搜档网
当前位置:搜档网 › 2018年美国数学竞赛 AMC 试题

2018年美国数学竞赛 AMC 试题

2018年美国数学竞赛 AMC  试题
2018年美国数学竞赛 AMC  试题

2018 AIME I Problems

Problem 1

Let be the number of ordered pairs of

integers with and such that the

polynomial can be factored into the product of two (not necessarily distinct) linear factors with integer coefficients. Find the remainder when is divided by .

Problem 2

The number can be written in base as , can be written in

base as , and can be written in base as , where . Find the base- representation of .

Problem 3

Kathy has red cards and green cards. She shuffles the cards and lays

out of the cards in a row in a random order. She will be happy if and only if all the red cards laid out are adjacent and all the green cards laid out are adjacent. For example, card orders RRGGG, GGGGR, or RRRRR will make Kathy happy,

but RRRGR will not. The probability that Kathy will be happy is ,

where and are relatively prime positive integers. Find . Problem 4

In and . Point lies strictly

between and on and point lies strictly between and on so

that . Then can be expressed in the form ,

where and are relatively prime positive integers. Find .

Problem 5

For each ordered pair of real numbers satisfying

there is a real number such that

Find the product of all possible values of .

Problem 6

Let be the number of complex numbers with the properties

that and is a real number. Find the remainder when is divided by .

Problem 7

A right hexagonal prism has height . The bases are regular hexagons with side length . Any of the vertices determine a triangle. Find the number of these triangles that are isosceles (including equilateral triangles).

Problem 8

Let be an equiangular hexagon such

that , and . Denote the diameter of the largest circle that fits inside the hexagon. Find .

Problem 9

Find the number of four-element subsets of with the property

that two distinct elements of a subset have a sum of , and two distinct elements of a subset have a sum of . For

example, and are two such subsets.

Problem 10

The wheel shown below consists of two circles and five spokes, with a label at each point where a spoke meets a circle. A bug walks along the wheel, starting at point . At every step of the process, the bug walks from one labeled point to an adjacent labeled point. Along the inner circle the bug only walks in a counterclockwise direction, and along the outer circle the bug only walks in a clockwise direction. For example, the bug could travel along the

path , which has steps. Let be the number of paths with steps that begin and end at point . Find the remainder when is divided by .

Problem 11

Find the least positive integer such that when is written in base , its two right-most digits in base are .

Problem 12

For every subset of , let be the sum of the elements of , with defined to be . If is chosen at random among all

subsets of , the probability that is divisible by is , where and are relatively prime positive integers. Find .

Problem 13

Let have side lengths , , and .

Point lies in the interior of , and points and are the incenters

of and , respectively. Find the minimum possible area

of as varies along .

Problem 14

Let be a heptagon. A frog starts jumping at vertex . From any vertex of the heptagon except , the frog may jump to either of the two adjacent

vertices. When it reaches vertex , the frog stops and stays there. Find the number of distinct sequences of jumps of no more than jumps that end at .

Problem 15

David found four sticks of different lengths that can be used to form three non-congruent convex cyclic quadrilaterals, , which can each be inscribed in a circle with radius . Let denote the measure of the acute angle made by the diagonals of quadrilateral , and define and similarly. Suppose

that , , and . All three quadrilaterals have the

same area , which can be written in the form , where and are relatively prime positive integers. Find .

2018 AMC 8 Problems

Problem 1

An amusement park has a collection of scale models, with ratio , of buildings and other sights from around the country. The height of the United States Capitol is 289 feet. What is the height in feet of its replica to the nearest whole number?

Problem 2

What is the value of the product

Problem 3

Students Arn, Bob, Cyd, Dan, Eve, and Fon are arranged in that order in a circle. They start counting: Arn first, then Bob, and so forth. When the number contains a 7 as a digit (such as 47) or is a multiple of 7 that person leaves the circle and the counting continues. Who is the last one present in the circle?

Problem 4

The twelve-sided figure shown has been drawn on graph paper. What is the area of the figure in ?

Problem 5

What is the value

of ?

Problem 6

On a trip to the beach, Anh traveled 50 miles on the highway and 10 miles on a coastal access road. He drove three times as fast on the highway as on the coastal road. If Anh spent 30 minutes driving on the coastal road, how many minutes did his entire trip take?

Problem 7

The -digit number is divisible by . What is the remainder when this number is divided by ?

Problem 8

Mr. Garcia asked the members of his health class how many days last week they exercised for at least 30 minutes. The results are summarized in the following bar graph, where the heights of the bars represent the number of students.

What was the mean number of days of exercise last week, rounded to the nearest hundredth, reported by the students in Mr. Garcia's class?

Problem 9

Tyler is tiling the floor of his 12 foot by 16 foot living room. He plans to place one-foot by one-foot square tiles to form a border along the edges of the room and to fill in the rest of the floor with two-foot by two-foot square tiles. How many tiles will he use?

