搜档网
当前位置:搜档网 › 内存芯片命名规则解读

内存芯片命名规则解读

内存芯片命名规则解读
内存芯片命名规则解读

(完整word版)产品命名编码规则

深圳市佳华利道新技术开发有限公司 产品命名编码规则 修定日期:2014/08/21 批准审核修订 文件标题产品命名编 码规则 文件编号 UP201408210 1 版本 A 修订部门总经办修订日期2014-08-21 页次 4

目录 一、目的 (2) 二、造用范围 (2) 三、物料编码的组成 (2) 四、编号规则说明 (2) 4.1 一级分类 (3) 4.2 二级分类 (3) 4.3 序号 (4) 4.4 版本号 (4)

文件编号:UP20140821001 深圳市佳华利道新技术开发有限公司 物料编码规范文件版本:01 文件页码:共 4 页 生效日期:2014-8-21 一.目的: 保证公司的物料编码规范化,便于物料接收、检验、储存、请购、盘点、账目、使用 及维护等作业,及确保产品在形成的各阶段都有唯一的标示,并具有可追溯性。 二..适用范围: 公司运作中涉及的所有物料,不包含办公用品等。 三..物料编码的组成:(先分大类,在分小类) 物料编码共9位阿拉伯数字组成,分为一级分类(2位),二级分类(2位),序号 3位),版本(2位)其组成形式为: 物料名称 1 0 0 0 1 0 1 0 1 一级分类二级分类序号版本 (大类)(小类) 四.编号规则说明: 如有新开发的电池产品型号,按照阿拉伯数字的顺序以此类推(实验用材料除外)。

4.1 一级分类:(如有新开发的电池产品型号,按照阿拉伯数字的顺序以此类推) 10 :电池箱组件 20 :电机 30 :动力系统控制器 40 :低压元件零件 50 :高压零部件 60 :电子零部件 70 :普通材料 80 :杂类 4.2 二级分类:(如有新开发的电池产品型号,按照阿拉伯数字的顺序以此类推) 物料类别(10-90)零件属性代码 (01-99) 序号 (001-999) 版本 (01-99) 10 电池箱组件01 电池芯001 3.2V/25Ah 02 电池模块 03 电池箱 001 箱体构件01 002 箱体构件02 003 箱体构件02 004 左侧构件 005 右侧构件 006 滚轮支撑板01 007 滚轮支撑板02 008 支承滚轮 009 固定块01 010 固定块02 011 顶盖 012 塑料卡扣6×3 013 塑料卡扣6×2 014 拉紧扣带 015锁紧扣 016 桥接片01 017 桥接片02 018 前汇流铜片 019 后汇流铜片 020负极连接片01 021 负极连接片02 022 负极连接片03 023 负极连接片04 024 正极连接片

【CN110070029A】一种步态识别方法及装置【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910309192.7 (22)申请日 2019.04.17 (71)申请人 北京易达图灵科技有限公司 地址 100013 北京市朝阳区安定门外大街1 号1幢9层905室 (72)发明人 袁飞 华仁红 马向军 孙文凤  (74)专利代理机构 北京路浩知识产权代理有限 公司 11002 代理人 王庆龙 苗晓静 (51)Int.Cl. G06K 9/00(2006.01) G06K 9/46(2006.01) G06N 3/04(2006.01) (54)发明名称 一种步态识别方法及装置 (57)摘要 本发明实施例提供一种步态识别方法及装 置。方法包括:获取待识别视频中任一行人对应 的人体关键点特征向量序列;将人体关键点特征 向量序列输入至目标神经网络,根据目标神经网 络的输出结果,识别人体关键点特征向量序列对 应的行人身份;其中,目标神经网络是根据带有 行人身份标签的人体关键点特征向量序列进行 训练后得到的。本发明实施例提供的方法及装 置,通过获取待识别视频中任一行人对应的人体 关键点特征向量序列,并将该序列输入至目标神 经网络,根据目标神经网络的输出结果,识别该 序列对应的行人身份。通过充分利用人体关键点 特征,自学习人体的步态特征,大大提高了步态 识别的鲁棒性和准确性,并且,对硬件的要求较 低, 便于实际应用。权利要求书2页 说明书8页 附图2页CN 110070029 A 2019.07.30 C N 110070029 A

