的温度范围内具有较高的抗冲击强度,所用橡胶的玻璃化温度必须低于-50℃。聚丁二烯橡胶(玻璃化温度-80℃)是苯乙烯塑料最常用的抗冲改性剂,烯丙基氢原子和弱活性的双键可以提供理想的接枝和交联度。也有使用其他橡胶如丙烯酸酯橡胶、乙烯-丙烯-二烯烃橡胶、聚异戊二烯橡胶等的报道,但是由于这些橡胶的化学活性较低、玻璃化温度不合适等因素还未完全实现工业化。 SAN树脂由苯乙烯和丙烯腈嵌段共聚而成,聚合工艺可为乳液法,悬浮法和本体法。共聚物中丙烯腈的含量在15%左右,ABS树脂的制备工艺是先浮液法制备不同粒径的聚丁二烯胶乳,然后再于乳液中进行苯乙烯-丙烯睛嵌段共聚,同时接枝共聚聚丁二烯胶粒,之后三元共聚物再和SAN聚合物共混而成,由于共混物SAN分别可用乳液法,悬浮法,本体法制备,因此用SAN和苯乙烯三元共聚物共混而成的ABS 树脂的制备工艺,则分别称为乳液接枝乳液SAN共混工艺,乳液接枝悬浮SAN共混工艺,乳液接枝本体SAN共混工艺。 产品应用 聚苯乙烯及其共聚合物可用于通用塑料也可用于工程塑料,主要用于汽车、电子电器、器械部件、建筑、医疗等领域,其中高抗冲聚苯乙烯(HIPS),可用于制造容器的器皿,玩具、小型器具,高分子量聚苯乙烯用做强度发泡材料,间规聚苯乙烯(SPS)用做电子电器部件,汽车部件、医疗器械、汽车冷却泵的叶片,超薄电容器膜;丙烯腈-丁二烯-苯乙烯共聚合物(ABS)主要用于制造冰箱内箱体,汽车内部件、器具外壳、电器部件、游乐型车、帐篷;苯乙烯-丙烯酸腈共聚物(SAN)主要用于制造耐油、耐化学的器具。 研发趋势 聚苯乙烯共聚物除ABS和SAN外,还有一些其他共聚物有工业应用价值。这些共聚物是: 1.苯乙烯和丁二烯的嵌段共聚物,称为K树脂,由丁基锂引发阴离子聚合而成,其中丁二烯含量约为25%。K树脂透明度好,抗冲击好,耐酸碱,价格低,加工性能

苯乙烯(St)、丙烯酸正丁酯(n-BA)复合乳液聚合

高分子化学实验报告 09高分子(1)班

实验六苯乙烯(St)、丙烯酸正丁酯(n-BA) 复合乳液聚合 一、实验目的 1. 通过苯乙烯(St) 、丙烯酸正丁酯(n-BA)复合乳液聚合,了解复合乳液聚合的特点,比较一般乳液聚合、种子乳液聚合和复合乳液聚合的优缺点。 2. 掌握制备核/壳结构复合聚合物乳液的方法和对聚合物进行改性的方法和途径。 二、实验原理 合成复合聚合物乳液的方法实际上是种子乳液聚合(或称多阶段乳液聚合),即首先通过一般乳液聚合制备第一单体的聚合物乳液做为种子乳液(核聚合),然后在种子乳液存在下,加入第二单体(或几种单体的混合物)继续聚合(壳聚合),这样就形成了以第一单体的聚合物为核,第二单体的聚合物为壳的核/壳结构的崐复合聚合物乳液——乳胶型互为贯穿聚合物网络,复合乳液聚合与种子乳液聚合的差别在于前者是采用不同种单体,而后者采用同种单体。 如果以苯乙烯(St) 为主单体,同时加入少量的丙烯酸(AA) 单体进行核聚合,而以丙烯酸正丁酯(n-BA)为单体,同时加入少量的丙烯酸(AA) 单体进行壳聚合,即得到以聚苯乙烯(PS)为核、聚丙烯酸正丁酯(Pn-BA) 为壳的核/壳结构的复合聚合物乳液。 在第一阶段聚合中合成的聚苯乙烯(PS) 乳胶粒作为种子,再加入第二单体丙烯酸正丁酯(n-BA)、引发剂过硫酸钾(KPS)和少量乳化