Problem 10

The of a set of non-zero numbers is the reciprocal of the average of the reciprocals of the numbers. What is the harmonic mean of 1, 2, and 4?

Problem 11

Abby, Bridget, and four of their classmates will be seated in two rows of three for a group picture, as shown.

If the seating positions are assigned randomly, what is the probability that Abby and Bridget are adjacent to each other in the same row or the same column?

Problem 12

The clock in Sri's car, which is not accurate, gains time at a constant rate. One day as he begins shopping he notes that his car clock and his watch (which is accurate) both say 12:00 noon. When he is done shopping, his watch says 12:30 and his car clock says 12:35. Later that day, Sri loses his watch. He looks at his car clock and it says 7:00. What is the actual time?

Problem 13

Laila took five math tests, each worth a maximum of 100 points. Laila's score on each test was an integer between 0 and 100, inclusive. Laila received the same score on the first four tests, and she received a higher score on the last test. Her average score on the five tests was 82. How many values are possible for Laila's score on the last test?

Problem 14

Let be the greatest five-digit number whose digits have a product of . What is the sum of the digits of ?

Problem 15

In the diagram below, a diameter of each of the two smaller circles is a radius of the larger circle. If the two smaller circles have a combined area of square unit, then what is the area of the shaded region, in square units?

Problem 16

Professor Chang has nine different language books lined up on a bookshelf: two Arabic, three German, and four Spanish. How many ways are there to arrange the nine books on the shelf keeping the Arabic books together and keeping the Spanish books together?

Problem 17

Bella begins to walk from her house toward her friend Ella's house. At the same time, Ella begins to ride her bicycle toward Bella's house. They each maintain a constant speed, and Ella rides 5 times as fast as Bella walks. The distance

between their houses is miles, which is feet, and Bella covers feet with each step. How many steps will Bella take by the time she meets Ella?

Problem 18

How many positive factors does have?

Problem 19

In a sign pyramid a cell gets a "+" if the two cells below it have the same sign, and it gets a "-" if the two cells below it have different signs. The diagram below illustrates a sign pyramid with four levels. How many possible ways are there to fill the four cells in the bottom row to produce a "+" at the top of the pyramid?

Problem 20

In a point is on with and Point is

on so that and point is on so that What is the ratio of the area of to the area of

Problem 21

How many positive three-digit integers have a remainder of 2 when divided by 6, a remainder of 5 when divided by 9, and a remainder of 7 when divided by 11?

Problem 22

Point is the midpoint of side in square and meets diagonal at The area of quadrilateral is What is the area

of

Problem 23

From a regular octagon, a triangle is formed by connecting three randomly chosen vertices of the octagon. What is the probability that at least one of the sides of the triangle is also a side of the octagon?

Problem 24

In the cube with opposite vertices and and are the midpoints of edges and respectively. Let be the ratio of the area of the cross-section to the area of one of the faces of the cube. What is

Problem 25

How many perfect cubes lie between and , inclusive?

2018 AMC 10A Problems

Problem 1

What is the value of

Problem 2

Liliane has more soda than Jacqueline, and Alice has more soda than Jacqueline. What is the relationship between the amounts of soda that Liliane and Alice have?

Liliane has more soda than Alice.

Liliane has more soda than Alice.

Liliane has more soda than Alice.

Liliane has more soda than Alice.

Liliane has more soda than Alice.

Problem 3

A unit of blood expires after seconds. Yasin donates a unit of blood at noon of January 1. On what day does his unit of blood expire?

Problem 4

How many ways can a student schedule 3 mathematics courses -- algebra, geometry, and number theory -- in a 6-period day if no two mathematics courses can be taken in consecutive periods? (What courses the student takes during the other 3 periods is of no concern here.)

Alice, Bob, and Charlie were on a hike and were wondering how far away the nearest town was. When Alice said, "We are at least 6 miles away," Bob replied, "We are at most 5 miles away." Charlie then remarked, "Actually the nearest town is at most 4 miles away." It turned out that none of the three statements were true. Let be the distance in miles to the nearest town. Which of the following intervals is the set of all possible values of ?

Problem 6

Sangho uploaded a video to a website where viewers can vote that they like or dislike a video. Each video begins with a score of 0, and the score increases by 1 for each like vote and decreases by 1 for each dislike vote. At one point Sangho saw that his video had a score of 90, and that of the votes cast on his video were like votes. How many votes had been cast on Sangho's video at that point?

Problem 7

For how many (not necessarily positive) integer values of is the value of an integer?

Problem 8

Joe has a collection of 23 coins, consisting of 5-cent coins, 10-cent coins, and 25-cent coins. He has 3 more 10-cent coins than 5-cent coins, and the total value of his collection is 320 cents. How many more 25-cent coins does Joe have than 5-cent coins?

