搜档网
当前位置:搜档网 › 液晶背光驱动芯片解除保护的实用资料

液晶背光驱动芯片解除保护的实用资料

液晶背光驱动芯片解除保护的实用资料
液晶背光驱动芯片解除保护的实用资料

液晶背光驱动芯片解除保护的实用资料芯片OZ9939GN去保护3脚接地。

芯片OZ9938CN 3或6脚对地短路

芯片TL494去保护2到14脚接10K电阻。或者1和16接地

芯片mp1008es去保护,把4脚接地就可以

mp1007es把3脚对地

mp1009es把5脚对地

芯片OZ964GN在①脚的2.2U的电容上并联一个4148二极管

BIT3173保护是把15脚吸空

芯片型号保护脚说明

CTL5001 5 对地短路

TL1451 15 对地短路

TL5451 15 对地短路

BA9741 15 对地短路

BA9743 15 对地短路

MB3775 15 对地短路

AT1741 15 对地短路

AT1380 2 对地短路

KA7500 1和16 对地短路

TL494 1和16 对地短路

FA3629 15和16 将外接电容短路

LFA3630 7和10 对地短路

OZ960 OZ962 2 对地短路OZ965 4 对地短路

OZ9RR 8 对地短路BIT3101 2和15 吸空引脚BIT3102 5 吸空引脚

BIT3105 4 吸空引脚

BIT3106 4和27 吸空引脚BIT3107 4 吸空引脚

BIT3193 15 吸空引脚AAT1100 8 对地短路AAT1107 15 对地短路

H3435苐18脚对地短路DF6109A苐13脚对地MP1008苐4对地

INL837吸空9脚

Fp5451苐15脚对地

OZ9937第14脚对地SEM2006第2脚接地

PM1048EM第1,6脚接地OZ9936第3,7脚接地OZ9966第15脚接地SAQ8818第8脚接地

OZ9902CGN第8接地

FAN7313第17接地

DDA003A第13脚接地

BD9882第19脚接地

SEM2107第21脚接地

OZ9928第27脚接地

OB3328第3脚接地

AP3041第1脚接地

OZ5508GN第3脚接地

LX6503第3脚接地

OZ9972ASN第19脚接地

BD9247F第11脚接地

BD9893第10脚接地

BD9893F第7脚对地

OZ9926第15脚对地

OB3350第7脚对地接2.2K电阻

OZ9981GN电路把BD9766FV15脚接地。

常见液晶驱动芯片详解

因此各位朋友在选择LCD液晶模块的时候,在考虑到串行,还是并行的方式时,可根据其驱动控制IC的型号来判别,当然你还需要看你选择的LCD模块引脚定义是固定支持并行,还是可选择并行或串行的方式。 一、字符型LCD驱动控制IC 市场上通用的8×1、8×2、16×1、16×2、16×4、20×2、20×4、40×4等字符型LCD,基本上都采用的KS0066作为LCD的驱动控制器 二、图形点阵型LCD驱动控制IC 1、点阵数122×32--SED1520 2、点阵数128×64 (1)ST7920/ST7921,支持串行或并行数据操作方式,内置中文汉字库 (2)KS0108,只支持并行数据操作方式,这个也是最通用的12864点阵液晶的驱动控制IC (3)ST7565P,支持串行或并行数据操作方式 (4)S6B0724,支持串行或并行数据操作方式 (5)T6963C,只支持并行数据操作方式 3、其他点阵数如192×6 4、240×64、320×64、240×128的一般都是采用T6963c驱动控制芯片 4、点阵数320×240,通用的采用RA8835驱动控制IC 这里列举的只是一些常用的,当然还有其他LCD驱动控制IC,在写LCD驱动时要清楚是哪个型号的IC,再到网上去寻找对应的IC数据手册吧。后面我将慢慢补上其它一些常见的. 三 12864液晶的奥秘 CD1601/1602和LCD12864都是通常使用的液晶,有人以为12864是一个统一的编号,主要是12864的液晶驱动都是一样的,其实12864只是表示液晶的点阵是128*64点阵,而实际的12864有带字库的,也有不带字库的;有5V电压的,也有~5V(内置升压电路);归根到底的区别在于驱动控制芯片,常用的控制芯片有ST7920、KS0108、T6963C等等。 下面介绍比较常用的四种 (1)ST7920类这种控制器带中文字库,为用户免除了编制字库的麻烦,该控制器的液晶还支持画图方式。该类液晶支持68时序8位和4位并口以及串口。 (2)KS0108类这种控制器指令简单,不带字库。支持68时序8位并口。 (3)T6963C类这种控制器功能强大,带西文字库。有文本和图形两种显示方式。有文本和图形两个图层,并且支持两个图层的叠加显示。支持80时序8位并口。 (4)COG类常见的控制器有S6B0724和ST7565,这两个控制器指令兼容。支持68时序8位并口,80时序8位并口和串口。COG类液晶的特点是结构轻便,成本低。 各种控制器的接口定义: 引脚定义

LED显示屏常用驱动芯片资料(精)

LED 常用芯片技术资料 1、列电子开关74HC595 (串并移位寄存器) 第14脚DATA ,串行数据输入口,显示数据由此进入,必须有时钟信号的配合才能移入。 第13脚EN ,使能口,当该引脚上为“1”时QA~QH口全部为“1”,为“0”时QA~QH的输出由输入的数据控制。第12脚STB ,锁存口,当输入的数据在传入寄存器后,只有供给一个锁存信号才能 将移入的数据送QA~QH口输出。 第11脚CLK ,时钟口,每一个时钟信号将移入一位数据到寄存器。 第10脚SCLR ,复位口,只要有复位信号,寄存器内移入的数据将清空,一般接VCC 。第9脚DOUT ,串行数据输出端,将数据传到下一个。第15、1~7脚,并行输出口也就是驱动输出口,驱动LED 。 2、译码器 74HC138 第1~3脚A 、B 、C ,二进制输入脚。第4~6脚片选信号控制,只有在4、5脚为“0”6脚为“1”时,才会被选通,输出受A 、B 、C 信号控制。其它任何组合方式将不被选通,且Y0~Y7输出全为“1”。

3、缓冲器件74HC245 第1脚DIR ,输入输出端口转换用,DIR=“1” A输入B 输出,DIR=“0” B输入A 输出。第2~9脚“A ”信号输入输出端;第11~18脚“B ”信号输入输出端。 第19脚G ,使能端,为“1”A/B端的信号将不导通,为“0”时A/B端才被启用。