权 利 要 求 书1/2页CN 110070029 A 1.一种步态识别方法,其特征在于,包括: 获取待识别视频中任一行人对应的人体关键点特征向量序列; 将所述人体关键点特征向量序列输入至目标神经网络,根据所述目标神经网络的输出结果,识别所述人体关键点特征向量序列对应的行人身份; 其中,所述目标神经网络是根据带有行人身份标签的人体关键点特征向量序列进行训练后得到的。 2.根据权利要求1所述的方法,其特征在于,所述获取待识别视频中任一行人对应的人体关键点特征向量序列,包括: 获取待识别视频,所述待识别视频中包括若干个行人; 对所述待识别视频进行采样,得到多帧图像并组成采样图像序列; 将所述采样图像序列输入至人体关键点检测模型,得到所述待识别视频中任一行人对应的人体关键点特征向量序列。 3.根据权利要求1所述的方法,其特征在于,所述将所述人体关键点特征向量序列输入至目标神经网络,之前还包括: 获取多个样本视频和每一样本视频中每一行人对应的行人身份标签,并获取每一样本视频中每一行人对应的人体关键点特征向量序列; 将每一行人对应的人体关键点特征向量序列和行人身份标签的组合作为一个训练样本,得到多个训练样本并组成训练集; 通过所述训练集对原始神经网络进行训练,得到所述目标神经网络。 4.根据权利要求3所述的方法,其特征在于,所述通过所述训练集对原始神经网络进行训练,得到所述目标神经网络,包括: 将所述训练集中的任一训练样本输入至所述原始神经网络,根据所述原始神经网络的输出结果和所述训练样本中的行人身份标签计算所述原始神经网络的损失值; 若所述损失值小于第一预设阈值,则将所述原始神经网络作为所述目标神经网络。 5.根据权利要求3所述的方法,其特征在于,所述通过所述训练集对原始神经网络进行训练,得到所述目标神经网络,包括: 将所述训练集中的任一训练样本输入至所述原始神经网络,根据所述原始神经网络的输出结果和所述训练样本中的行人身份标签计算所述原始神经网络的损失值; 若所述损失值小于第一预设阈值,则将所述原始神经网络作为候选神经网络; 多次调整所述神经网络的结构,每调整一次则重复执行训练过程以得到对应的候选神经网络,并从得到的多个候选神经网络中选择一个作为所述目标神经网络。 6.根据权利要求5所述的方法,其特征在于,所述从得到的多个候选神经网络中选择一个作为所述目标神经网络,包括: 从所述多个候选神经网络中,选择损失值小于第二预设阈值的若干个候选神经网络; 基于验证集对所述若干个候选神经网络中的每一候选神经网络进行验证,得到每一候选神经网络的准确率,并将准确率最高的候选神经网络作为所述目标神经网络。 7.根据权利要求1-6任一所述的方法,其特征在于,所述目标神经网络为长短期记忆网络。 8.一种步态识别装置,其特征在于,包括: 2

电容的型号命名

电容的型号命名 1)各国电容器的型号命名很不统一,国产电容器的命名由四部分组成: 第一部分:用字母表示名称,电容器为C。 第二部分:用字母表示材料。 第三部分:用数字表示分类。 第四部分:用数字表示序号。 2)电容的标志方法: (1)直标法:用字母和数字把型号、规格直接标在外壳上。 (2)文字符号法:用数字、文字符号有规律的组合来表示容量。文字符号表示其电容量的单位:P、N、u、m、F等。和电阻的表示方法相同。标称允许偏差也和电阻的表示方法相同。小于10pF的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.2pF,D——±0.5pF,F——±1pF。 (3)色标法:和电阻的表示方法相同,单位一般为pF。小型电解电容器的耐压也有用色标法的,位置靠近正极引出线的根部,所表示的意义如下表所示: 颜色黑棕红橙黄绿蓝紫灰 耐压4V 6.3V 10V 16V 25V 32V 40V 50V 63V 15)安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及人身安全. 安规电容安全等级应用中允许的峰值脉冲电压过电压等级(IEC664) X1 >2.5kV ≤4.0kV Ⅲ X2 ≤2.5kV Ⅱ X3 ≤1.2kV —— 16)安规电容安全等级绝缘类型额定电压范围 Y1 双重绝缘或加强绝缘≥250V Y2 基本绝缘或附加绝缘≥150V ≤250V Y3 基本绝缘或附加绝缘≥150V ≤250V Y4 基本绝缘或附加绝缘<150V Y电容的电容量必须受到限制,从而达到控制在额定频率及额定电压作用下,流过它的漏电流的大小和对系统EMC性能影响的目的。GJB151规定Y电容的容量应不大于0.1uF。Y电容除符合相应的电网电压耐压外,还要求这种电容器在电气和机械性能方面有足够的安全余量,避免在极端恶劣环境条件下出现击穿短路现象,Y电容的耐压性能对保护人身安全具有重要意义 安规电容的参数选择 X电容,聚苯乙烯(薄膜乙烯)电容,从上面的贴子里也可以看到,聚苯乙烯的耐电压较高,适合EMI 电路的高压脉冲吸收作用。 2.容量计算:一般两级X电容,前一级用0.47uF,第二基用0.1uF;单级则用0.47uF.目前还没有比较方便的计算方法。(电容容量的大小和电源的功率无直接关系) 电容的型号命名:

模式识别研究进展-刘成林and谭铁牛

模式识别研究进展 刘成林,谭铁牛 中国科学院自动化研究所 模式识别国家重点实验室 北京中关村东路95号 摘要 自20世纪60年代以来,模式识别的理论与方法研究及在工程中的实际应用取得了很大的进展。本文先简要回顾模式识别领域的发展历史和主要方法的演变,然后围绕模式分类这个模式识别的核心问题,就概率密度估计、特征选择和变换、分类器设计几个方面介绍近年来理论和方法研究的主要进展,最后简要分析将来的发展趋势。 1. 前言 模式识别(Pattern Recognition)是对感知信号(图像、视频、声音等)进行分析,对其中的物体对象或行为进行判别和解释的过程。模式识别能力普遍存在于人和动物的认知系统,是人和动物获取外部环境知识,并与环境进行交互的重要基础。我们现在所说的模式识别一般是指用机器实现模式识别过程,是人工智能领域的一个重要分支。早期的模式识别研究是与人工智能和机器学习密不可分的,如Rosenblatt的感知机[1]和Nilsson的学习机[2]就与这三个领域密切相关。后来,由于人工智能更关心符号信息和知识的推理,而模式识别更关心感知信息的处理,二者逐渐分离形成了不同的研究领域。介于模式识别和人工智能之间的机器学习在20世纪80年代以前也偏重于符号学习,后来人工神经网络重新受到重视,统计学习逐渐成为主流,与模式识别中的学习问题渐趋重合,重新拉近了模式识别与人工智能的距离。模式识别与机器学习的方法也被广泛用于感知信号以外的数据分析问题(如文本分析、商业数据分析、基因表达数据分析等),形成了数据挖掘领域。 模式分类是模式识别的主要任务和核心研究内容。分类器设计是在训练样本集合上进行优化(如使每一类样本的表达误差最小或使不同类别样本的分类误差最小)的过程,也就是一个机器学习过程。由于模式识别的对象是存在于感知信号中的物体和现象,它研究的内容还包括信号/图像/视频的处理、分割、形状和运动分析等,以及面向应用(如文字识别、语音识别、生物认证、医学图像分析、遥感图像分析等)的方法和系统研究。 本文简要回顾模式识别领域的发展历史和主要方法的演变,介绍模式识别理论方法研究的最新进展并分析未来的发展趋势。由于Jain等人的综述[3]已经全面介绍了2000年以前模式分类方面的进展,本文侧重于2000年以后的研究进展。