Problem 9

All of the triangles in the diagram below are similar to iscoceles triangle , in

Problem 10

Suppose that real number satisfies. What is the value

of ?

Problem 11

When fair standard -sided die are thrown, the probability that the sum of the numbers on the top faces is can be written as, where is a positive integer. What is ?

Problem 12

How many ordered pairs of real numbers satisfy the following system of

equations?

Problem 13

A paper triangle with sides of lengths 3, 4, and 5 inches, as shown, is folded so that point falls on point . What is the length in inches of the crease?

Problem 14

What is the greatest integer less than or equal to

Problem 15

Two circles of radius 5 are externally tangent to each other and are internally tangent to a circle of radius 13 at points and , as shown in the diagram. The distance can be written in the form , where and are relatively prime positive integers. What is ?

Problem 16

Right triangle has leg lengths and . Including and , how many line segments with integer length can be drawn from vertex to a point on hypotenuse ?

Problem 17

Let be a set of 6 integers taken from with the property that if and are elements of with , then is not a multiple of . What is the least possible values of an element in

Problem 18

How many nonnegative integers can be written in the

form

where for ?

Problem 19

A number is randomly selected from the set , and a number is randomly selected from . What is the probability

that has a units digit of ?

Problem 20

A scanning code consists of a grid of squares, with some of its squares colored black and the rest colored white. There must be at least one square of each color in this grid of squares. A scanning code is called if its look does not change when the entire square is rotated by a multiple of counterclockwise around its center, nor when it is reflected across a line joining opposite corners or a line joining midpoints of opposite sides. What is the total number of possible symmetric scanning codes?

Problem 21

Which of the following describes the set of values of for which the

curves and in the real -plane intersect at exactly points?

Problem 22

Let and be positive integers such

that , , ,

and . Which of the following must be a divisor of ?

Problem 23

square so that from the air it looks like the right angle symbol. The rest of the field is planted. The shortest distance from to the hypotenuse is 2 units. What fraction of the field is planted?

Problem 24

Triangle with and has area . Let be the midpoint

of , and let be the midpoint of . The angle bisector

of intersects and at and , respectively. What is the area of quadrilateral ?

Problem 25

For a positive integer and nonzero digits , , and , let be the -digit integer each of whose digits is equal to ; let be the -digit integer each of whose digits is equal to , and let be the -digit (not -digit) integer each of whose digits is equal to . What is the greatest possible

value of for which there are at least two values of such that ?

2018 AMC 10B Problems

Problem 1

Kate bakes a 20-inch by 18-inch pan of cornbread. The cornbread is cut into pieces that measure 2 inches by 2 inches. How many pieces of cornbread does the pan contain?

Problem 2

Sam drove 96 miles in 90 minutes. His average speed during the first 30 minutes was 60 mph (miles per hour), and his average speed during the second 30 minutes was 65 mph. What was his average speed, in mph, during the last 30 minutes?

Problem 3

In the expression each blank is to be filled in with one of the digits or with each digit being used once. How many different values can be obtained?

Problem 4

A three-dimensional rectangular box with dimensions , , and has faces whose surface areas are 24, 24, 48, 48, 72, and 72 square units. What is ?

Problem 5

How many subsets of contain at least one prime number?

AMC/AIME美国数学竞赛 试题真题

AMC/AIME美国数学竞赛试题真题 考试信息 AMC最新考试时间: ●2010年第26届AMC8于 11月16日,星期二 ●2011第12届AMC10A,第62届AMC12A 于2月8日,星期二 ●2011第12届AMC10B,第62届AMC12B 于2月23日,星期三 ●2011第29届AIME-1于3月17日,星期四 2011第29届AIME-2于3月30日,星期三 ●2009年AMC8考试情况

●2008年考试情况 AMC/AIME中国历程: 1983第1届AIME上海有76名同学获得参赛资格 1984年第2届AIME有110人获得参赛资格 1985年第3届AIME北京有118名同学获得参赛资格 1986年第4届AIME上海有154名同学获得参赛资格,我国首次参加IMO的上海向明中学吴思皓就是在第四届AIME中获得满分 1992年第10届AIME上海有一千多名同学获得参赛资格,其中格致中学潘毅明,交大附中张觉,上海中学葛建庆均获满分1993年第11届AIME上海有一千多名同学获得参赛资格,其中华东师大二附中高一王海栋,格致中学高二(女)黄静,市西中学高二张