4、4953的作用:行驱动管,功率管。 1、3脚VCC , 2、4脚控制脚,2脚控制7、8脚的输出,4脚控制5、6脚的输出,只有当2、4脚为“0”时,7、8、5、6才会输出,否则输出为高阻状态。 5、74HC04的作用:6位反相器。 信号由A 端输入Y 端反相输出,A1与Y1为一组,其它类推。例:A1=“1”则Y1=“0”、A1=“0”则Y1=“1”,其它组功能一样。 6、 74HC126(四总线缓冲器)正逻辑 Y=A 2、SDI 串行数据输入端 3、CLK 时钟信号输入端, 4、LE 数据锁存控制端 5~20、恒流源输出端 21、OE 输出使能控制端 22、SDO 串行数据输出端,级联下一个芯片 23、R-EXT 外接电阻,控制恒流源输出端电流大小

数字芯片的驱动能力详解

数字芯片的驱动能力详解 1.芯片驱动能力基本概念 芯片驱动能力,是指在额定电平下的最大输出电流;或者是在额定输出电流下的最大输出电压。具体解释如下。 当逻辑门输出端是低电平时,灌入逻辑门的电流称为灌电流,灌电流越大,输出端的低电平就越高。由三极管输出特性曲线也可以看出,灌电流越大,饱和压降越大,低电平越大。然而,逻辑门的低电平是有一定限制的,它有一个最大值UOLMAX。在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOLMAX ≤0.4。所以,灌电流有一个上限。 当逻辑门输出端是高电平时,逻辑门输出端的电流是从逻辑门中流出,这个电流称为拉电流。拉电流越大,输出端的高电平就越低。这是因为输出级三极管是有内阻的,内阻上的电压降会使输出电压下降。拉电流越大,输出端的高电平越低。然而,逻辑门的高电平是有一定限制的,它有一个最小值UOHMIN。在逻辑门工作时,不允许超过这个数值,TTL逻辑门的规范规定UOHMIN ≥2.4V。所以,拉电流也有一个上限。 可见,输出端的拉电流和灌电流都有一个上限,否则高电平输出时,拉电流会使输出电平低于UOHMIN;低电平输出时,灌电流会使输出电平高于UOLMAX。所以,拉电流与灌电流反映了输出驱动能力。(芯片的拉、灌电流参数值越大,意味着该芯片可以接更多的负载,因为,例如灌电流是负载给的,负载越多,被灌入的电流越大)。 2.怎么通过数字芯片的datasheet看其驱动能力 以时钟buffer FCT3807例,下图是从Pericom的FCT3807的datasheet截取的。 当其输出为高电平2.4V时,其输出电流为8mA,也就是拉电流为8mA。如果输出电流大于8mA,那么其输出电平就低于2.4V了,就不能称其输出高电平,所以可以说FCT3807输出高电平的驱动能力为8mA。 同样道理,FCT3807输出低电平的驱动能力为24mA。 3.怎么通过数字芯片的驱动能力来估算输出信号的过冲等指标 仍然以Pericom的FCT3807为例,其输出为高电平时的输出阻抗为: RH= (3.3V – 3V )/ 8mA = 37.5欧姆。 其输出为低电平时的输出阻抗为: RL= 0.3V / 24mA = 12.5欧姆。 从上面的计算可以看出,3807输出为高电平和输出为低电平时的驱动能力不一样,也就是输出阻抗不一样,所以用串联匹配的方法很难做到完全匹配,常常表现为overshoot-大

液晶显示屏背光驱动集成电路工作原理

对“剖析液晶屏逻辑板TFT偏压电路”一文的一点看法(此文为技术探讨) 在国内某知名刊物2010年12月份期刊看到一篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:“剖析液晶屏逻辑板TFT偏压电路”这是一篇选题极好的文章、目前液晶电视出现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障都与此电路有关,维修人员在维修此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的帮助,目前在一般的期刊书籍介绍分析此电路的文章极少。 什么是TFT屏偏压电路?现代的液晶电视都是采用TFT屏作为图像终端显示屏,由于我们现在的电视信号(包括各种视频信号)是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同,液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的结构、像素排列顺序、时间关系进行转换,以便液晶屏能正确显示。 图像信号的转换,这是一个极其复杂、精确的过程;先对信号进行存储,然后根据信号的标准及液晶屏的各项参数进行分析计算,根据计算的结果在按规定从存储器中读取预存的像素信号,并按照计算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。这个过程把信号的时间过程、排列顺序都进行了重新的编排,并且要产生控制各个电路工作的辅助信号。重新编

排的像素信号在辅助信号的协调下,施加于液晶屏正确的重现图像。 每一个液晶屏都必须有一个这样的转换电路,这个电路就是我们常说的“时序控制电路”或“T-CON(提康)电路”,也有称为“逻辑板电路”的。这个电路包括液晶屏周边的“行、列驱动电路”构成了一个液晶屏的驱动系统。也是一个独立的整体。这个独立的整体是由时序电路、存储电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马(Gamma)电路(灰阶电压)等组成,这些电路的正常工作也需要各种不同的工作电压,并且还要有一定的上电时序关系,不同的屏,不同的供电电压。为了保证此电路正常工作,一般对这个独立的驱动系统单独的设计了一个独立的开关电源供电(这个向液晶屏驱动系统供电的开关电源一般就称为:TFT偏压电路);由整机的主开关电源提供一个5V或12V 电压,给这个开关电源供电,并由CPU控制这个开关电源工作;产生这个独立的驱动系统电路提供所需的各种电压,就好像我们的电视机是一个独立的系统他有一个单独的开关电源,DVD机是一个独立的系统他也有一个单独的开关电源一样。是非常重要也是故障率极高的部分(开关电源都是故障率最高的部分,要重点考虑)。图1所示是液晶屏驱动系统框图。从图中可以看出,其中的“TFT偏压供电开关电源”就是这个独立系统电路的供电电源它产生这个驱动系统电路需要的各种电压,有VDD、VDA、VGL和VGH电压供各电路用。

液晶背光驱动芯片解除保护的实用资料

液晶背光驱动芯片解除保护的实用资料芯片OZ9939GN去保护3脚接地。 芯片OZ9938CN 3或6脚对地短路 芯片TL494去保护2到14脚接10K电阻。或者1和16接地 芯片mp1008es去保护,把4脚接地就可以 mp1007es把3脚对地 mp1009es把5脚对地 芯片OZ964GN在①脚的2.2U的电容上并联一个4148二极管 BIT3173保护是把15脚吸空 芯片型号保护脚说明 CTL5001 5 对地短路 TL1451 15 对地短路 TL5451 15 对地短路 BA9741 15 对地短路 BA9743 15 对地短路 MB3775 15 对地短路 AT1741 15 对地短路 AT1380 2 对地短路 KA7500 1和16 对地短路 TL494 1和16 对地短路 FA3629 15和16 将外接电容短路 LFA3630 7和10 对地短路