绝缘子型号命名规则

绝缘子型号的含义 绝缘子型号的含义 绝缘颜色标志表 型号SC KC KC1 KX EX JK TX 正极红红红红红红红 负极绿蓝湖蓝黑棕紫白 补偿导线型号、代号及命名法表 型号规格代号含义 辅助代号附加代号 SC 配用铂铑10-铂热电偶的补偿型补偿导线 KX 配用镍铬-镍硅热电偶的延伸型补偿导线 KC 配用镍铬-镍硅热电偶的补偿型补偿导线 EX 配用镍铬铜镍热电偶的延伸型补偿导线 JX 配用铁-铜镍热电偶的延伸型补偿导线 TX 配用铜-铜镍热电偶的延伸型补偿导线 -G 一般用 -H 耐热用 A 精密级 B 普通级 -V 聚氯乙烯 -F 聚四氟乙烯 -B 玻璃丝 R 多股线芯(单股线芯省略) P 屏蔽 0.5 线芯标称截面0.5mm2 1.0 线芯标称截面1.0mm2 1.5 线芯标称截面1.5mm2 2.5 线芯标称截面2.5mm2 表示S型热电偶用的补偿型耐热用普通级补偿导线,绝缘层为聚氯乙烯,特征为多股软线和屏蔽型单对线芯标称截面为1.0mm2。 举例:SC-H B-V R P 2×1.0 GB4989-85 本安用热电偶补偿导线(缆)(含阻燃型) 产品型号含义 口口口口口ia 配用热电偶型号(二个字母表示) 使用分类和允差等级、GA一般用精密级,GB一般用普通级线芯股数、多股用R表示,单股可省略线芯截面,mm2 本安用 线芯绝缘层、护层着色表 补偿导线型号配用热电偶补偿导线合金丝绝缘层着色护层着色 正极负极正极负极 SC 铂铑10-铂SPC(铜)SNC(铜镍)红绿蓝 KC 镍铬-镍硅KPC(铜)KNC(康铜)红蓝蓝 KX 镍铬-镍硅KPX(镍铬)KNX(镍硅)红黑蓝

统计模式识别方法

统计模式识别方法 在嗅觉模拟技术领域中,模式识别问题就是由气敏传感器阵列的测量空间向被测对象的的分类或分级空间转化的问题。由于这种模式空间的变化对识别或鉴别结果有着较大的影响,因此模式识别算法的研究和讨论始终较为活跃,各种模式识别方法层出不穷,有力推动了嗅觉模拟技术的应用进程。下面介绍几种常用的统计模式识别方法。 1统计模式识别概述 统计方法,是发展较早也比较成熟的一种方法。被识别对象首先数字化,变换为适于计算机处理的数字信息。一个模式常常要用很大的信息量来表示。许多模式识别系统在数字化环节之后还进行预处理,用于除去混入的干扰信息并减少某些变形和失真。随后是进行特征抽取,即从数字化后或预处理后的输入模式中抽取一组特征。所谓特征是选定的一种度量,它对于一般的变形和失真保持不变或几乎不变,并且只含尽可能少的冗余信息。特征抽取过程将输入模式从对象空间映射到特征空间。这时,模式可用特征空间中的一个点或一个特征矢量表示。这种映射不仅压缩了信息量,而且易于分类。在决策理论方法中,特征抽取占有重要的地位,但尚无通用的理论指导,只能通过分析具体识别对象决定选取何种特征。特征抽取后可进行分类,即从特征空间再映射到决策空间。为此而引入鉴别函数,由特征矢量计算出相应于各类别的鉴别函数值,通过鉴别函数值的比较实行分类。 统计模式识别的技术理论较完善,方法也很多,通常较为有效,现已形成了一个完整的体系。尽管方法很多,但从根本上讲,都是利用各类的分布特征,即直接利用各类的概率密度函数、后验概率等,或隐含地利用上述概念进行识别。其中基本的技术为聚类分析法、判别类域代数界面法、统计决策法、最邻近法等。在聚类分析中,利用待分类模式之间的“相似性”进行分类,较相似的作为一类,较不相似的作为另外一类。在分类过程中不断地计算所划分的各类的中心,一个待分类模式与各类中心的距离作为对其分类的依据。这实际上在某些设定下隐含地利用了概率分布概念,因常见的概率密度函数中,距期望值较近的点概密值较大。该类方法的另一种技术是根据待分类模式和已指判出类别的模式的距离来确定其判别,这实际上也是在一定程度上利用了有关的概念。判别类域界面法中,用已知类别的训练样本产生判别函数,这相当于学习或训练。根据待分类模式