剂进行第二阶段乳液聚合时,此时的聚合机理按接枝涂层理论机理进行。即单体n-BA 富集在种子乳胶粒PS 的周围,PS 乳胶粒成为n-BA 单体聚合的主要场所,所生成的聚合物Pn-BA 富集在PS 的周围而形成以PS 为核,Pn-BA为壳的核/壳结构聚合物,且核壳之间存在着PS-Pn-BA 接枝共聚物,理想情况下不生成新的乳胶粒。由于在聚合过程中形成了少量的PS-Pn-BA 接枝共聚物使得核/壳结构的复合聚 合物的性能优于任何一种均聚物PS 或Pn-BA 和PS-Pn-BA 无规共聚物的性能。如耐水性能、耐溶剂性能、软化点、弹性和机械强度等均有大幅度提高。特别是用于外墙涂料的基料,其最低成膜温度(FMT)、玻璃化温度(Tg)低、附着力好、耐水性能好、光泽度高、大大改善了夏季回粘性,从而提高了涂料的性能并延长了施工期。由此可见,制备复合聚合物是对聚合物改性的一种方法。 三、实验仪器及试剂 三口瓶,回流冷凝管,滴液漏斗,温度计,电动搅拌器,移液管,恒温水浴,量筒,烧杯 苯乙烯,碳酸氢钠,丙烯酸正丁酯,邻苯二甲酸二丁酯,丙烯酸,壬基酚聚氧乙烯基醚OP-10),过硫酸钾,十二烷基硫酸钠(SDS) 四、实验步骤 <一>、单体预乳化 步骤现象分析 种 类

高分子化学实验8

高分子化学实验 梁晖卢江主编 出版社化学工业出版社书号 ISBN 7-5025-5633-X 出版日期 2005-7-1

目录 第1章高分子化学实验的基础技术 (1) 1.1 聚合反应装置 (1) 1.2 聚合体系的除湿除氧 (5) 1.3 单体的纯化与贮存 (6) 1.4 常见引发剂(催化剂)的提纯 (8) 1.5 常见溶剂的处理 (9) 1.6 聚合物的分离与提纯 (10) 附:几种常见单体和溶剂的提纯处理 (12) 主要参考文献 (14) 第2章逐步聚合反应的实施 (15) 2.1 熔融聚合 (15) 实验一聚对苯二甲酸乙二醇酯(涤纶)的合成及其熔融纺丝 (16) 2.2 溶液聚合 (18) 实验二聚苯硫醚的合成 (19) 2.3 界面缩聚 (20) 实验三对苯二甲酰氯与己二胺的界面缩聚 (21) 2.4 固相聚合 (23) 实验四固相聚合法合成高分子量聚碳酸酯 (23) 2.5 逐步聚合预聚体的合成及其固化 (26) 实验五醇酸树脂缩聚反应动力学 (27) 实验六三聚氰胺—甲醛树脂的合成及层压板的制备 (29) 实验七软质聚氨酯泡沫塑料的制备 (31) 实验八不饱和聚酯预聚体的合成及其交联固化 (32) 实验九双酚A型环氧树脂的合成及其固化 (35) 主要参考文献 (38) 第三章自由基聚合反应的实施 (40) 3.1 本体聚合 (40) 实验十甲基丙烯酸甲酯的本体聚合 (41) 3.2 溶液聚合 (42) 实验十一乙酸乙烯酯的溶液聚合 (42) 3.3 沉淀与分散聚合 (43) 实验十二沉淀聚合合成单分散MMA/二乙烯基苯DVB交联微球 (44) 实验十三苯乙烯/丙烯酸丁酯的分散共聚合 (45)