OZ960 OZ962 2 对地短路OZ965 4 对地短路 OZ9RR 8 对地短路BIT3101 2和15 吸空引脚BIT3102 5 吸空引脚 BIT3105 4 吸空引脚 BIT3106 4和27 吸空引脚BIT3107 4 吸空引脚 BIT3193 15 吸空引脚AAT1100 8 对地短路AAT1107 15 对地短路 H3435苐18脚对地短路DF6109A苐13脚对地MP1008苐4对地 INL837吸空9脚 Fp5451苐15脚对地 OZ9937第14脚对地SEM2006第2脚接地 PM1048EM第1,6脚接地OZ9936第3,7脚接地OZ9966第15脚接地SAQ8818第8脚接地

TFTLCD显示基本知识详解

TFT LCD显示原理详解 <什么是液晶> 我们一般认为物体有三态:固态、液态、气态,其实这只是针对水而言,有一些有机化和物还有介于固态和液态中间的状态就是液晶态,如下图(一): 图(一) a:背景 两块偏光的栅栏角度相互垂直时光线就完全无法通过,图(六)是用偏光太阳镜做的测试。 图(六) b:TFT LCD显示原理 液晶显示器就是利用偏光板这个特性来完成的,利用上下两片栅栏之间互垂直的偏光板之间充满了液晶,在利用电场控制液晶分支的旋转,来改变光的行进方向,如此一来,不同的电场大小,就会形成不同颜色度了,如图(七)。

图(七) b-1:当在不加上电极的时候,当入射的光线经过下面的偏光板(起偏器)时, 会剩下单方向的光波,通过液晶分子时, 由于液晶分子总共旋转了90度, 所以当光波到达上层偏光板时, 光波的极化方向恰好转了90度。下层的偏光板与上层偏光板, 角度也是恰好差异90度。所以光线便可以顺利的通过,如果光打在红色的滤光片上就显示为红色。效果如图(七)中前两个图所示。 b-2:当在加上电极后(最大电极),液晶分子在受到电场的影响下,都站立着,光路没有改变,光就无法通过上偏光板,也就无法显示,如图(七)蓝色滤光片下面的液晶。 c:TFT-LCD驱动电路。 为了显示任意图形,TFT-LCD用m×n点排列的逐行扫描矩阵显示。在设计驱动电路时,首先要考虑液晶电解会使液晶材料变质,为确保寿命一般都采用交流驱动方式。已经形成的驱动方式有:电压选择方式、斜坡方式、DAC方式和模拟方式等。由于TFT-LCD主要用于笔记本计算机,所以驱动电路大致分成:信号控制电路、电源电路、灰度电压电路、公用电极驱动电路、数据线驱动电路和寻址线驱动电路(栅极驱动IC)。上述驱动电路的主要功能是:信号控制电路将数字信号、控制信号以及时钟信号供给数字IC,并把控制信号和时钟信号供给栅极驱动IC;电源电路将需要的电源电压供给数字IC和栅极驱动IC;灰度电压电路将数字驱动电路产生的10个灰度电压各自供给数据驱动;公用电极驱动电路将公用电压供给相对于象素电极的共享电极;数据线驱动电路将信号控制电路送来的RGB信号的各6个比特显示数据以及时钟信号,定时顺序锁存并续进内部,然后此显示数据以6比特DA变换器转换成模拟信号,再由输出电路变换成阻抗,供给液晶屏的资料线;栅极驱动电路将信号控制电路送来的时钟信号,通过移位寄存器转换动作,将输出电路切换成ON/OFF电压,并顺次加到液晶屏上。最后,将驱动电路装配在TAB(自动焊接柔性线路板)上,用ACF(各向异性导电胶膜)、TCP(驱动电路柔性引带)与液晶显示屏相连接。 d:TFT-LCD工作原理 首先介绍显示原理。液晶显示的原理基于液晶的透光率随其所施电压大小而变化的特性。当光通过上偏振片后,变成线性偏振光,偏振方向与偏振片振动方向一致,与上下玻璃基板上面液晶分子排列顺序一致。当光通过液晶层时,由于受液晶折射,线性偏振光被分解为两束光。又由于这两束光传播速度不同(相位相同),因而当两束光合成后,必然使振光的振动方向发生变化。通过液晶层的光,则被逐渐扭曲。当光达到下偏振片时,其光轴振动方向被扭曲了90度,且与下偏振片的振动方向保持一致。这样,光线通过下偏振片形成亮场。加上电压以后,液晶在电场作用下取向,扭曲消失。这时,通过上偏振片的线性偏振光,在液晶层不再旋转,无法通过下偏振片而形成暗场。可见液晶本身不发光,在外光源的调制下,才能显示,在整个显示过程中,液晶起到一个电压控制的光阀作用。TFT-LCD的工作原理则可简述为:当栅极正向电压大于施加电压时,漏源电极导通,当栅极正向电压等于0或负电压时,漏源电极断开。漏电极与ITO象素电极连结,源电极与源线(列电极)连结,栅极与栅线(行电极)连结。这就是TFT-LCD的简单工作原理