亮,复旦附中高三韩志刚四人获得满分,前三名总分排名复旦附中41分,华东师大二附中41分,上海中学40分。 北京地区参加2006年AMC的共有7所市重点学校的842名学生,有515名学生获得参加AIME资格,其中,清华附中有61名学生参加AMC,45名学生获得AIME资格,20名学生获得荣誉奖章 据悉中国大陆以下地区可以报名参加考试: 北京地区:中国数学会奥林匹克委员会负责组织实施 长春地区、哈尔滨地区也有参加考试 在华举办的美国人子弟学校也有参加考试广州地区:《数学奥林匹克报》负责组织实施。 在中国大陆报名者就在中国大陆考试。考题采用英文版。 2009年AMC中国地区参赛学校一览表

AMC10美国数学竞赛A卷附中文翻译和答案之欧阳学创编

2011AMC10美国数学竞赛A卷时间:2021.03.03 创作:欧阳学 1. A cell phone plan costs $20 each month, plus 5¢per text message sent, plus 10¢ for each minute used over 30 hours. In January Michelle sent 100 text messages and talked for 30.5 hours. How much did she have to pay? (A) $24.00(B) $24.50(C) $25.50(D) $28.00(E) $30.00 2. A small bottle of shampoo can hold 35 milliliters of shampoo, Whereas a large bottle can hold 500 milliliters of shampoo. Jasmine wants to buy the minimum number of small bottles necessary to completely fill a large bottle. How many bottles must she buy? (A) 11(B) 12(C) 13(D) 14(E) 15 3. Suppose [a b] denotes the average of a and b, and {a b c} denotes the average of a, b, and c. What is {{1 1 0} [0 1] 0}? (A)(B)(C)(D)(E) 4. Let X and Y be the following sums of arithmetic sequences: X= 10 + 12 + 14 + …+ 100. Y= 12 + 14 + 16 + …+ 102. What is the value of ?

2018年美国“数学大联盟杯赛”(中国赛区)初赛三年级试卷及答案

2017-2018年度美国“数学大联盟杯赛”(中国赛区)初赛 (三年级) (初赛时间:2017年11月26日,考试时间90分钟,总分200分) 学生诚信协议:考试期间,我确定没有就所涉及的问题或结论,与任何人、用任何方式交流或讨论, 我确定我所填写的答案均为我个人独立完成的成果,否则愿接受本次成绩无效的处罚。 请在装订线内签名表示你同意遵守以上规定。 考前注意事项: 1. 本试卷是三年级试卷,请确保和你的参赛年级一致; 2. 本试卷共4页(正反面都有试题),请检查是否有空白页,页数是否齐全; 3. 请确保你已经拿到以下材料: 本试卷(共4页,正反面都有试题)、答题卡、答题卡使用说明、英文词汇手册、草稿纸。考试完毕,请务必将英文词汇手册带回家,上面有如何查询初赛成绩、及如何参加复赛的说明。其他材料均不能带走,请留在原地。 选择题:每小题5分,答对加5分,答错不扣分,共200分,答案请填涂在答题卡上。 1. 5 + 6 + 7 + 1825 + 175 = A) 2015 B) 2016 C) 2017 D) 2018 2.The sum of 2018 and ? is an even number. A) 222 B) 223 C) 225 D) 227 3.John and Jill have $92 in total. John has three times as much money as Jill. How much money does John have? A) $60 B) $63 C) $66 D) $69 4.Tom is a basketball lover! On his book, he wrote the phrase “ILOVENBA” 100 times. What is the 500th letter he wrote? A) L B) B C) V D) N 5.An 8 by 25 rectangle has the same area as a rectangle with dimensions A) 4 by 50 B) 6 by 25 C) 10 by 22 D) 12 by 15 6.What is the positive difference between the sum of the first 100 positive integers and the sum of the next 50 positive integers? A) 1000 B) 1225 C) 2025 D) 5050 7.You have a ten-foot pole that needs to be cut into ten equal pieces. If it takes ten seconds to make each cut, how many seconds will the job take? A) 110 B) 100 C) 95 D) 90 8.Amy rounded 2018 to the nearest tens. Ben rounded 2018 to the nearest hundreds. The sum of their two numbers is A) 4000 B) 4016 C) 4020 D) 4040 9.Which of the following pairs of numbers has the greatest least common multiple? A) 5,6 B) 6,8 C) 8,12 D) 10,20 10.For every 2 pencils Dan bought, he also bought 5 pens. If he bought 10 pencils, how many pens did he buy? A) 25 B) 50 C) 10 D) 13 11.Twenty days after Thursday is A) Monday B) Tuesday C) Wednesday D) Thursday 12.Of the following, ? angle has the least degree-measure. A) an obtuse B) an acute C) a right D) a straight 13.Every student in my class shouted out a whole number in turn. The number the first student shouted out was 1. Then each student after the first shouted out a number that is 3 more than the number the previous student did. Which number below is a possible number shouted out by one of the students? A) 101 B) 102 C) 103 D) 104 14.A boy bought a baseball and a bat, paying $1.25 for both items. If the ball cost 25 cents more than the bat, how much did the ball cost? A) $1.00 B) $0.75 C) $0.55 D) $0.50 15.2 hours + ? minutes + 40 seconds = 7600 seconds A) 5 B) 6 C) 10 D) 30 16.In the figure on the right, please put digits 1-7 in the seven circles so that the three digits in every straight line add up to 12. What is the digit in the middle circle? A) 3 B) 4 C) 5 D) 6 17.If 5 adults ate 20 apples each and 3 children ate 12 apples in total, what is the average number of apples that each person ate? A) 12 B) 14 C) 15 D) 16 18.What is the perimeter of the figure on the right? Note: All interior angles in the figure are right angles or 270°. A) 100 B) 110 C) 120 D) 160 19.Thirty people are waiting in line to buy pizza. There are 10 people in front of Andy. Susan is the last person in the line. How many people are between Andy and Susan? A) 18 B) 19 C) 20 D) 21