电容命名方式

电容的型号命名:capacitance 1)各国电容器的型号命名很不统一,国产电容器的命名由四部分组成: 第一部分:用字母表示名称,电容器为C。 第二部分:用字母表示材料。 第三部分:用数字表示分类。 第四部分:用数字表示序号。 2)电容的标志方法: (1)直标法:用字母和数字把型号、规格直接标在外壳上。 (2)文字符号法:用数字、文字符号有规律的组合来表示容量。文字符号表示其电容量的单位:P、N、u、m、F等。和电阻的表示方法相同。标称允许偏差也和电阻的表示方法相同。小于10pF的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.2pF,D——±0.5pF,F——±1pF。 (3)色标法:和电阻的表示方法相同,单位一般为pF。小型电解电容器的耐压也有用色标法的,位置靠近正极引出线的根部,所表示的意义如下表所示: 颜色黑棕红橙黄绿蓝紫灰 耐压4V6.3V10V16V25V32V40V50V63V (4)进口电容器的标志方法:进口电容器一般有6项组成。 第一项:用字母表示类别: 第二项:用两位数字表示其外形、结构、封装方式、引线开始及与轴的关系。 第三项:温度补偿型电容器的温度特性,有用字母的,也有用颜色的,其意义如下表所示: 序号字母颜色温度系数允许偏差字母颜色温度系数允许偏差 1A金+100R黄-220 2B灰+30S绿-330 3C黑0T蓝-470 4G±30U紫-750 5H棕-30±60V-1000 6J±120W-1500 7K±250X-2200 8L红-80±500Y-3300 9M±1000Z-4700 10N±2500SL+350~-1000 11P橙-150YN-800~-5800 备注:温度系数的单位10e-6/℃;允许偏差是%。 第四项:用数字和字母表示耐压,字母代表有效数值,数字代表被乘数的10的幂。

国巨电容规格

电容命名规则及采购信息要求 (一)国巨贴片电容的命名: 贴片电容的命名所包含的参数有贴片电容的尺寸、容值精度、贴片电容的材质、电压、电容容量、端头材料以及包装要求。 例国巨贴片电容CC0805JRNPO9BN101 CC:表示国巨电容系列名称——多层陶瓷贴片电容。国巨电容的系列 还有CA(表示排容),CH(表示高频电容)等等。 0805:表示尺寸,长度为0.08英寸,宽度为0.05英寸。此外,常见 的电容尺寸还有0201,0402,0603,1206,1210,1808,1812等。 J:表示电容容量的误差精度为±5%;另外B=±0.1PF,C=±0.25PF,D= ±0.5PF,F=±1PF,G=±2PF,K=±10%,M=±20%,Z=-20%~+80%。 R:表示7寸盘纸带包装。 NPO:表示电容材质。此外,常用的电容材质还有X5R,X7R,Y5V。 9:表示电压为50V。4=4V, 5=6.3V, 6=10V, 7=16V, 8=25V, 0=100V, A=200V, B=500V, C=1KV, D=2KV, E=3KV等(注意:100V是用数字0 表示,不是字母O) B:表示端头材料是镍电极。 N:表示NPO。 101:表示容值,前面两个数字为有效数字,第三个数字表示有几个 零。101=100PF, 102=1000PF, 103=10,000PF……以此类推。

(二)贴片电容的尺寸表示方法 贴片电容的尺寸表示法有两种,一种是以英寸为单位来表示,一种是以毫米为单位来表示。以英寸为单位来表示的称为英制尺寸,以毫米为单位来表示的称为公制尺寸。国巨贴片电容通常用英制尺寸来表示。

模式识别课程设计

模式识别课程设计 聚类图像分割 一.图像分割概述 图像分割是一种重要的图像分析技术。在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣。这些部分常称为目标或前景(其他部分称为背景)。它们一般对应图像中特定的、具有独特性质的区域。为了辨识和分析图像中的目标,需要将它们从图像中分离提取出来,在此基础上才有可能进一步对目标进行测量,对图像进行利用。图像分割就是把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。现有的图像分割方法主要分以下几类:基于阈值的分割方法、基于区域的分割方法、基于边缘的分割方法以及基于特定理论的分割方法等。近年来,研究人员不断改进原有的图像分割方法并把其它学科的一些新理论和新方法用于图像分割,提出了不少新的分割方法。 图象分割是图象处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图象分割应用在许多方面,例如在汽车车型自动识别系统中,从CCD摄像头获取的图象中除了汽车之外还有许多其他的物体和背景,为了进一步提取汽车特征,辨识车型,图象分割是必须的。因此其应用从小到检查癌细胞、精密零件表面缺陷检测,大到处理卫星拍摄的地形地貌照片等。在所有这些应用领域中,最终结果很大程度上