LED电子显示屏常见驱动方式介绍

LED电子显示屏常见驱动方式介绍 目前市场上LED显示屏的驱动方式有静态扫描和动态扫描两种,静态扫描又分为静态实像素和静态虚拟,动态扫描也分为动态实像和动态虚拟。下面由明新源科技为大家介绍下LED电子显示屏常见的驱动方式吧。 河南明新源相关负责人介绍说,在一定的显示区域内,同时点亮的行数与整个区域行数的比例,称扫描方式;室内单双色一般为1/16扫描,室内全彩LED显示屏一般是1/8 扫描,室外单双色一般是1/4扫描,室外全彩显示屏一般是静态扫描。驱动IC一般用国产HC595,台湾MBI5026,日本东芝TB62726,一般有1/2 扫,1/4扫,1/8扫,1/16扫。 举列说明:一个常用的全彩模组像素为16*8 (2R1G1B),模组总共使用的LED灯是:16*8(2+1+1)=512个,如果用MBI5026 驱动,MBI5026 为16位芯片,512/16=32 (1)如果用8个MBI5026芯片,是动态1/4扫虚拟。 (2)如果用16个MBI5026芯片,是动态1/2扫虚拟。 (3)如果用32 个MBI5026芯片,是静态虚拟。 (4)用6个MBI5026芯片,是动态1/4扫实像素。 (5)用12个MBI5026芯片,是动态1/2扫实像素。 (6)如果板子上两个红灯串连,用个MBI5026芯片,是静态实像素。 在LED单元板,扫描方式有1/16,1/8,1/4,1/2,静态。LED电子显示屏常见驱动方式介绍还有哪些,该如何区分呢?一个最简单的办法就是数一下单元板的LED灯数目和74HC595的数量。计算方法:LED的数目除以74HC595的数目再除以8 =几分之一扫描。 实像素与虚拟是相对应的简单来说,实像素屏就是指构成显示屏的红绿蓝三种发光管中的每一种发光管最终只参与一个像素的成像使用,以获得足够的亮度。虚拟像素是利用软件算法控制每种颜色的发光管最终参与到多个相邻像素的成像当中,从而使得用较少的灯管实现较大的分辨率,能够使显示分辨率提高四倍。

LED显示屏专用驱动芯片详细介绍

目前,LED显示屏专用驱动芯片生产厂家主要有TOSHIBA(东芝)、TI(德州仪器)、SONY(索尼)、MBI{聚积科技}、SITI(点晶科技)等。在国内LED显示屏行业,这几家的芯片都有应用。 TOSHIBA产品的Xing价比较高,在国内市场上占有率也最高。主要产品有TB62705、TB62706、TB62725、TB62726、TB62718、TB62719、TB62727等。其中TB62705、TB62725是8位源芯片,TB62706、TB62726是16位源芯片。TB62725、TB62726分别是TB62705、TB62706的升级芯片。这些产品在电流输出误差(包括位间和片间误差)、数据移位时钟、供电电压以及芯片功耗上均有改善。作为中档芯片,目前”TB62725、TB62726已经逐渐替代了TB62705和TB62706。另外,TB62726还有一种窄体封装的TB62726AFNA芯片,其宽度只有6.3mm(TB62706的贴片封装芯片宽度为8.2mm),这种窄体封装比较适合在点间距较小的显示屏上使用。需要注意的是,AFNA封装与普通封装的引脚定义不一样(逆时针旋转了90度)。TB62718、TB62719是TOSHIBA针对高端市场推出的驱动芯片,除具有普通恒流源芯片的功能外,还增加了256级灰度产生机制(8位PWM)、内部电流调节、温度过热保护(TSD)及输出开路检测(LOD)等功能。此类芯片适用于高端的LED全彩显示屏,当然其价格也不菲。TB62727为TOSHIBA的新产品,主要是在TB62726基础上增加了电流调节、温度报警及输出开路检测等功能,其市场定位介于TB62719(718)与TB62726之间,计划于2003年10月量产。 TI作为世界级的IC厂商,其产品Xing能自然勿用置疑。但由于先期对中国LED市场的开发不力,市场占有率并不高。主要产品有TLC5921、TLC5930和TLC5911等。TLC5921是具有TSD、LOD功能的高精度16位源驱动芯片,其位间电流误差只有±4%,但其价格一直较高,直到最近才降到与TB72726相当的水平。TLC5930为具有1024级灰度(10位PWM)的12位源芯片,具有64级亮度可调功能。TLC5911是定位于高端市场的驱动芯片,具有1024级灰度、64级亮度可调、TSD、LOD等功能的16位源芯片。在TLC5921和TLC5930芯片下方有金属散热片,实际应用时要注意避开LED灯脚,否则会因漏电造成LED灯变暗。 SONY产品一向定位于高端市场,LED驱动芯片也不例外,主要产品有CXA3281N和CXR3596R。CXA3281N是8位源芯片,具有4096级灰度机制(12位PWM)、256级亮度调节、1024级输出电流调节、TSD、LOD和LSD(输出短路检测)等功能。CXA3281N主要是针对静态驱动方式设计的,其最大输出电流只有40mA。CXA3596R是16位源芯片,功能上继承了CXA3281N的所有特点,主要是提高了输出电流(由40mA增加到80mA)及恒流源输出路数(由8路增加到16路)。目前CXA3281N的单片价格为1美元以上,CXA3596R价格在2美元以上。 MBI(聚积科技)的产品基本上与TOSHIBA的中档产品相对应,引脚及功能也完全兼容,除了恒流源外部设定电阻阻值稍有不同外,基本上都可直接代换使用。该产品的价格比TOSHIBA的要低10~20%,是中档显示屏不错的选择。MBI的MBl5001和MBl5016分别与TB62705和TB62706对应,MBl5168千口MBl5026分另(j与TB62725禾口TB62726对应。另外,还有具有LOD功能的其新产品MBl5169(8位源)、MBl5027(16位源)、64级亮度调节功能的MBl5170(8位源)和MBl5028(16位源)。带有LOD及亮度调节功能的芯片采用MBI公司的Share-I-OTM技术,其芯片引脚完全与不带有这些功能的芯片,如MBl5168和MBl5026兼容。这样,可以在不变更驱动板设计的情况下就可升级到新的功能。

常用LCD驱动IC集锦

本文主要是介绍一些常用的LCD驱动控制IC的型号,同时附上datasheet,方便学习或正在使用的LCD的朋友能够更好地编写LCD的驱动程序。 因此各位朋友在选择LCD液晶模块的时候,在考虑到串行,还是并行的方式时,可根据其驱动控制IC的型号来判别,当然你还需要看你选择的LCD模块引脚定义是固定支持并行,还是可选择并行或串行的方式。 一、字符型LCD驱动控制IC 市场上通用的8×1、8×2、16×1、16×2、16×4、20×2、20×4、40×4等字符型LCD,基本上都采用的KS0066作为LCD的驱动控制器 下载:《KS0066 数据手册》(英文) 二、图形点阵型LCD驱动控制IC 1、点阵数122×32--《SED1520 数据手册》(英文) 2、点阵数128×64 (1)ST7920/ST7921,支持串行或并行数据操作方式,内置中文汉字库 下载:《ST7920 数据手册》(英文) (2)KS0108,只支持并行数据操作方式,这个也是最通用的12864点阵液晶的驱动控制IC 下载:《KS0108 数据手册》(英文) (3)ST7565P,支持串行或并行数据操作方式 下载:《ST7565P 数据手册》(英文) (4)S6B0724,支持串行或并行数据操作方式 下载:《S6B0724 数据手册》(英文) (5)T6963C,只支持并行数据操作方式 下载:《T6963C 数据手册》(英文) 3、其他点阵数如192×6 4、240×64、320×64、240×128的一般都是采用T6963c 驱动控制芯片 4、点阵数320×240,通用的采用RA8835驱动控制IC 下载:《RA8835 数据手册》(英文) 这里列举的只是一些常用的,当然还有其他LCD驱动控制IC,在写LCD驱动时要清楚是哪个型号的IC,再到网上去寻找对应的IC数据手册吧。