希望杯数学竞赛小学三年级精彩试题

小学三年级数学竞赛训练题(二) 1.观察图1的图形的变化进行填空. 2.观察图2的图形的变化进行填空. 3.图3中,第个图形与其它的图形不同. 4.将图4中A图折起来,它能构成B图中的第个图形. 5.找出下列各数的排列规律,并填上合适的数. (1)1,4,8,13,19,(). (2)2,3,5,8,13,21,(). (3)9,16,25,36,49,(). (4)1,2,3,4,5,8,7,16,9,(). (5)3,8,15,24,35,(). 6.寻找图5中规律填数. 7.寻找图6中规律填数. 8.(1)如果“访故”变成“放诂”,那么“1234”就变成. (2)寻找图7中规律填空. 9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是.

10.图9、图10分别是由汉字组成的算式,不同的汉字代表不 同的数字,请你把它们翻译出来. 11.在图11、图12算式的空格内,各填入一个合适的数字,使 算式成立. 12.已知两个四位数的差等于8765,那么这两个四位数和的最大 值是. 13.中午12点放学的时候,还在下雨.已经连续三天下雨了, 大家都盼着晴天,再过36小时会出太阳吗? 14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是 星期几? 15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是. 16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员. 17.用凑整法计算下面各题: (1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题: (1)634+(266-137)(2)2011-(364+611) (3)558-(369-342)(4)2010-(374-990-874) 19.用基准法计算: 108+99+93+102+97+105+103+94+95+104 20.用简便方法计算:899999+89999+8999+899+89 21.求100以内的所有正偶数的和是多少?

2011AMC10美国数学竞赛A卷附中文翻译和答案

2011AMC10美国数学竞赛A卷 1. A cell phone plan costs $20 each month, plus 5¢ per text message sent, plus 10¢ for each minute used over 30 hours. In January Michelle sent 100 text messages and talked for 30.5 hours. How much did she have to pay? (A) $24.00 (B) $24.50 (C) $25.50 (D) $28.00 (E) $30.00 2. A small bottle of shampoo can hold 35 milliliters of shampoo, Whereas a large bottle can hold 500 milliliters of shampoo. Jasmine wants to buy the minimum number of small bottles necessary to completely fill a large bottle. How many bottles must she buy? (A) 11 (B) 12 (C) 13 (D) 14 (E) 15 3. Suppose [a b] denotes the average of a and b, and {a b c} denotes the average of a, b, and c. What is {{1 1 0} [0 1] 0}? (A) 2 9(B)5 18 (C)1 3 (D) 7 18 (E) 2 3 4. Let X and Y be the following sums of arithmetic sequences: X= 10 + 12 + 14 + …+ 100. Y= 12 + 14 + 16 + …+ 102. What is the value of Y X ?