苯乙烯悬浮聚合

苯乙烯悬浮聚合 一、实验目的 1.学习悬浮聚合的实验方法,了解悬浮聚合的配方及各组份的作用。 2?了解控制粒径的成珠条件及不同类型悬浮剂的分散机理、搅拌速度、搅拌 器形状对悬浮聚合物粒径等的影响,并观察单体在聚合过程中之演变。 二、实验原理 悬浮聚合是由烯类单体制备高聚物的重要方法之一。由于水为分散介质,聚合热可以迅速排除,因而反应温度容易控制;生产工艺简单;制成的成品呈均匀的颗粒状,故又称为珠状聚合;产品不经造粒即可直接成型加工。 悬浮聚合是将单体以微珠形式分散于介质中进行的聚合。从动力学的观点看,悬浮聚合与本体聚合完全一样,每一个微珠相当于一个小的本体。悬浮聚合克服了本体聚合中散热困难的问题,但因珠粒表面附有分散剂,使纯度降低。当微珠聚合到一定程度,珠子内粒度迅速增大,珠与珠之间很容易碰撞粘结,不易成珠子,甚至粘成一团,为此必须加入适量分散剂,选择适当的搅拌器与搅拌速度。由于分散剂的作用机理不同,在选择分散剂的各类和确定分散剂用量时,要随聚合物种类和颗粒要求而定,如颗粒大小、形状、树脂的透明性和成膜性能等。同时也要注意合适的搅拌强度和转速,水与单体比等。 苯乙烯(St)通过聚合反应生成如下聚合物。反应式如下: 厂〒CH=CH2 ________________ +厂〒CH-CH2七 本实验要求聚合物体具有一定的粒度。粒度的大小通过调节悬浮聚合的条件来实现。 三、仪器及试剂 1.仪器:聚合装置如图1表面皿、吸管、移液管、搅拌马达、水浴、 布氏漏斗。

打 图聚合装置图(1.搅拌器2.四氟密封塞3.温度计4.温度计套管5.冷凝管) 四、实验步骤 按图1安装好实验装置,为保证搅拌速度均匀,整套装置安装要规范。尤其是搅拌器安装后,用手转动,阻力小转动轻松自如。 用分析天平准确称取0.3gBPO(用分析天平)放于100ml锥形瓶中。再用移液管按配方量取苯乙烯,加入锥形瓶中。轻轻振动,待BPO完全溶解于苯乙烯后将溶液加入三口瓶中。再加入20ml1.5%的聚乙烯醇溶液。最后用130ml无离子水分别冲洗锥形瓶和量筒后加入三口瓶中。 通过冷凝水。启动搅拌器并控制在一恒定转速,在20-30分钟内将温度升至85-90C,开始聚合反应。 在整个过程中除了要控制好反应温度外,关键是要控制好搅拌速度。尤其是反应一个多小时以后,体系中分散的颗粒变得发粘,这时搅拌速度如果忽快忽慢或者停止都会导致颗粒粘在一起,或粘在搅拌器形成结块,致使反应失败。所以反应中一定要控制好搅拌速度。可在反应后期将温度升至反应温度上限,以加快反应,提高转化率。

苯乙烯聚合的综合实验

苯乙烯聚合的综合实验 实验目的: 1,了解苯乙烯聚合的反应原理 2.通过对聚苯乙烯的表征掌握对红外光谱,粘度仪、DSC等的使用方法。 实验原理:聚苯乙烯一般由单体苯乙烯通过自由基聚合获得。要获得分子量分布较窄的聚苯乙烯,则须通过阴离子聚合反应的方法。自由基聚合的实施方法有本体聚合、溶液聚合、悬浮聚合和乳液聚合。本体聚合和溶液聚合也适合于阴离子聚合。 阴离子聚合是活性聚合和化学聚合,其特点是无终止聚合。在反应条件控制得当的情况下,阴离子聚合体系可以长时间保持链增长活性。活性聚合技术是目前合成单分散特定分子量的聚合物的一种方法。阴离子活性聚合物的分子量可通过单体浓度和引发剂的浓度来控制:错误!未找到引用源。(双阴离子引发n=2,单离子引发n=1),其分子量分布指数接近1。