依赖于图象分割的结果。因此为了对物体进行特征的提取和识别,首先需要把待处理的物体(目标)从背景中划分出来,即图象分割。但是,在一些复杂的问题中,例如金属材料内部结构特征的分割和识别,虽然图象分割方法已有上百种,但是现有的分割技术都不能得到令人满意的结果,原因在于计算机图象处理技术是对人类视觉的模拟,而人类的视觉系统是一种神奇的、高度自动化的生物图象处理系统。目前,人类对于视觉系统生物物理过程的认识还很肤浅,计算机图象处理系统要完全实现人类视觉系统,形成计算机视觉,还有一个很长的过程。因此从原理、应用和应用效果的评估上深入研究图象分割技术,对于提高计算机的视觉能力和理解人类的视觉系统都具有十分重要的意义。 二.常用的图像分割方法 1.基于阈值的分割方法 包括全局阈值、自适应阈值、最佳阈值等等。阈值分割算法的关键是确定阈值,如果能确定一个合适的阈值就可准确地将图像分割开来。阈值确定后,将阈值与像素点的灰度值比较和像素分割可对各像素并行地进行,分割的结果直接给出图像区域。全局阈值是指整幅图像使用同一个阈值做分割处理,适用于背景和前景有明显对比的图像。它是根据整幅图像确定的:T=T(f)。但是这种方法只考虑像素本身的灰度值,一般不考虑空间特征,因而对噪声很敏感。常用的全局阈值选取方法有利用图像灰度直方图的峰谷法、最小误差法、最大类间方差法、最大熵自动阈值法以及其它一些方法。

电容命名规则

三星电容例:CL10B104KA8NNNC 规格说明:CL=积层陶瓷电容 03=0201(0603) 21=0805(2012) 42=1808(4520) 05=0402(1005) 31=1206(3216) 43=1812(4532) 10=0603(1608) 32=1210(3225) 55=2220(5750) 14=0504(1410) 01=0306(0816) 12=0508(1220) II类:A=X5R F=Y5V B=X7R X=X6S Y=X7S 电容容量用三位数表示,前面两位为有效数字,第三位为有效数字后"O"的位数如:104 = 10 0000 (单位pF)如果中间一位为R 则表示"." 如:3R3 = 3.3pF 误差: B=±0.1pf F=±1% K=±10% C=±0.25pf G=±2% M=±20% D=±0.5pf J=±5% Z=+80/-20% 承受的耐压: Q=6.3V P=10V O=16V A= 25V B= 50V C=100V D=200V E=250V G=500V H=630V 厚度: 3=0.30毫米 A=0.65毫米 M=1.15毫

米 I=2.00毫米 Q=1.25毫米 5=0.50毫米C=0.85毫米F=1.25毫米J=2.50毫米V=2.50毫米8=0.80毫米D=1.00毫米H=1.60毫米 L=3.20毫米 端头类别: A=常规产品钯/银/镍屏蔽/锡100% N=常规产品镍/铜/镍屏蔽/锡 100% G=常规产品铜/铜/镍屏蔽/锡 100% L=低侧面产品镍/铜/镍屏蔽/锡 100% 产品: A =阵列(2-元素) B =阵列(4-元素) C=高频 L =LICC N =常规 P =自动 预留的用途包装方式: B=散装 O=纸版箱料带,10英寸料盘 E=压花纸版箱,7英寸料盘P=散装箱D=纸版箱料带,13英寸料盘(10000ea) F=压花纸版箱,13英寸料盘 C=纸版箱料带,7英寸料盘 L=纸版箱料带,13英寸料盘(15,000ea) S=压花纸版箱

模式识别综述

模式识别综述 摘要:介绍了模式识别系统的组成及各组成部分包含的内容。就统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别等模式识别的基本方法进行简单介绍,并分析了其优缺点。最后列举了模式识别在各领域的应用,针对其应用前景作了相应分析。 关键字:模式识别系统、统计模式识别、结构模式识别、模糊模式识别、神经网络模式识别 背景 随着现代科学技术的发展,特别是计算机技术的发展,对事物认识的要求越来越高,根据实际需求,形成了一种模拟人的各种识别能力(主要是视觉和听觉)和认识方法的学科,这个就是模式识别,它是属于一种自动判别和分类的理论。这一理论孕育于20世纪60年代,随着科学技术的发展,特别是20世纪70年代遥感技术的发展和地球资源卫星的发射,人们通过遥感从卫星取得的巨量信息,需要进行空前规模的处理、识别和应用,在此推动下,模式识别技术便得以迅速发展[1]。发展到现在,应用领域已经非常广阔,包括文本分类、语音识别、视频识别、信息检索和数据挖掘等。模式识别技术在生物医学、航空航天、工业生产、交通安全等许多领域发挥着重要的作用[2]。 基本概念 什么是模式呢?广义地说,存在于时间和空间中可观察的事物,如果可以区别它们是否相同或是否相似,都可以称之为模式。但模式所指的不是事物本身,而是我们从事物获取的信息。因此模式往往表现为具有时间或空间分布的信息[3]。 人们在观察各种事物的时候,一般是从一些具体的个别事物或者很小一部分开始的,然后经过长期的积累,随着对观察到的事物或者现象的数量不断增加,就开始在人的大脑中形成一些概念,而这些概念是反映事物或者现象之间的不同或者相似之处,这些特征或者属性使人们对事物自然而然的进行分类。从而窥豹一斑,对于一些事物或者现象,不需要了解全过程,只需要根据事物或者现象的一些特征就能对事物进行认识。人脑的这种思维能力视为“模式”的概念。 模式识别就是识别出特定事物,然后得出这些事物的特征。识别能力是人类和其他生物的一种基本属性,根据被识别的客体的性质可以将识别活动分为具体的客体与抽象的客体两类。诸如字符、图像、音乐、声音等是具体的客体,他们刺激感官,从而被识别。而思想、信仰、言论等则是抽象的客体,这些属于政治、哲学的范畴。我们研究的主要是一些具体客体的识别,而且仅限于研究用机器完