美国小学数学教育研究报告

更多免费资料请访问:豆丁教育百科 美国小学数学教育研究报告 深圳市罗湖区翠北小学高红妹 摘要:在近百年来世界课程改革的各次浪潮中,美国从来没有做观潮派,而是积极的参与者甚至是主宰者。出现了不少颇有世界影响的课程改革家和课程学论著,值得我们去研究、借鉴。本研究报告介绍了笔者对美国小学数学教育研究的情况。主要包括:研究背景、研究意义、研究方法、研究结果、研究启示、研究反思。 关键词:美国小学数学教育研究 前言 我有幸参加深圳市组织的第三期海外培训,到美国学习、参观和考察。期间我们参观了大学和中小学,听了不同年级的课,参加了各种各样的活动,感受到了极具特色的美国文化风情。 一、研究背景 人们普遍的看法是:中国的基础教育是打基础的教育,“学多悟少”;而美国的教育是培养创造力的教育,“学少悟多”。中美两国的教育有着极为不同的传统。中国的教育注重对知识的积累和灌输;注重培养学生对知识和权威的尊重;注重对知识的掌握和继承,以及知识体系的构建。相比较,美国则更注重培养学生运用知识的实际能力;注重培养学生对知识和权威的质疑;注重对知识的拓展和创造。这两种教育表达了对待知识的不同态度,中国教育的表达是对知识的静态接受,美国教育则表达的是对知识的动态改变,反映了两国教育不同的知识观。 以数学为例,我国教育界历来认为,基本概念和基本运算是数学的基础。尽管教材有计算器的介绍,但老师们总担心学生会依赖计算器,因为考试时学生是不允许带计算器的。然而在美国,基本运算不受重视,计算器在中小学使用很普遍。美国人认为,计算器既然算得又快又准,我们又何必劳神费力地用脑算呢?人脑完全可以省下来去做机器做不了的事。这点我深有体会,记得有一次我们坐公交车时,几个人合起来投币,但司机要我们一个一个投币,我们都觉得奇怪,经过了解,原来他们无法算出几个人一共要付的钱,在我国就决不会出现此等情况。我们教育的“基础”侧重,让学生大脑在独立于计算机的前提下,尽可能多地储

美国AMC8数学竞赛试题(含答案)

2001 年 美国AMC8 (2001年 月 日 时间40分钟) 1. 卡西的商店正在制作一个高尔夫球奖品。他必须给一颗高尔夫球面上的300个小凹洞着色, 如果他每着色一个小凹洞需要2秒钟,试问共需多 分钟才能完成他的工作。 (A) 4 (B) 6 (C) 8 (D) 10 (E) 12 。 2. 我正在思考两个正整数,它们的乘积是24且它们的和是11,试问这两个数中较大的数是什 么 。 (A) 3 (B) 4 (C) 6 (D) 8 (E) 12 。 3. 史密斯有63元,艾伯特比安加多2元,而安加所有的钱是史密斯的三分之一,试问艾伯特 有 元。 (A) 17 (B) 18 (C) 19 (D) 21 (E) 23 。 4. 在每个数字只能使用一次的情形下,将1,2,3,4及9作成最小的五位数,且此五位数为 偶数,则其十位数字为 。 (A) 1 (B) 2 (C) 3 (D) 4 (E) 9 。 5. 在一个暴风雨的黑夜里,史努比突然看见一道闪光。10秒钟后,他听到打雷声音。声音的速 率是每秒1088呎,但1哩是5280呎。若以哩为单位的条件下,估计史努比离闪电处的距离 最接近下列何者 。 (A) 1 (B) 121 (C) 2 (D) 22 1 (E) 3 。 6. 在一笔直道路的一旁有等间隔的6棵树。第1棵树与第4棵树之间的距离是60呎。试问第1 棵树到最后一棵树之间的距离是 呎。 (A) 90 (B) 100 (C) 105 (D) 120 (E) 140 。 问题7、8、9请参考下列叙述: 主题:竞赛场所上的风筝展览 7. 葛妮芙为提升她的学校年度风筝奥林匹亚竞赛的质量,制作了一个小风筝 与一个大风筝,并陈列在公告栏展览,这两个风筝都如同图中的形状, 葛妮芙将小风筝张贴在单位长为一吋(即每两点距离一吋)的格子板上,并将 大风筝张贴在单位长三吋(即每两点距离三吋)的格子板上。试问小风筝的面 积是 平方吋。 (A) 21 (B) 22 (C) 23 (D) 24 (E) 25 。 8. 葛妮芙在大风筝内装设一个连接对角顶点之十字交叉型的支撑架子,她必须使用 吋的 架子材料。 (A) 30 (B) 32 (C) 35 (D) 38 (E) 39 。 9. 大风筝要用金箔覆盖。金箔是从一张刚好覆盖整个格子板的矩形金箔裁剪下来的。试问从四 个角隅所裁剪下来废弃不用的金箔是 平方吋。 (A) 63 (B) 72 (C) 180 (D) 189 (E) 264 。 10. 某一收藏家愿按二角五分(即41元)银币面值2000%的比率收购银币。在该比率下,卜莱登现 有四个二角五分的银币,则他可得到 元。 (A) 20 (B) 50 (C) 200 (D) 500 (E) 2000 。 11. 设四个点A ,B ,C ,D 的坐标依次为A (3,2),B (3,-2),C (-3,-2),D (-3,0)。则四边形 ABCD 的面积是 。 (A) 12 (B) 15 (C) 18 (D) 21 (E) 24 。 12. 若定义a ?b =b a b a -+,则(6?4)?3= 。 (A) 4 (B) 13 (C) 15 (D) 30 (E) 72 。 13. 在黎琪儿班级36位学生中,有12位学生喜爱巧克力派,有8位学生喜爱苹果派,且有6 位学生喜爱蓝莓派。其余的学生中有一半喜爱樱桃派,另一半喜爱柠檬派。黎琪儿想用圆形 图显示此项数据。试问:她应该用 度的扇形表示喜欢樱桃派的学生。 (A) 10 (B) 20 (C) 30 (D) 50 (E) 72 。 14. 泰勒在自助餐店排队,准备挑选一种肉类,二种不同蔬菜,以及一种点心。若不计较食物 的挑选次序,则他可以有多少不同选择方法?