段码LCD液晶屏驱动方法

TFT液晶屏:https://www.sodocs.net/doc/178188689.html, 段码LCD液晶屏驱动方法 段码LCD液晶屏驱动方法 首先,不要以为用单片机来驱动就以为段码屏是直流驱动的,其实,段码屏是交流驱动,什么是交流?矩形波,正弦波等。大家可能会经常用驱动芯片来玩,例如HT1621等,但是有些段式屏IO口比较少,或者说IO口充足的情况下,也可以省去写控制器的驱动了。与单片机接口方便,而后者驱动电流小,功耗低、寿命长、字形美观、显示清晰、视角大、驱动方式灵活、应用广泛。但在控制上LCD较复杂,因为LCD 电极之间的相对电压直流平均值必须为0,否则易引起LCD氧化,因此LCD不能简单地用电平信号控制,而要用一定波形的方波序列来控制。 LCD显示有静态和时分割两种方式,前者简单,但是需要较多的口线;后者复杂,但所需口线较少,这两种方式由电极引线的选择方式确定。下面以电子表的液晶显示为例,小时的高位同时灭或亮,分钟的高位在显示数码1~5时,其顶部和底部也是同时灭或亮,两个dot点也是同时亮或灭,其驱动方式是偏置比为1/2的时分割驱动,共有11个段电极和两个公共电极。但是,IO模拟驱动段式液晶有一个前提条件,就是IO必须是三态,为什么? 下面我们一起细细道来: 第一步,段码式液晶屏的重要参数:工作电压,占空比,偏压比。这三个参数非常重要,必须都要满足。 第二步,驱动方式:根据LCD的驱动原理可知,LCD像素点上只能加上AC电压,LCD显示器的对比度由COM脚上的电压值减去SEG脚上的电压值决定,当这个电压差大于LCD的饱和电压就能打开像素点,小于LCD阈值电压就能关闭像素点,LCD型MCU已经由内建的LCD驱动电路自动产生LCD驱动信号,因此只要I/O口能仿真输出该驱动信号,就能完成LCD的驱动。 段码式液晶屏幕主要有两种引脚,COM,SEG,跟数码管很像,但是,压差必须是交替变化,例如第一时刻是正向的3V,那么第二时刻必须是反向的3V,注意一点,如果给段码式液晶屏通直流电,不用多久屏幕就会废了,所以千万注意。下面我们来考虑如何模拟COM口的波形,以1/4D,1/2B为例子:

常见液晶驱动芯片详解

本文主要是介绍一些常用的LCD驱动控制IC的型号,方便学习或正在使用的LCD的朋友能够更好地编写LCD的驱动程序。 因此各位朋友在选择LCD液晶模块的时候,在考虑到串行,还是并行的方式时,可根据其驱动控制IC的型号来判别,当然你还需要看你选择的LCD 模块引脚定义是固定支持并行,还是可选择并行或串行的方式。 一、字符型LCD驱动控制IC 市场上通用的8×1、8×2、16×1、16×2、16×4、20×2、20×4、40×4等字符型LCD,基本上都采用的KS0066作为LCD的驱动控制器 二、图形点阵型LCD驱动控制IC 1、点阵数122×32--SED1520 2、点阵数128×64 (1)ST7920/ST7921,支持串行或并行数据操作方式,内置中文汉字库(2)KS0108,只支持并行数据操作方式,这个也是最通用的12864点阵液晶的驱动控制IC (3)ST7565P,支持串行或并行数据操作方式 (4)S6B0724,支持串行或并行数据操作方式 (5)T6963C,只支持并行数据操作方式 3、其他点阵数如192×6 4、240×64、320×64、240×128的一般都是采用T6963c驱动控制芯片

4、点阵数320×240,通用的采用RA8835驱动控制IC 这里列举的只是一些常用的,当然还有其他LCD驱动控制IC,在写LCD驱动时要清楚是哪个型号的IC,再到网上去寻找对应的IC数据手册吧。后面我将慢慢补上其它一些常见的. 三 12864液晶的奥秘 CD1601/1602和LCD12864都是通常使用的液晶,有人以为12864是一个统一的编号,主要是12864的液晶驱动都是一样的,其实12864只是表示液晶的点阵是128*64点阵,而实际的12864有带字库的,也有不带字库的;有5V电压的,也有~5V(内置升压电路);归根到底的区别在于驱动控制芯片,常用的控制芯片有ST7920、KS0108、T6963C等等。 下面介绍比较常用的四种 (1)ST7920类这种控制器带中文字库,为用户免除了编制字库的麻烦,该控制器的液晶还支持画图方式。该类液晶支持68时序8位和4位并口以及串口。 (2)KS0108类这种控制器指令简单,不带字库。支持68时序8位并口。 (3)T6963C类这种控制器功能强大,带西文字库。有文本和图形两种显示方式。有文本和图形两个图层,并且支持两个图层的叠加显示。支持80时序8位并口。

液晶屏驱动1622芯片资料

文件型号YM1622 文件类型服务文件 版本02.3 段式液晶显示模块使用手册 YM1622 深圳市耀宇科技有限公司地址:深圳市南山区西丽北路八十号南粮综合楼三楼 邮编:518055电话:(0755)26700011 26622385 26701033 26622308传真:(0755)26701033 https://www.sodocs.net/doc/178188689.html, E-mail:yaoyulcm@https://www.sodocs.net/doc/178188689.html, szyaoyu@https://www.sodocs.net/doc/178188689.html,

一.概述 YM1622是一种段式的液晶显示器。它主要采用动态驱动原理由行驱动—控制器和列驱动器两部分组成了。此显示器可采用了COB的软封装方式,通过导电橡胶和压框连接LCD或金属管脚连接LCD,使其寿命长,连接可靠,抗震;或者热压胶纸连接。 二.特性 1.操作电压 2.4V-5.2V 2.内置32KHz RC 振荡器 3.掉电Power down 4.内置32×8 位显示RAM;最大可显示256段,且可多级联用。 5.3线串行接口 6.一个8 阶时基和看门狗定时器WDT 7.读/写地址自动增加 三.硬件说明 1.引脚特性 引脚号引脚名称级别引脚功能描述 1 /CS H/L片选信号,低电平有效 读信号,数据在/RD的上升沿被读入MCU 2 RD* H/L 写信号,数据在/WR的上升沿被写入LCM 3 WR H/L 4 DATA H/L 串行输入/输出信号 电源(负) 5 VSS 0V 7 VLCD* LCD驱动正电压.LCD驱动电压=VLCD-VSS 电源(正) 8 VDD +5V 9 /IRQ*H/L 时基和看门狗定时器WDT溢出标志 10 BZ,/BZ* H/L 2KHz or 4KHz音频输出 注: 1)*的引脚可以不使用,以具体的接口图为准. 2)引脚顺序以具体的接口图为准.