反应部分试剂与仪器 试剂:苯乙烯,正丁基锂,环己烷,无水氯化钙,甲醇,氢氧化钠. 仪器:250 mL分液漏斗,100 mL烧杯,量筒(10 mL、50 mL),注射器及针头,无水无氧操作系统,玻璃棒,反应管,抽滤瓶,布氏漏斗,注射器,试管。表征部分:红外光谱仪、DSC、粘度仪 实验步骤: 1试剂的预处理 取苯乙烯50mL于250mL分液漏斗,用5%NaOH洗至水层变为无色,再用水洗至pH约为7,得到淡黄色液体。向所得液体中加入无水氯化钙,于100mL锥形瓶中保存。 2苯乙烯的阴离子聚合 取干燥试管一支,配上单孔橡皮塞和短玻璃管及一段橡皮管,接上无水无氧干燥系统,以油泵抽真空,通氮气,反复三次。持续通入氮气作为保护气,由注射器从橡皮管依次且连续注入4mL无水环己烷、1.5mL干燥苯乙烯和0.8mL正丁基锂溶液。放置10分钟后,以注射器从橡皮管注射加入甲醇。 3 正丁基锂的制备 在氮气保护下,在5000ml的三口瓶中加入3L正己烷(或60-90℃石油醚),将140g(20mol)金属锂片用正己烷(或60-90℃石油醚)洗涤干净,戴上一次性手套,将金属锂片快速撕成小片,加入到5000ml的三口瓶中,装上机械搅拌,冰盐浴冷

实验02 苯乙烯的悬浮聚合

实验二 苯乙烯的悬浮聚合 一、实验目的 1、学习悬浮聚合的实验方法,了解悬浮聚合的配方及各组份的作用; 2、了解控制粒径的成珠条件及不同类型悬浮剂的分散机理、搅拌速度、搅拌器形状对悬浮聚合物粒径等的影响,并观察单体在聚合过程中之演变。 二、实验原理 悬浮聚合是通过强力搅拌并在分散剂的作用下,把单体分散成无数的小液珠悬浮于水中由油溶性引发剂引发而进行的聚合反应。 在悬浮聚合体系中,单体不溶或微溶于水,引发剂只溶于单体,水是连续相,单体为分散相,是非均相聚合反应。 但聚合反应发生在各个单体液珠内,对每个液珠而言,从动力学的观点看,其聚合反应机理与本体聚合一样,每一个微珠相当于一个小的本体,因此悬浮聚合也称小珠本体聚合。单体液珠在聚合反应完成后成为珠状的聚合产物。 悬浮聚合克服了本体聚合中散热困难的问题,但因珠粒表面附有分散剂,使纯度降低。 苯乙烯(St )通过聚合反应生成如下聚合物。反应式如下: 在悬浮聚合过程不溶于水的单体依靠强力搅拌的剪切力作用形成小液滴分散于水中,单体液滴与水之间的界面张力使液滴呈圆珠状,但它们相互碰撞又可以重新凝聚,即分散和凝聚是一个可逆过程。当微珠聚合到一定程度,珠子内粒度迅速增大,珠与珠之间很容易碰撞粘结,不易成珠子,甚至粘成一团。 为了阻止单体液珠在碰撞时不再凝聚,必须加入分散剂,选择适当的搅拌器与搅拌速度。分散剂在单体液珠周围形成一层保护膜或吸附在单体液珠表面,在单体液珠碰撞时,起隔离作用,从而阻止或延缓单体液珠的凝聚。 悬浮聚合分散剂主要有两大类: (i)水溶性的高分子:如聚乙烯醇、明胶、羟基纤维素等; (ii) 难溶于水的无机物:如碳酸钙、滑石粉、硅藻土等。 水溶性高分子 难溶于水的无机物 图1 悬浮聚合分散剂作用机理示意图 n C H C H 2H 2C H n 引发剂加热