2018年美国数学竞赛 AMC 试题

2018 AIME I Problems Problem 1 Let be the number of ordered pairs of integers with and such that the polynomial can be factored into the product of two (not necessarily distinct) linear factors with integer coefficients. Find the remainder when is divided by . Problem 2 The number can be written in base as , can be written in base as , and can be written in base as , where . Find the base- representation of . Problem 3 Kathy has red cards and green cards. She shuffles the cards and lays out of the cards in a row in a random order. She will be happy if and only if all the red cards laid out are adjacent and all the green cards laid out are adjacent. For example, card orders RRGGG, GGGGR, or RRRRR will make Kathy happy, but RRRGR will not. The probability that Kathy will be happy is , where and are relatively prime positive integers. Find . Problem 4 In and . Point lies strictly between and on and point lies strictly between and on so that . Then can be expressed in the form , where and are relatively prime positive integers. Find . Problem 5 For each ordered pair of real numbers satisfying there is a real number such that

(完整word版)希望杯数学竞赛小学三年级试题

希望杯数学竞赛(小学三年级)赛前训练题1.观察图1的图形的变化进行填空. 2.观察图2的图形的变化进行填空. 3.图3中,第个图形与其它的图形不同. 4.将图4中A图折起来,它能构成B图中的第个图形. 5.找出下列各数的排列规律,并填上合适的数. (1)1,4,8,13,19,(). (2)2,3,5,8,13,21,(). (3)9,16,25,36,49,(). (4)1,2,3,4,5,8,7,16,9,(). (5)3,8,15,24,35,(). 6.寻找图5中规律填数. 7.寻找图6中规律填数.

8.(1)如果“访故”变成“放诂”,那么“1234”就变成.(2)寻找图7中规律填空. 9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是. 10.图9、图10分别是由汉字组成的算式,不同的汉字代表不同的数字,请你把它们翻译出来. 11.在图11、图12算式的空格内,各填入一个合适的数字,使算式成立. 12.已知两个四位数的差等于8765,那么这两个四位数和的最大值是. 13.中午12点放学的时候,还在下雨.已经连续三天下雨了,大家都盼着晴天,再过36小时会出太阳吗?

14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是星期几? 15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是. 16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员. 17.用凑整法计算下面各题: (1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题: (1)634+(266-137)(2)2011-(364+611) (3)558-(369-342)(4)2010-(374-990-874) 19.用基准法计算: 108+99+93+102+97+105+103+94+95+104 20.用简便方法计算:899999+89999+8999+899+89 21.求100以内的所有正偶数的和是多少? 22.有一数列3,9,15,…,153,159.请问: (1)这组数列共有多少项?(2)第15项是多少?(3)111是第几项的数? 23.有10只盒子,54只乒乓球,把这54只乒乓球放到10只盒子中,要求每个盒子中最少放1只乒乓球,并且每只盒子中的乒乓球的只数都不相同,如果能放,请说出放的方法;如果不能放,请说明理由.

2019AMC 8(美国数学竞赛)题目

2019 AMC 8 Problems Problem 1 Ike and Mike go into a sandwich shop with a total of to spend. Sandwiches cost each and soft drinks cost each. Ike and Mike plan to buy as many sandwiches as they can and use the remaining money to buy soft drinks. Counting both soft drinks and sandwiches, how many items will they buy? Problem 2 Three identical rectangles are put together to form rectangle , as shown in the figure below. Given that the length of the shorter side of each of the smaller rectangles is feet, what is the area in square feet of rectangle ?

Problem 3 Which of the following is the correct order of the fractions , , and , from least to greatest? Problem 4 Quadrilateral is a rhombus with perimeter meters. The length of diagonal is meters. What is the area in square meters of rhombus ? Problem 5 A tortoise challenges a hare to a race. The hare eagerly agrees and quickly runs ahead, leaving the slow-moving tortoise behind. Confident that he will win, the hare stops to take a nap. Meanwhile, the tortoise walks at a slow steady pace for the entire race. The hare awakes and runs to the finish line, only to find the tortoise already there. Which of the following graphs matches the description of the race, showing the distance traveled by the two animals over time from start to finish?