产品型号命名规则

编制 Writer 李长春批准Approver 产品命名规则 为规范本公司的产品,现将本公司现有产品的命名规则规范如下: 1.外置灯管:External Tube 例:GXLED-NS1-48-2-CW-C 即这个是24W系列灯管(一个电源2根灯管,1.2M长,色温5000K,透明罩。 型号单支功率灯珠 GXLED-NS1-48-2-XX-X 12 3528 GXLED-NS1-48-3-XX-X 18 3528 GXLED-NS1-96-1-XX-X 24 5730 GXLED-NS2-48-2-XX-X 18 5730 GXLED-NS2-2U-2-XX-X 18 5730 GXLED-NS3-48-2-XX-X 18 2835 2.内置灯管:Internal Tube 例:GXLED-NSN-48-3-3-CW-C 即常规系列1.2M长,277V 27W色温5000K,透明罩。

编制 Writer 李长春批准Approver 产品命名规则 3.玉米灯Corn light 样例:GXT20-CW-1-E4即玉米灯20W 色温5000k 输入电压100-277Vac,E39/E40灯头的产品。 4.冰箱灯Refrigerator lamps 样例:GX-CS185070D即这个产品是1.8M的冰箱灯。 5.射灯spot light 样例:GXSL-M81-CW-2即MR16型的8W射灯,输入电压12V,色温5000K,发光角度20°。

编制 Writer 李长春 批准Approver 产品命名规则 6.面板灯 AXON LED Panel light 例:GXTF-A2-1-CW 即这个产品是600X600 110V 调光 5000K 色温面板灯。 7.NOVASTRIP (灯管替换类 灯板LED PCBA+电源DRIVE+PC COVER ) GXNP - X - XX - XX 8、SNOW MACHINE 雪花灯 DIG-HPS 15 NOVASTRI 灯板数 2:1拖2 功率24:24W 色温:SW=3000K WW=3500K 客户公司名 DIGICO IMAGING INC Happy 2015

模式识别研究进展

模式识别研究进展 摘要:自20世纪60年代以来,模式识别的理论与方法研究及在工程中的实际应用取得了很大的进展。本文先简要回顾模式识别领域的发展历史和主要方法的演变,然后围绕模式分类这个模式识别的核心问题,就概率密度估计、特征选择和变换、分类器设计几个方面介绍近年来理论和方法研究的主要进展,最后简要分析将来的发展趋势。 1. 前言 模式识别(Pattern Recognition)是对感知信号(图像、视频、声音等)进行分析,对其中的物体对象或行为进行判别和解释的过程。模式识别能力普遍存在于人和动物的认知系统,人和动物获取外部环境知识,并与环境进行交互的重要基础。我们现在所说的模式识别一般是指用机器实现模式识别过程,是人工智能领域的一个重要分支。早期的模式识别研究是与人工智能和机器学习密不可分的,如Rosenblatt 的感知机和Nilsson的学习机就与这三个领域密切相关。后来,由于人工智能更关心符号信息和知识的推理,而模式识别更关心感知信息的处理,二者逐渐分离形成了不同的研究领域。介于模式识别和人工智能之间的机器学习在20 世纪80 年代以前也偏重于符号学习,后来人工神经网络重新受到重视,统计学习逐渐成为主流,与模式识别中的学习问题渐趋重合,重新拉近了模式识别与人工智能的距离。模式识别与机器学习的方法也被广泛用于感知信号以外的数据分析问题(如文本分析、商业数据分析、基因表达数据分析等),形成了数据挖掘领域。模式分类是模式识别的主要任务和核心研究内容。分类器设计是在训练样本集合上进行优化(如使每一类样本的表达误差最小或使不同类别样本的分类误差最小)的过程,也就是一个机器学习过程。由于模式识别的对象是存在于感知信号中的物体和现象,它研究的内容还包括信号/图像/ 视频的处理、分割、形状和运动分析等,以及面向应用(如文字识别、语音识别、生物认证、医学图像分析、遥感图像分析等)的方法和系统研究。 本文简要回顾模式识别领域的发展历史和主要方法的演变,介绍模式识别理论方法研究的最新进展并分析未来的发展趋势。由于Jain 等人的综述[3]已经全面介绍了2000 年以前模式分类方面的进展,本文侧重于2000 年以后的研究进展。 2. 历史回顾

线路板型号命名规则

一、目的及范围 统一规划产品开发中所涉及电路板型号命名,提供和识别产品具体信息内容及相关文档 的可控性,便于操作和统一管理,特此规范与说明。 作用范围包括环氧、铝基、瓷基、柔性、纸基等通用型线路板。 二、适用性 适用于xxxxxx硬件开发部。 三、公司产品开发思路 当前所发布的产品和公司的业务发展方向----向智能感知、物联网方向发展,因此,为保证产品开发进度,采用模块化产品开发模式,不同模块组合构成柔性的、可变的、多样化的产品,从而尽量缩短开发时间,同时减少商务、生产、测试的物流流转时间,为争取最快 的上市时间提供保障。实现“以不变(模块系列)应多变(用户需求)的产品开发模式。 模块化设计的基本方法: 新产品=不变部分(通用模块)+准通用部分(改型模块)+专用部分(新功能模块)从公司当前业务发展和及方向看,通用模块主要有(以后有新的需求再增加): A:基于视频分析应用通用模块; B:基于物联网应用的通用模块; C:基于逻辑控制的通用模块; D:基于数据交换的通用模块。 因此线路板的命名分为通用模块线路板命名规则和专用功能接口线路板命名规则。 1、通用模块线路板命名规则 版本信息 附属信息 特征信息 业务应用类型 商标“HFC”