苯乙烯的悬浮聚合Word版

实验三苯乙烯的悬浮聚合 化工系毕啸天 2010011811 一、实验目的 1. 了解悬浮聚合的特点和反应机理 2. 掌握悬浮聚合的工艺特点及配方中每个组分的作用 二、实验原理 悬浮聚合是指油溶性单体在溶有分散剂(或称悬浮剂)的水中,借助于搅拌作用分散成细小液滴进行的聚合反应。悬浮聚合在工业上的应用还有比较多的,根据聚合物在水中的溶解情况,可合成不同形态的悬浮聚合物,若聚合物不溶于单体,则产物呈不透明、不规整的颗粒状,如氯乙烯等单体的聚合;若聚合物溶于单体,则可得到透明的珠状产品,因此又可称为珠状聚合,如苯乙烯等单体的聚合。 苯乙烯是一种比较活泼的单体,容易进行聚合反应。苯乙烯在水中的溶解度很小,将其倒入水中,体系分成两层,进行搅拌时,在剪切力作用下单体层分散成液滴,界面张力使液滴保持球形,而且界面张力越大形成的液滴越大,因此在作用方向相反的搅拌剪切力和界面张力作用下液滴达到一定的大小和分布。而这种液滴在热力学上是不稳定的,当搅拌停止后,液滴将凝聚变大,最后与水分层,同时聚合到一定程度以后的液滴中溶有的发粘聚合物亦可使液滴相粘结。因此,悬浮聚合体系还需加入分散剂。 悬浮聚合中,在每一个被分散的小液滴中,恰似一个本体聚合的微反应器,其聚合速度和平均相对分子质量以及产物的性质,都与在相同条件下本体聚合所得到的相仿。不过其毕竟是在非均相的体系中进行,它的全部反应过程是处于亚稳态的。因此据合众搅拌速度和分散剂的种类及用量是控制所得聚合物颗粒形态和大小的主要因素。 悬浮聚合的主要优点有:以水为介质,体系粘度低,易传热和控温;产物分子质量比溶液聚合高,分子质量分布均匀;杂质含量比乳液聚合的低;后处理工序比溶液聚合和乳液聚合简单,生产成本低,固体颗粒可直接使用。 悬浮聚合主要组分有四种:单体,水,分散剂,油溶性引发剂: 1、单体:单体不溶于水,如:氯乙烯、苯乙烯、醋酸乙烯酯、甲基丙烯酸酯等。 2、水:作为热传导介质。 3、分散剂:包括水溶性高分子物质和水不溶性无机盐粉末两类。水溶性高分子分散剂主要有天然高分子(如明胶、甲基纤维素、羟丙基纤维素)和合成高分子(如聚乙烯醇、聚丙烯酸和聚甲基丙烯酸的盐类、顺丁烯二酸酐-苯乙烯共聚物)两类,它们的作用是吸附在液滴表面,形成一层保护膜,起着保护作用,同时可阻碍液滴间的结合。无机盐粉末主要由碳酸钙、碳酸钡、磷酸钙、滑石粉、高岭土等,它们吸附在液滴表面,起着机械隔离作用。 4、油溶性引发剂:如过氧化二苯甲酰(BPO),偶氮二异丁腈(AIBN)等。 目前悬浮聚合法主要用来生产聚氯乙烯树脂、聚苯乙烯树脂、聚甲基丙烯酸甲酯及其共聚物、聚四氟乙烯、聚三氟氯乙烯以及聚乙酸乙烯酯等。 聚苯乙烯用注模、压制、挤出等方法制成各种工业用品,如仪表外壳,仪器零件,高效绝缘制品,薄膜和日用品。聚苯乙烯泡沫塑料是优良的防震、防湿、保冷、隔音材料。

苯乙烯悬浮聚合制备聚苯乙烯的合成工艺

目录 第一章概述 1.1聚苯乙烯、可发性聚苯乙烯介绍 (1) 1.2 EPS储存条件 (1) 1.3 EPS生产技术的进展 (2) 1.4 EPS 存在的问题及解决方法 (2) 第二章可发性苯乙烯工艺的设计原理和流程 2.1可发性聚苯乙烯合成的原料 (3) 2.2可发性苯乙烯珠粒制造 (4) 2.3可发性聚苯乙烯塑料成型 (6) 2.4熟化 (7) 2.5成型 (7) 第三章聚苯乙烯珠粒制备的影响因素 1 悬浮分散体系的选择及影响 (7) 2 悬浮分散剂的用量对粒径大小的影响 (8) 3助分散剂的选择与作用 (8) 4.搅拌桨的形式对悬浮聚合的影响 (8) 5 聚合操作因素对产品质量的影响 (8) 6 浸渍条件的影响 (9) 7 后处理的影响 (9) 第四章EPS的性能及用途 4.1 力学性能 (9) 4.2 绝热性能.................... .. (9) 4.3化学性能 (10) 4.4 EPS的用途 (10) 五.总结 (11) 六.参考文献