AMC美国数学竞赛AMCB试题及答案解析

2003 AMC 10B 1、Which of the following is the same as 2、Al gets the disease algebritis and must take one green pill and one pink pill each day for two weeks. A green pill costs more than a pink pill, and Al’s pills cost a total of for the two weeks. How much does one green pill cost 3、The sum of 5 consecutive even integers is less than the sum of the rst consecutive odd counting numbers. What is the smallest of the even integers 4、Rose fills each of the rectangular regions of her rectangular flower bed with a different type of flower. The lengths, in feet, of the rectangular regions in her flower bed are as shown in the gure. She plants one flower per square foot in each region. Asters cost 1 each, begonias each, cannas 2 each, dahlias each, and Easter lilies 3 each. What is the least possible cost, in dollars, for her garden 5、Moe uses a mower to cut his rectangular -foot by -foot lawn. The swath he cuts is inches wide, but he overlaps each cut by inches to make sure that no grass is missed. He walks at the rate of feet per

2020年度美国数学竞赛AMC12 A卷(带答案)

AMC2020 A Problem 1 Carlos took of a whole pie. Maria took one third of the remainder. What portion of the whole pie was left? Problem 2 The acronym AMC is shown in the rectangular grid below with grid lines spaced unit apart. In units, what is the sum of the lengths of the line segments that form the acronym AMC Problem 3 A driver travels for hours at miles per hour, during which her car gets miles per gallon of gasoline. She is paid per mile, and her only expense is gasoline at per gallon. What is her net rate of pay, in dollars per hour, after this expense?

Problem 4 How many -digit positive integers (that is, integers between and , inclusive) having only even digits are divisible by Problem 5 The integers from to inclusive, can be arranged to form a -by- square in which the sum of the numbers in each row, the sum of the numbers in each column, and the sum of the numbers along each of the main diagonals are all the same. What is the value of this common sum? Problem 6 In the plane figure shown below, of the unit squares have been shaded. What is the least number of additional unit squares that must be shaded so that the resulting figure has two lines of symmetry

美国数学竞赛AMC题目及答案

2. is the value of friends ate at a restaurant and agreed to share the bill equally. Because Judi forgot her money, each of her seven friends paid an extra $ to cover her portion of the total bill. What was the total bill is in the grade and weighs 106 pounds. His quadruplet sisters are tiny babies and weigh 5, 5, 6, and 8 pounds. Which is greater, the average (mean) weight of these five children or the median weight, and by how many pounds number in each box below is the product of the numbers in the two boxes that touch it in the row above. For example, . What is the missing number in the top row

and his mom stopped at a railroad crossing to let a train pass. As the train began to pass, Trey counted 6 cars in the first 10 seconds. It took the train 2 minutes and 45 seconds to clear the crossing at a constant speed. Which of the following was the most likely number of cars in the train fair coin is tossed 3 times. What is the probability of at least two consecutive heads Incredible Hulk can double the distance he jumps with each succeeding jump. If his first jump is 1 meter, the second jump is 2 meters, the third jump is 4 meters, and so on, then on which jump will he first be able to jump more than 1 kilometer is the ratio of the least common multiple of 180 and 594 to the greatest common factor of 180 and 594 11. Ted's grandfather used his treadmill on 3 days this week. He went 2 miles each day. On Monday he jogged at a speed of 5 miles per hour. He walked at the rate of 3 miles per hour on Wednesday and at 4 miles per hour on Friday. If Grandfather had always walked at 4 miles per hour, he would have spent less time on the treadmill. How many minutes less 12. At the 2013 Winnebago County Fair a vendor is offering a "fair special" on sandals. If you buy one pair of sandals at the regular price of $50, you get a second pair at a 40% discount, and a third pair at half the regular price. Javier took advantage of the "fair special" to buy three pairs of sandals. What percentage of the $150 regular price did he save

美国数学竞赛amc12

2002 AMC 12A Problems Problem 1 Compute the sum of all the roots of Problem 2 Cindy was asked by her teacher to subtract 3 from a certain number and then divide the result by 9. Instead, she subtracted 9 and then divided the result by 3, giving an answer of 43. What would her answer have been had she worked the problem correctly? Problem 3 According to the standard convention for exponentiation, If the order in which the exponentiations are performed is changed, how many other values are possible? Problem 4 Find the degree measure of an angle whose complement is 25% of its supplement. Problem 5

Each of the small circles in the figure has radius one. The innermost circle is tangent to the six circles that surround it, and each of those circles is tangent to the large circle and to its small-circle neighbors. Find the area of the shaded region. Problem 6 For how many positive integers does there exist at least one positive integer n such that ? infinitely many Problem 7 A arc of circle A is equal in length to a arc of circle B. What is the ratio of circle A's area and circle B's area? Problem 8 Betsy designed a flag using blue triangles, small white squares, and a red center square, as shown. Let be the total area of the blue triangles, the total area of the white squares, and the area of the red square. Which of the following is correct?

相关主题