LED背光驱动电路设计分析(整理版本)

白光LED背光驱动电路设计分析(整理版本) 特别是电池供LCD白色LED背光驱动电路设计电产品需要优化的LED驱动电路架构,这些架构要处理并存的多项挑战,如空间受限、需要高能效,以及电池电压变化—既可能比LED的正向电压高,也可能低。常用的拓扑结构有两种,分别是LED 采用并联配置的电荷泵架构/恒流源架构和LED采用串联配置的电感升压型架构。这两种方案都有需要考虑的折衷因素,如升压架构能够确保所有LED所流经的电流大小相同但需要采用电感进行能量转换,而电荷泵架构使用小型电容进行能量转换,但所有LED并联排列得太过紧密以致电流匹配成为均衡背光所面对的一项棘手问题。 对LED背光驱动电路的要求是: 1. 满足背光的亮度要求; 2. 整个显示屏亮度均匀(不允许有某一部分较亮、另一部分较暗的情况); 3. 亮度可以方便地调节; 4. 驱动电路占PCB空间要小; 5. 工作效率高; 6. 综合成本低; 7. 对系统其它模块干扰小。 设计时应做好以下几点: 1.评估显示屏的大概使用时间 选择白光LED驱动器时,需要考虑到显示屏的使用频率。如果显示屏会被长时间背光观看,拥有高效率的转换器对电池使用时间就显得至关重要。较大的显示屏需要较多的LED,而显示屏使用时间较长的应用则会从能效更高的升压型拓扑中受益。相反地,如果显示屏仅用于短时间背光,那么效率就可能不是一项关键的设计参数。 2.仔细考虑LED选择 LED技术持续快速改进,制造商在使用新的材料、制造技术和LED设计来为同等大小的电流释出更大的光输出,这样一来,几年前需要4个LED进行背光的显示屏如今可能采用2个LED就能实现同样的背光亮度。不仅如此,过去通常使用冷阴极荧光灯(CCFL)进行背光的4到7英寸较大显示屏,如今正在转向使用LED进行背

主要的显示屏驱动IC

一/主要的显示屏驱动IC 74HC04的作用:6位反相器。 第7脚GND,电源地。第14脚VCC,电源正极。信号由A端输入Y端反相输出,A1与Y1为一组,其它类推。例:A1=“1”则Y1=“0”、A1=“0”则Y1=“1”,其它组功能一样。 74HC138的作用:八位二进制译十进制译码器。 第8脚GND,电源地。第15脚VCC,电源正极第1~3脚A、B、C,二进制输入脚。第4~6脚片选信号控制,只有在4、5脚为“0”6脚为“1”时,才会被选通,输出受A、B、C信号控制。其它任何组合方式将不被选通,且Y0~Y7输出全为“1”。 通过控制选通脚来级联,使之扩展到十六位。 例:G2A=0,G2B=0,G1=1,A=1,B=0,C=0,则Y0为“0”Y1~Y7为“1”。74HC595的作用:LED驱动芯片,8位移位锁存器。 第8脚GND,电源地。第16脚VCC,电源正极第14脚DATA,串行数据输入口,显示数据由此进入,必须有时钟信号的配合才能移入。第13脚EN,使能口,当该引脚上为“1”时QA~QH口全部为“1”,为“0”时QA~QH的输出由输入的数据控制。第12脚STB,锁存口,当输入的数据在传入寄存器后,只有供给一个锁存信号才能将移入的数据送QA~QH口输出。第11脚CLK,时钟口,每一个时钟信号将移入一位数据到寄存器。第10脚SCLR,复位口,只要有复位信号,寄存器内移入的数据将清空,显示屏不用该脚,一般接VCC。第9脚DOUT,串行数据输出端,将数据传到下一个。第15、1~7脚,并行输出口也

就是驱动输出口,驱动LED。 4953的作用:行驱动管,功率管。 其内部是两个CMOS管,1、3脚VCC,2、4脚控制脚,2脚控制7、8脚的输出,4脚控制5、6脚的输出,只有当2、4脚为“0”时,7、8、5、6才会输出,否则输出为高阻状态。 TB62726的作用:LED驱动芯片,16位移位锁存器。 第1脚GND,电源地。第24脚VCC,电源正极第2脚DATA,串行数据输入 第3脚CLK,时钟输入.第4脚STB,锁存输入 .第23脚输出电流调整端,接电阻调整 第22脚DOUT,串行数据输出第21脚EN,使能输入 其它功能与74HC595相似,只是TB62726是16位移位锁存器,并带输出电流调整功能,但在并行输出口上不会出现高电平,只有高阻状态和低电平状态。74HC595并行输出口有高电平和低电平输出。TB62726与5026的引脚功能一样,结构相似。 二、 LED显示屏常见信号的了解 以下内容只有回复后才可以浏览 CLK时钟信号:提供给移位寄存器的移位脉冲,每一个脉冲将引起数据移入或移出一位。数据口上的数据必须与时钟信号协调才能正常传送数据,数据信号的频率必须是时钟信号的频率的1/2倍。在任何情况下,当时钟信号有异常时,会使整板显示杂乱无章。