商标信息:固定为“HFC”; 业务应用类型(最多3位): 基于视频分析应用通用模块:标识“A”; 基于物联网应用的通用模块:标识“M2M”; 基于逻辑运算控制类通用模块:标识“LOC”; 基于数据交换的通用模块:标识为“SW”。 *若后续有补充,可进行增添。 特征信息(最多3位): 主要描述通用模块关键特征,利于区分相同业务应用类型模块之间差异。例如:交换机 有5以太网,则此位标识“5”,有8口,则此位标识“8”。如果没有,默认用“n”标识。 附属信息(最多4位,可数值也可文字) 主要表述核心芯片的信息,诸如,A8板采用TI Davinic DM6446芯片,则在附属信息 中“6446”用于标识; 版本信息(2位数值) 该标识位表示线路板的版本,用括号内数值代表,默认第一版用“(10)”(以版本号右移一位作为版本标识),若更改线路板相关内容,即改版打样,数值相应增加,如改过一次 大的,一次局部布局,并打样,最新版本为“(21)”。 2、专用部分线路板命名规则 在此之前的产品没有按此规则命名的,在改版后必须按以下命名规则执行。 版本信息 附属信息 用途信息 产品类型 商标“HFC” 商标信息:固定为“HFC”;

电容的型号命名规则

电容的型号命名: 1、各国电容器的型号命名很不统一,国产电容器的命名由四部分组成: 第一部分:用字母表示名称,电容器为C。 第二部分:用字母表示材料。 第三部分:用数字表示分类。 第四部分:用数字表示序号。 2、电容的标志方法: (1)直标法:用字母和数字把型号、规格直接标在外壳上。 (2)文字符号法:用数字、文字符号有规律的组合来表示容量。文字符号表示其电容量的单位:P、N、u、m、F等。和电阻的表示方法相同。标称允许偏差也和电阻的表示方法相同。小于10pF的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.2pF,D——±0.5pF,F——±1pF。 (3)色标法:和电阻的表示方法相同,单位一般为pF。小型电解电容器的耐压也有用色标法的,位置靠近正极引出线的根部,所表示的意义如下表所示: 颜色黑棕红橙黄绿蓝紫灰 耐压4V 6.3V 10V 16V 25V 32V 40V 50V 63V (4)进口电容器的标志方法:进口电容器一般有6项组成。 第一项:用字母表示类别: 第二项:用两位数字表示其外形、结构、封装方式、引线开始及与轴的关系。 第三项:温度补偿型电容器的温度特性,有用字母的,也有用颜色的,其意义如下表所示: 序号字母颜色温度系数允许偏差字母颜色温度系数允许偏差 1 A 金+100 R 黄-220 2 B 灰+30 S 绿-330 3 C 黑0 T 蓝-470 4 G ±30 U 紫-750 5 H 棕-30 ±60 V -1000 6 J ±120 W -1500 7 K ±250 X -2200 8 L 红-80 ±500 Y -3300 9 M ±1000 Z -4700 10 N ±2500 SL +350~-1000 11 P 橙-150 YN -800~-5800 备注:温度系数的单位10e -6/℃;允许偏差是% 。 第四项:用数字和字母表示耐压,字母代表有效数值,数字代表被乘数的10的幂。 第五项:标称容量,用三位数字表示,前两位为有效数值,第三为是10的幂。当有小数时,用R或P表示。普通电容器的单位是pF,电解电容器的单位是uF。 第六项:允许偏差。用一个字母表示,意义和国产电容器的相同。 也有用色标法的,意义和国产电容器的标志方法相同。 3、电容的主要特性参数: (1) 容量与误差:实际电容量和标称电容量允许的最大偏差范围。一般分为3级:I级±5%,II级±10%,III级±20%。在有些情况下,还有0级,误差为±20%。

模式识别的基本理论

模式识别的基本理论 蝙蝠的雷达系统、螳螂的视觉的灵敏度都是非常高的。这些动物通过这些特异的功能来识别各式各样的东西并赖以生存。识别也是人类的一项基本技能。当人们看到某事物或现象时,人们会先收集该事物或现象的信息,然后将其与头脑中已有的相关信息相比较,如果找到一个相同或相似的匹配,人们就可以将该事物或现象识别出来。随着计算机的出现以及人工智能的兴起,将人类的识别技能赋予计算机成为一项新兴课题。 4.1模式识别的概述 模式识别(Pattern Recognition)是人类的一项基本智能,在日常生活中,人们经常在进行“模式识别”。随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。 模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。 模式识别是人工智能最早的研究领域之一,它的狭义研究目标是为计算机配置各种感觉器官,以便直接接受外界的各种信息,如图形识别、语言识别等。它的研究目标可以包括对于许多复杂事物的分类,如故障诊断、气象分型等。但模式识别又不是简单的分类学,它的目标包括对于系统的描述、理解与综合,是通过大量信息对复杂过程进行学习、判断和寻找规律。模式识别的应用几乎遍及各个学科领域,同时模式识别也广泛地应用于石油工业领域。此章通过保护储集层钻井液体系的优选,介绍模式识别方法在保护油气储集层技术中的应用[14]。 从模式识别用于对复杂类事物的分类来讲。模式识别就是已知某类事物有若干标准类别(模式),现判断某一具体对象属于哪一个模式。这里所说的模式是指标准样本、式样、样品、图形、症状等。模式识别与传统的数学观点不同,它暂不去追求精确地数学模型,而是在专家经验和已有认识的基础上,从所得的大量数据和历史出发,利用数学方法来完成识别过程。它是一门基于概念基础上的判断学科。 4.2模式识别的基本概念