第一章概述 1.1聚苯乙烯、可发性聚苯乙烯介绍 聚苯乙烯(PS)包括普通聚苯乙烯(GPPS).可发性聚苯乙烯(EPS).高抗冲聚苯乙烯(HIPS)及间规聚苯乙烯(SPS)。 聚苯乙烯(Polystyrene,简称PS)是一种无色透明的热塑性塑料,质地硬而脆,无色透明,可以和多种染料混合产生不同的颜色。聚苯乙烯大分子链的侧基为苯环,大体积侧基为苯环的无规排列决定了聚苯乙烯的物理化学性质,如透明度高,刚度大,玻璃化温度高,性脆等。其玻璃化温度80~90℃,非晶态密度1.04~1.06克/厘米3,晶体密度1.11~1.12克/厘米3,熔融温度240℃,电阻率为1020~1022欧·厘米。导热系数30℃时0.116瓦/(米·开)。 普通聚苯乙烯的不足之处在于性脆,冲击强度低,易出现应力开裂,耐热性差及不耐沸水等。此外还有全同和间同立构聚苯乙烯。全同聚合物有高度结晶性具有高于100摄氏度的玻璃转化温度,因此经常被用来制作各种需要承受开水的温度的一次性容器,以及一次性泡沫饭盒等。 发泡聚苯乙烯又称可发性聚苯乙烯,是由苯乙烯悬浮聚合,再加入发泡剂而制得。白色珠状颗粒,相对密度1.05。热导率低,吸水性小。耐冲击振动、隔热、隔音、防潮、减振。介电性能优良。溶于丙酮、醋酸乙酯、苯、甲苯、二氯乙烷、氯仿、不溶于乙醇、正己烷、环己烷、溶剂汽油等。可发性聚苯乙烯为在普通聚苯乙烯中浸渍低沸点的物理发泡剂制成,加工过程中受热发泡,专用于制作泡沫塑料产品。高抗冲聚苯乙烯为苯乙烯和丁二烯的共聚物,丁二烯为分散相,提高了材料的冲击强度,但产品不透明。间规聚苯乙烯为间同结构,采用茂金属催化剂生产,是近年来发展的聚苯乙烯新品种,性能好,属于工程塑料。 1.2 EPS储存条件 贮存可发性聚苯乙烯树脂的设备要采取良好的接地预防措施,贮存可发性聚苯乙烯树脂的地方要有良好的通风,远离火源、热源,避免阳光直接照射,容器应密封良好,同时贮罐内应通以惰性气体;为保证最终产品质量,可发性聚苯乙烯树脂的贮存温度应保持在20℃;湿度不能太大,并

高分子化学实验

实验二 丙烯酰胺溶液聚合 一、目的要求 1.认识并了解溶液聚合及其反应原理; 2.掌握丙烯酰胺溶液聚合的方法。 二、基本原理 溶液聚合是将单体,引发剂溶于溶剂,然后进行聚合的方法。根据所生成的高分子物质溶解情况,可以分为均相溶液聚合和非均相溶液聚合(也叫沉淀聚合)。自由基聚合、离子型聚合和缩聚反应聚合采用溶液聚合的方法。 溶液聚合一般具有反应均匀、聚合热易散发、反应速度及温度易控制、分子量分布均匀等优点。但是由于溶剂的引入,大分子自由基易向溶剂发生链转移反应,造成转化率降低,聚合度不高,使产物分子量降低,这是溶液聚合的主要缺点。因此,在选择溶剂时必须注意溶剂的活性大小。各种溶剂的链转移常数变动很大,水为零,苯较小,卤代烃较大。一般根据聚合物分子量的要求选择合适的溶剂。另外还要注意溶剂对聚合物的溶解性能,选用良溶剂时,反应为均相聚合,可以消除凝胶效应,遵循正常的自由基动力学规律。选用沉淀剂时,则成为沉淀聚合,凝胶效应显著。产生凝胶效应时,反应自动加速,分子量增大,劣溶剂的影响介于其间,影响程度随溶剂的优劣程度和浓度而定。 本实验以丙烯酰胺为单体,水为溶剂,(NH 4)2S 2O 8为引发剂,水为溶剂有许多优点:(1)价廉,(2)无毒,(3)链转移常数小,(4)对单体及聚合物溶解性能好,为一均相反应。 反应式: 链引发: ()4 4284222NH S O NH SO +?? → + O C H 2CH C NH 2 SO 4 _.+ O 3SO CH 2 C H C O NH 2. 链增长:

O C H 2CH C NH 2 O 3SO CH 2 C H C O NH 2 . n . +O 3SO CH 2 CH C O NH 2 CH 2 C H C O NH 2 n 链终止: 2O 3 SO CH 2 CH C O NH 2CH 2C C O NH 2 . n n n O 3SO CH 2 CH C O NH 2 CH 2 CH C O NH 2 CH C O NH 2 CH 2CH C O NH 2 CH 2OSO 3 在均相反应结束后,可通过加入适当的沉淀剂使聚合物与溶剂分离,再用过滤等方法,得到固体聚合物。 聚丙烯酰胺是一种优良的絮凝剂,水溶性好,广泛应用于石油开采,选矿、化学工业及污水处理等方面。 三、仪器与药品 仪器:三口瓶250ml 、球形冷凝管、温度计100℃、烧杯100ml 、量筒100ml 、搅拌装置、控温装置。 药品:丙稀酰胺(分析纯)10g 、蒸馏水100ml 、(NH 4)2S 2O 8 (分析纯)0.06g 。 四、实验步骤 1.如图组装好各种实验仪器。 2.用天平称取丙烯酰胺10g ,量筒量取蒸馏水80ml ,并将称量好的丙烯酰胺和蒸馏水依次加入到三口瓶中。 3.将水浴温度设定至30℃,并开始搅拌。 4.用天平称取(NH 4)2S 2O 8 0.06g ,量筒量取蒸馏水20ml ,并将称量好的(NH 4)2S 2O 8溶解

聚苯乙烯及共聚物概述

聚苯乙烯及共聚物概述 研发历史 早在1839年人们即发现水汽蒸馏苯乙烯出现苯乙烯的固化反应,当时认为是氧化。20世纪30年代初,为备战需要,德国加快了工业生产苯乙烯及苯乙烯聚合物的开发工作,1933年法本公司开发了连续本体聚合生产聚苯乙烯的工产生产技术。美国于1938年开发了苯乙烯釜式本体聚合工业生产技术。在50年代初道化学公司推出高抗冲聚苯乙烯商品(HIPS),1953年美国出现了ABS树脂,并于1958年建厂投产。 对于苯乙烯聚合过程和聚苯乙烯性质的研究,带动了高分子科学基础研究的发展,HIPS和ABS的成功开发,带动了高分子物理及高分子材料应用研究的发展。因此聚苯乙烯的研究在高分子科学的发展中,发挥了重要作用。 生产规模 2000年世界苯乙烯系树脂生产能力太约为20Mt/a,其中聚苯乙烯(GPPS、HIPS、EPS)生产能力约13Mt/a,ABS树脂生产能力为622Mt/a。我国苯乙烯系树脂发展起步于20世纪60年代,70年代开始工业化生产,80年代随着几套较大型的生产装置的引进开始初具规模。进入90年代,生产装置向着更大型化发展,引进了几套代表目前世界先进水平的生产装置,使我国的苯乙烯系树脂工业迈上了一个新的台阶,到20世纪末我国苯乙烯系树脂生产能力已达到1.20Mt/a。目前我国苯乙烯系树脂生产装置中,除一些小型GPP5装置和小型EPS装置外,其他大型PS生产型装置和全部ABS/SAN装置都是从国外引进的。 生产技术 苯乙烯系树脂是苯乙烯单体经均聚或与其他单体共聚而得的一系列树脂。1998年世界77%的苯乙烯用于生产各类苯乙烯系列树脂,日本这一比例为83%。商品化苯乙烯聚合物主要包括通用聚苯乙烯(GPPS)、抗冲聚苯乙烯(IPS)、发泡聚苯乙烯(EPS 树脂)、丙烯睛一丁二烯一苯乙烯共聚物(ABS)、苯乙烯一丙烯睛(SAN)共聚物等。几种重要的商品化苯乙烯聚合物基本上都是以自由基链式聚合机理经本体、溶液、悬浮或乳液工艺制造的,其中稀释剂本体法工艺最为常用,虽然某些苯乙烯类树脂用悬浮法工艺(EPS树脂)和乳液法工艺(ABS树脂)生产,但由于经济及其他一些原因,在可能的情况下尽可能采用连续本体工艺是一个发展趋势。 采用自由基聚合反应生产的聚苯乙烯(PS)是玻璃化温度为105℃的无规聚合物,PS 均聚物是无定型的脆性材料,具有优异的透明性和可加工性,可制成形状复杂的制品。HIPS是通过苯乙烯在聚丁二烯橡胶或丁苯共聚物存在下进行聚合而形成的一种高分子共混物(橡胶粒子分散在PS基质中)。 苯乙烯与丙烯腈、α-甲基苯乙烯、马来酸酐进行共聚,得到的聚合物具有较高的热性能和机械性能。苯乙烯与甲基丙烯酸酯共聚可以提高透明性和耐磨性。苯乙烯