液晶面板驱动芯片

液晶显示器驱动板典型主控芯片介绍不同的主控芯片,其内部组成有较大的不同。 在输入接口方面,有些主控芯片只有模拟VGA输入接口:有些主控芯片则具有模拟VGA和数字DVI两种接口;还有一些主控芯片,由于没有集成A/D转换电路,因此,只有接收外部A/D转换电路输出的数字信号。 在输出接口方面,有些主控芯片只有输出TTL信号,只能驱动TTL接口液晶面板;有些主控芯片集成有LVDS 发送电路,可以输出LVDS信号,直接驱动LVDS接口液晶面板;有些主控芯片集成有TMDS发送电路,可以输出TMDS信号,直接驱动TMDS接口液晶面板;有些主控芯片可以输出RSDS信号,可以直接驱动RSDS接口液晶面板;还有一些主控芯片集成有TC0N电路,可以直接驱动TC0N接口液晶面板。 下面简要介绍几种常用主控芯片的电路组成及特点。 1.主控芯片gm5120 gm5120是Genesis(捷尼)公司推出的一款应用于平面电视及LCD的主控芯片,支持的最高分辨率SXGA为1280×1024。gm5120内含一个YUV视频输入端口及完整的A/D转换器,并带有PLL锁相环、TMDS接收器(接收DVI信号)、高质量的图像缩放处理器和视频处理器。另外,gm5120还集成有OSD(屏显电路)、MCU(微控制器)等电路。可见,gm5120是一片包含LCD众多电路功能于一体的“超级芯片”,其内部电路框图如图1所示。由gm5120组成的驱动板,可直接驱动TTL接口液晶面板,外加LVDS发送器,也可驱动LVDS液晶面板。 图1 gm5120内部电路框图 gm5120具有以下主要的特征: (1)gm5120内含三个ADC输入(RGB),作为计算机VGA的输入:一个视频输入信号端口(YUV)和一个数字视频交互接口(DVI),内含高带宽数字信息加密保护(HDCP)。 (2)gm5120具有图像放″缩小功能;通过对8bit的RGB数据信号进行差补缩放处理,能将分辨率为VGA (640×480)~UXGA(1600×1200)的信号转矽息为fi有单路/双路SXCA(1280×1024/75Hz)输出的格式,以适应液晶显示屏的要求。

LCD电视背光驱动电路设计

LCD电视背光驱动电路设计挑战分析和方案设计 LCD电视应用中可以采用多种架构产生驱动CCFL所需的交流波形,驱动多个CCFL时所要面对的三个关键的设计挑战是选择最佳的驱动架构、多灯驱动、灯频和脉冲调光频率控制。本文对四种常用驱动架构进行了对比分析,并提出多灯设计中解决亮度不均以及驱动频率可能干扰画面等问题的方法,并给出基于 DS3984/DS3988的电路方案。 液晶显示器(LCD)正在成为电视的主流显示技术。LCD面板实际上是电子控制的光阀,需要靠背光源产生可视的图像,LCD电视通常用冷阴极荧光灯提供光源。其他背光技术,例如发光二极管也受到一定的重视,但由于成本过高限制了它的应用。 由于LCD电视是消费品,压倒一切的设计考虑是成本—当然必须满足最低限度的性能要求。驱动背光灯的CCFL逆变器不能明显缩短灯的寿命。此外,由于要用高压驱动,安全性也是一个必须考虑的因素。LCD电视应用中,驱动多个CCFL时所要面对的三个关键的设计挑战是:挑选最佳的驱动架构;多灯驱动;灯频和脉冲调光频率的严格控制。 挑选最佳的驱动架构 可以用多种架构产生驱动CCFL所需的交流波形,包括Royer(自振荡,self-oscillating)、半桥、全桥和推挽。表1详细归纳了这四种架构各自的优缺点。 1. Royer架构 Royer架构(图1)的最佳应用是在不需要严格控制灯频和亮度的设计中。由于Royer架构是自振荡设计,受元件参数偏差的影响,很难严格控制灯频和灯电流,而这两者都会直接影响灯的亮度。因此,Royer架构很少用于LCD电视,尽管它是本文所述四种架构中最廉价的。 图1:Royer驱动器简单,但不太精确。 2.全桥架构 全桥架构最适合于直流电源电压非常宽的应用(图2),这就是几乎所有笔记本PC都采用全桥方式的原因。在笔记本中,逆变器的直流电源直接来自系统的主直流电源,其变化范围通常在7V(低电池电压)至21V(交流适配器)。有些全桥方案要求采用p沟道MOSFET,比n沟道MOSFET更贵。另外,由于固有的高导通电阻,p沟道MOSFET的效率更低。

为背光LCD和电视选择LED驱动IC

为背光LCD和电视选择LED驱动IC 为背光LCD和电视选择LED驱动IC时间:2009-02-01 12:17:55 来源:今日电子/21IC 作者:飞思卡尔半导体公司Michael Jennings 发光二极管(LED)的内在品质使它能够替代冷阴极荧光灯管(CCFL)成为下一代电视机、台式机和笔记本显示器的背光解决方案。LED的功耗远小于CCFL,寿命比后者长5倍,效率更高,显示器厚度更薄,亮度调节的精细度更小,使用低电压驱动器,而且本身就更加环保,因为LED与CCFL不同,它不含有汞或其他有害物质。不过,所有这些特性都只有在LED背光阵列与驱动IC 之间实现很好的匹配之后才能得到完全的发挥。因此,设计人员只有在了解驱动IC的关键特性及功能之后,才能选出最适合应用需求的驱动IC。浏览一下驱动IC的数据单,会发现有许多参数需要考虑,本文将介绍的参数和功能是其中最重要的。 ?参数 ?这些规范中的第一条是驱动IC能够接受的输入电压。如果输入电压范围较窄,那幺它能够应用到的范围就比较小。此外,这样的IC芯片可能无法承受较大的输入电压摆幅以及在使用中总是存在的一些其他瞬态条件。 ?驱动芯片的最大输出电压也很关键,因为每个LED都会产生1~4V的电压降。驱动芯片必须有足够高的输出电压,以提供阵列中多个LED所产生的电压降。最大输出电压和通道数决定了它能够支持的LED数量。 ?这一结论同样适用于驱动芯片能够为每个通道提供的最大电流。它能够提供的电流必须与每种设计相匹配,重点在于所使用的LED类型。 ?大多数便携式应用中所使用的LED需要20~30mA的电流,而显示器和电视中的LED通常会消耗40~120mA(不过在有些应用中LED需要高达