电阻、电容、电感的命名

一、电容的分类和作用 电容(Electric capacity),由两个金属极,中间夹有绝缘材料(介质)构由于绝缘材料的不同,所构成的电容器的种类也有所不同: 按结构可分为:固定电容,可变电容,微调电容。 按介质材料可分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。 按极性分为:有极性电容和无极性电容。我们最常见到的就是电解电容。 电容在电路中具有隔断直流电,通过交流电的作用,因此常用于级间耦合、滤波、去耦、旁路及信号调谐 二、电容的符号 电容的符号同样分为国内标表示法和国际电子符号表示法,但电容符号在国内和国际表示都差不多,唯一的区别就是在有极性电容上,国内的是一个空筐下面一根横线,而国际的就是普通电容加一个“+”符号代表正极。 三、电容的两个重要参数 容量:电容容量的基本单位是:F (法),此外还有μF(微法)、pF(皮法),另外还有两个用的比较少的单位:mf(毫发)和nF(),由于电容F 的容量非常大,所以我们看到的一般都是μF、nF、pF的单位,而不是F的单位。 换算关系如下: 1F=1000mf=1000000μF 1μF=1000nF=1000000pF 耐压:电容耐压的单位是V(伏特),每一个电容都有它的耐压值,这是电容的重要参数之一。普通无极性电容的标称耐压值有:63V、100V、160V、250V、400V、600V、1000V等,有极性电容的耐压值相对要比无极性电容的耐压要低,一般的标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。 四、电容的种类 电容的种类有很多,可以从原理上分为:无极性可变电容、无极性固定电容、有极性电容等,从材料上可以分为:CBB电容(聚乙烯),涤纶电容、瓷片电容、云母电容、独石电容、电解电容、钽电容等。下表是各种电容的优缺点: 无感CBB电容2层聚丙乙烯塑料和2层金属箔交替夹杂然后捆绑而成无感,高频特性好,体积较小不适合做大容量,价格比较高,耐热性能较差 CBB电容2层聚乙烯塑料和2层金属箔交替夹杂然后捆绑而成有感,其他同上 瓷片电容薄瓷片两面渡金属膜银而成体积小,耐压高,价格低,频率高(有一种是高频电容)易碎!容量低 云母电容云母片上镀两层金属薄膜容易生产,技术含量低体积大,容量小,(几乎没有用了) 独石电容体积比CBB更小,其他同CBB,有感 电解电容两片铝带和两层绝缘膜相互层叠,转捆后浸泡在电解液(含酸性的合成溶液)中 容量大高频特性不好 钽电容用金属钽作为正极,在电解质外喷上金属作为负极稳定性好,容量大,高频特性好造价高。(一般用于关键地方) 五、电容的标称及识别方法 1. 由于电容体积要比电阻大,所以一般都使用直接标称法。如果数字是0.001,那它代表的是0.001uF=1nF,如果是10n,那么就是10nF,同样100p就是100pF。

产品型命名规则

产品型号命名规则 1.范围 为规范产品型号的命名,以便于识别,归类和管理,制定本规则。本规则适用于产品型号的命名,对于定单产品及客户特殊要求的产品,则可按顾客要求或其他相关规定处理。 对于原工厂已生产的产品,如原型号的命名规则与本规则有冲突的,为保持产品的延续性,可以仍按照原产品型号组织生产销售,但重新设计,改性的产品必须按此规则命名。 2.术语和定义 暂无。 3.产品型号命名规则 3.1基本原则: 产品型号命名必须具有唯一性,同一型号不得使用在两种产品上。 产品型号的命名或命名的变更必须由产品企划部门提出,经由工程设计部登记备案后方能正常使用。 3.2产品型号命名方式 1)应急灯产品 UL代表U管+LED;LED代表 全LED;U代表全U管;3代 表贴片3528;5代表贴片5050. 系列号码(模号)三位数 UP代表UPEK品牌

2)LED日光灯 □□-□-□□□□□□-□□□□四位数的SMD代码 P代表“DIP”;T代表“SMT” 前两位数为灯管直径08表示T8,10 表示T10;后三位为灯管长度(厘米) 数值 A代表非隔离式;B代表隔离式 UP代表UPEK品牌 示例:UP-A-10060P表示T10 60CM长度的非隔离式插件LED日光灯管。3)LED格栅灯 □□-□□-□□□□□ 前两位数为灯体宽度(厘米)数值, 后三位为灯体长度(厘米)数值 GS为“格栅”汉语拼音大写第一字 母缩写 UP代表UPEK品牌 示例:UP-GS-30120表示宽度30CM长度120CM的格栅灯。

4)LED球泡灯 □□□□□□□□□□ WW代表暖白色,PW代表日光白色 外形识别代码编号两位或SMD识别 功率瓦数代码两位,如3W用03表示 灯泡型号A,B,G等 Q为球泡灯的代称 UP代表品牌UPEK 示例:UPQA0301PW表示3W的冷白色A型球泡灯(2700-3200K为暖白色,6000-6500K为日光白色) 5) LED蜡烛灯 □□□□□□□□□□ WW代表暖白色,PW代表日光白色 LED颗数或SMD识别 功率瓦数代码两位,如3W用03表示 灯泡型号A,B,G等 Q为球泡灯的代称 UP代表品牌UPEK 6)LED射灯

相关主题