苯乙烯乳液聚合实验报告

实验名称:苯乙烯的乳液聚合姓名:_________ 学号:__________ 实验日期:__________ 一、实验目的 1.了解乳液聚合的原理和乳液聚合的方法。 2.学习并了解乳液聚合和其他聚合方法的区别。 二、实验原理 乳液聚合是以大量水为介质,在此介质中使用能够使单体分散的水溶性聚合引发齐山并添加乳化剂(表面活性剂),以使油性单体惊行聚合的方法。所生成的高分子聚合物为微细的粒子悬浮在水中的乳液。 单体 能进行乳液聚合的单体数量很多,其中应用比较广范的有:乙烯基单体,例:苯乙烯、乙烯、醋酸乙烯酯、氯乙烯、偏二氯乙烯等;共轭二烯单体,例:丁二烯、异戊二烯、氯丁二烯等;丙烯酸及甲基丙烯酸系单体,例:甲基丙烯酸甲酯、甲基丙烯酸丁酯、丙烯酸甲酯等。 引发剂 与悬浮聚合不同,乳液聚合所用的引发剂是水溶性的,而且由于高温不利于乳液的稳定性,弓I发体系产生的自由基的活化能应当很低,使聚合可以在室温甚至更低的温度下进行。常用的乳液聚合引发剂有:热分解引发剂,如过硫酸铵[(NH4) 2?O8]、过硫酸钾(K2908);氧化还原引发剂,如过硫酸钾-氯化亚铁体系、过硫酸钾-亚硫酸钠体系、异丙苯过氧化氢-氯化亚铁体系等。 乳化剂 乳化剂是可以形成胶束的一类物质,在乳液聚合中起着重要的作用,常见的乳液聚合体系的乳化剂为负离子型,如十二烷基苯磺酸钠、十二烷基硫酸钠等。乳化剂具有降低表面张力和界面张力、乳化、分散、增溶作用。 三、仪器及药品 三口烧瓶、搅拌器、回流冷凝管、固定夹及铁架、恒温水浴锅、烧杯、量筒、温度计苯乙烯10mL、十二烷基苯磺酸钠0.6g、过硫酸钾0.3g、硫酸铝钾、水 四、实验步骤及现象 1.取0.6g十二烷基苯磺酸钠,50ml H2O加入三口烧瓶升温至80C。 2.加入10ml苯乙烯。 3.取0.3g过硫酸钾溶于10ml H2O缓缓加入三口烧瓶。 4.升温到90C反应1.5小时。 现象:溶液浑浊并发蓝光,后来蓝色消失变为乳白色。 5?加入KAI(SO)2进行破乳 现象:溶液发生固化得到白色固体。 6.转移产物并洗涤仪器。

相关主题