常见液晶屏主芯片资料

产品名称产品说明技术资料典型应用 LXD01812 三星液晶屏专用 SN0209033PZP-1 LG.Philips液晶屏专用 LM170E01 LXD91810 三星液晶屏专用 LXD91812 三星液晶屏专用 TFP7433ZP-6 HT现代液晶屏专用 AU30803 AU友达液晶屏专用 AU0071 AU友达液晶屏专用 CM1012A-ET AU友达液晶屏专用 FPD87326 LG液晶屏专用 LM150X06(20P) FPD87342 LG液晶屏专用 LM150X08(20P) LXD91811 三星液晶屏专用 LTM150XH-L01、 LXD91814 三星液晶屏专用 AD30601 ACER AD3032 AD LPD91821 三星液晶屏专用 AD8567 AU友达液晶屏专用 NT7168F-00010 AU30707 AU0071TAIWAN 台湾友达AU屏专用 5420CR 三星液晶屏专用 F29C51001T 七喜液晶驱动板专用 AT49LV001NT Philips液晶驱动板专用

24C16 各种LCD驱动板、A/D板专用 M6759 液晶驱动板A/D板专用MCU SM89516 液晶驱动板A/D板专用MCU ADP3421 笔记本主板供电专用IC GMZAN3L 液晶驱动板芯片 GM2121 液晶驱动板芯片 GM2116 液晶驱动板芯片 GM2110 液晶驱动板芯片 RTD2023 液晶驱动板芯片 RTD2013 液晶驱动板芯片 RTD2013B 液晶驱动板芯片 RTD2013B 液晶驱动板芯片 RTD2011 液晶驱动板芯片 RTD2022 液晶驱动板芯片 GM2121 液晶驱动板芯片 GM2221 液晶驱动板芯片 S9050-100 液晶驱动板芯片sage GMZAN1-A 液晶驱动板芯片 GMZAN2 液晶驱动板芯片 GMZAN3SL 液晶驱动板芯片 GMZAN3XL 液晶驱动板芯片

LED背光驱动电路原理分析

LED背光驱动电路原理分析-杨在鲁 该部分电路主要由集成块IC8101(LD7400)组成,见下图。LD7400是通嘉公司生产的异步电流模式升压控制器,可以在10.5V~28V电压范围工作。该器件具有斜率补偿、输入电压欠压锁定、输出电压短路保护、可编程振荡器频率、热关断保护等功能。 1.背光开关控制电路 背光开关控制电路较为简单,主要由主板发出的开关控制信号ON/OFF和Q8302、IC8101(LD7400)的③脚构成。二次开机后,背光开关控制信号ON/OFF由低电平变为高电平,经CN9903的13脚送入到二合一电源板。该信号经R8304和R8305分压后,加到Q8302的控制极,Q8302饱和导通,相当于把R83 06-端接地,IC8101内电路检测到这一信号后,使IC8101进入正常工作模式。 2.升压电路 本机采用自举升压电路结构把+36V电压升高到78V电压,为LED背光灯供电。它的好处是:当功率转换电路未工作或功率管短路时,输出的电压低,不会使LED过流而损坏,同时可以避免开机瞬间冲击电流对LED的影响。

二次开机后,+12V电压直接加到LD7400的⑧脚,LD7400启动工作。当开关控制信号ON/OFF变为高电平使Q8302饱和导通时,LD7400内部控制电路检测到这一情况,从⑦脚输出PWM脉冲。当⑦脚输出高电平时,该信号经R8104和R8105加到Q8101的栅极,Q8101饱和导通。+36V电压经L8101、Q8 101和R8107到地,电感L8101储能,感应电动势为上正下负。当⑦脚为低电平时Q8101截止,Q8101的栅极电荷经D8101、R8104回到LD7400的⑦脚内部。流过L8101两端的电流被截断,L8101感应的电动势变为上负下正。此时,L8101感应的电动势叠加上+36V的输入电压,形威78V电压作为LED背光灯的驱动电压。 3.电流稳压电路 因LED对电流要求严格,因此本电源稳压取样采取电流取样模式,从电流检测电阻R8201、R8202、R8203、R8204、R8205、R8213上取得经LED灯管的电流大小信号送入IC的FB脚,调整驱动脉冲占空比实现LED驱动电流控制。 LED-SOURCE电压产生后,从接LED灯串的插座CN8901的12脚和①脚接入,送往LED灯条,LED 灯条的另一端经CN8901的⑩脚和③脚(LED-1)与背光灯驱动电路中Q8203的漏极相接。R8201—R820 5、R8213为电流检测电阻,R8211、R8208/R8214、IC8201为基准电压形成电路,12V经基准电压形成电路将FB点电压抬升到2.5V左右,完成该信号与IC8101的①脚内部电路匹配(①脚输入电压要求在2. 5V左右,内部电路才能正常工作)。 当某种原因造成流过LED灯条的电流过大时,流过电流检测电阻两端的电流增大,电流检测电阻R82 01等电阻两端的电压升高,使FB电压升高,经lC内部逻辑处理电路控制后,⑦脚输出的PWM脉冲占空比就会减小,使Q8101导通时间缩短,L8101储能时间下降,LED-SOURCE电压降低,使流过LED灯条的电流减小。当某种原因造成LED背光板的电流过小时,稳压过程与上述过程相反。 4.调光控制 由于LED发光二极管的发光亮度对电流变化很敏感,微小的电流变化都会造成LED的亮度变化,再加上LED发光二极管允许流过的电流大小有限,稍微低一点或高一点就会造成LED发出的光线颜色改变,因此,很难用调节电流的方法来调节LED发光亮度。所以,LED发光二极管一般都采用PWM脉冲调光的方式来调节亮度。 本电源使用的是PWM调光,即利用人眼的视觉特点,通过单位时间内,LED亮灭时间的比例,来达到调整LED亮度的目的。本电源的调光控制分两部分完成,一路控制IC8101,使IC8101的⑦脚无脉冲输出;另一路控制Q8203,使LED背光板电流通路瞬间断开。 主板送来的背光亮度控制信号DIM从CN9903的⑩脚输入,一路经R8103和R8102分压后,加到IC 8101的⑤脚。当DIM信号为高电平时,送入⑤脚的信号也为高电平(大于2V),IC8101内部电路正常工作,⑦脚输出正常的驱动信号,LED背光灯正常点亮;当DIM信号为低电平时,送入⑤脚的信号也为低电平(小于1V),内部控制电路使⑦脚输出低电平,Q8101截止。 另一路直接送入Q8202的基极。当DIM信号为高电平时,Q8202饱和导通,Q8201导通,Q8203的栅极为高电平饱和导通,LED背光板有电流流过而发光;当DIM信号为低电平时,Q8202截止,Q8201因基极为高电平而截止,从而使Q8203的栅极无电压,Q8203也截止。LED中无电流通路不发光。由于D IM信号的频率是在100Hz—800Hz之间,远高于人眼的视觉暂停的界限,所以人眼看不见背光闪烁。

相关主题